FTDI Arduino-Compatible Touch-Enabled Display Shield Now Shipping

FTDI Chip recently announced the widespread availability of its originally crowdfunded CleO product (and accompanying accessories). FTDI Chip also offers access to software tools, step-by-step tutorials, and projects. FTDI CleOCleO is a simple to program, intelligent TFT display solution that for building human machine interfaces (HMIs) with higher performance than typical Arduino display shields. The initial CleO includes an HVGA resolution, 3.5″ TFT display featuring a resistive touchscreen. An FTDI Chip FT810 high-resolution embedded video engine (EVE) graphic controller executes the HMI operation. An FTDI FT903 microcontroller handles all the additional processing tasks. The advanced display shield provides high-quality graphical animation, even at 60-fps frame rates. In addition, its antialiased graphics capabilities render images in finer detail.

When CleO is combined with FTDI Chip’s NerO—which is an energy-efficient Arduino design capable of operating up to 1 W—it offers a far more powerful solution than a normal Arduino UNO/display shield package.

CleO has an array of useful accessories:

  • AT 57.15 mm × 54.35 mm, the CleO-RIO module provides a mechanism for stacking the CleO shield and an Arduino board together.
  • The CleO-Speaker module (63 mm × 63 mm × 23.8 mm) facilitates the playback music/tones for HMIs where audio functionality has been incorporated. There is also an audio line for input of audio from external sources.
  • The CleO-Camera module has an OV5640 0.25″ 5-megapixel CMOS image sensor plus flash LEDs and a 24-pin 0.5-mm pitch FFC cable.
  • A 9-V power adaptor provides the NerO/CleO solution with up to 1 A of current.

The CleO costs $69. Refer to FTDI’s new forum, www.CleOstuff.com, for design tips, application ideas, and more.

Source: FTDI Chip

ARM MCUs wtith Capacitive Touch Hardware Support for HMI and LIN Applications

Atmel recently announced its next-generation family of automotive-qualified ARM Cortext-M0+-based micrcontrollers with an integrated peripheral touch controller (PTC) for capacitive touch applications. The new SAM DA1 is the first series in this Atmel |SMART MCU automotive-qualified product family, operating at a maximum frequency of 48 MHz and reaching a 2.14 Coremark/MHz.Atmel Corporation SAM DA1

Atmel’s SAM DA1 series is ideal for capacitive touch button, slider, wheel or proximity sensing applications and offers high analog performance for greater front-end flexibility. The new devices are available down to a very compact QFN 5 × 5 mm package with wettable flanks for automated optical inspection.

Eliminating external components and offering more robust features, devices in the SAM DA1 series come with 32 to 64 pins, up to 64 KB of flash memory, 8 KB of SRAM, and 2-KB read-while-write flash memory and are qualified according to the AEC Q-100 Grade 2 (–40° to 105°C).

Key Features of Atmel’s SAM DA1 Series

  • Atmel |SMART ARM Cortex-M0+-based processor
  • 45 DMIPS
  • Vcc 2.7 to 3.63 V
  • 16- to 64-KB Flash; 32 to 64 pins
  • Up to six SERCOM (Serial Communication Interface), USB, I2S
  • Peripheral Touch Controller
  • Complex PWM
  • AEC Q100 Grade 2 Qualified

To accelerate the design development, the ATSAMDA1-XPRO development kit is available to support the new devices. The new SAM DA1 series is also supported by Atmel Studio, Atmel Software Framework and debuggers.

Contact Atmel to sample the SAM DA1 series.

Source: Atmel

A Rat’s Nest-Less Workspace: Clean with Plenty of Screens

Two sorts of things we love to see in an electronics workspace: cleanliness and multiple monitors! San Antonio, TX-based Jorge Amodio’s L-shaped modular desk is great setup that gives him easy access to his projects, test equipment, and computers. The wires to all of his equipment are intelligently placed behind and below the workspace. Hence, no rat’s nest of wires! He doesn’t need to work on top of cords and peripherals like, well, a few of us do here in our office. We like how he “sectioned” his space to provide maximum multitasking capability. The setup enables him to move easily from doing R&D work to emailing to grabbing his iPhone without any more effort than a slide of his chair. Very nice.

Jorge Amodio’s workspace (Source: J. Amodio)

Submitted by Jorge Amodio, independent consultant and principal engineer (Serious Integrated, Inc.), San Antonio, TX, USA

“For the past few years I’ve been working on R&D of intelligent graphic/touch display modules for HMI (Human Machine Interface) and control panels, with embedded networking for ‘Internet of Things’ applications.” – Jorge Amodio

Jorge perform R&D with handy test equipment an arm’s length away (Source: J. Amodio)

A closer look at Jorge’s project space (Source: J. Amodio)

Jorge has easy access to his other monitors and iPhone (Source: J. Amodio)

Do you want to share images of your workspace, hackspace, or “circuit cellar”? Send your images and space info to editor at circuitcellar dotcom.

HMI Development on Intelligent Displays

4dsystems_HRES4D Systems and Future Technology Devices International Limited (FTDI) (aka, FTDI Chip) recently introduced the 4DLCD-FT843. The intelligent display solution incorporates FTDI Chip’s FT800 Embedded Video Engine (EVE) with the subsequent introduction of two additional products. This combined product gives design engineers a foundation on which to quickly and easily construct human-machine interfaces (HMIs).

The first of these products is the ADAM (Arduino Display Adaptor Module). This 47.5-mm × 53.4-mm Arduino-compatible shield permits communication between the Arduino via the SPI. The shield is suitable for use with Arduino Uno, Due, Duemilanove, Leonardo, Mega 1280/2560, and Pro 5V. The shield’s micro-SD card provides the Arduino-based display system with ample data storage. The 4DLCD-FT843 can use the micro-SD card to retrieve objects (e.g., images, sounds, fonts, etc.). Drawing power from the Arduino’s 5-V bus, the ADAM regulates the 4DLCD-FT843’s supply to 3.3 V. The FT800 EVE controller can handle many of the graphics functions that would otherwise need to be managed by the Arduino.

The ADAM is complemented by the 4DLCD-FT843-Breakout. With a 26.5-mm × 12-mm footprint, this simple breakout module enables the 4DLCD-FT843 to be attached to a general host or breadboard for prototyping purposes. It features a 10-way FPC connection for attachment with the 4DLCD-FT843 along with a 10-way, 2.54-mm pitch male pin header that enables it to directly connect to the host board. Both products support a –10°C-to-70°C operational temperature range.

The EVE-driven 4DLCD-FT843 has a 4.3” TFT QWVGA display with a four-wire resistive touchscreen. It features a 64-voice polyphonic sound synthesizer, a mono PWM audio output, a programmable interrupt controller, a PWM dimming controller for the display’s backlight, and a flexible ribbon connector.

Contact 4D Systems or FTDI Chip for pricing.

4D Systems

Future Technology Devices International Limited (FTDI) (aka, FTDI Chip)