Displays Fit Diverse Embedded System Needs

Many Sizes and Solutions

The types of displays available for embedded applications are as diverse as embedded applications themselves. Whether your requirement is for small, smart, rugged or rain-proof, there’s probably a display solution that suits your system design needs.

By Jeff Child, Editor-in-Chief

Long gone are the days when the Graphics Processor Unit (GPU) market was filled with many semiconductor vendors jockeying for position. A combination of chip integration: graphics function moving inside microprocessors—and business consolidation: graphics chip vendors getting acquired, has narrowed the technology space down to mostly Intel, AMD and NVIDIA. And while these vendors tailor their products for high-volume markets, embedded applications must adapt those same GPUs to their needs.

With that in mind, makers of displays for embedded applications are constantly evolving their products to keep pace with the latest GPU technologies and both new and legacy display interface standards. Technologies range from small e-paper displays to rugged sunlight readable displays for the outdoors to complete Panel PC solutions that embed PC functionality as part of the display.

Mobile Dominates GPU Market

Although this article is focused on displays in embedded systems, it’s helpful to first understand the larger markets that are driving GPU technology. For its part, Jon Peddie Research (JPR), a market research and consulting firm focused on graphics and multimedia saw mobile devices as the dominate market when they did their annual review of GPU developments for 2017. In spite of the slow decline of the PC market overall, PC-based GPU sales (which include workstations) have been increasing, according to the review. In the mobile market, integrated GPUs have risen at the same rate as mobile devices and the SoCs in them. The same is true for the console market where integrated graphics are in every console and they too have increased in sales over the year.

Nearly 28% of the world’s population bought a GPU device in 2017, and that’s in addition to the systems already in use. And yet, probably less than half of them even know what the term GPU stands for, or what it does. To them the technology is invisible, and that means it’s working—they don’t have to know about it.

The market for, and use of, GPUs stretches from supercomputers and medical devices to gaming machines, mobile devices, automobiles and wearables. Just about everyone in the industrialized world has at least a half-dozen products with a GPU, and technophiles can easily count a dozen or more. The manufacturing of GPUs approaches science fiction with features that will move below 10 nm next year and have a glide-path to 3 nm—and some think even 1 nm.

Innovative Adaptations

Throughout 2017 JPR saw a few new, and some clever adaptations of GPUs that show the path for future developments and subsequent applications. 2017 was an amazing year for GPU development driven by games, eSports, AI, crypto currency mining and simulations. Autonomous vehicles started to become a reality, as did augmented reality. The over-hyped, consumer-based PC VR market explosion didn’t happen—and had little to no impact on GPU developments or sales. Most of the participants in VR already had a high-end system and the head-mounted display (HMD) was just another display to them.

Mobile GPUs, exemplified by products from Qualcomm, ARM and Imagination Technologies, are key to amazing devices with long battery life and screens at or approaching 4K. And in 2017 people started talking about and showing High dynamic range (HDR). JPR’s review says that many, if not all, the developments we will see in 2018 were started as early as 2015, and that three to four-year lead time will continue.

Lead times could get longer as semiconductor engineers learn how to deal with chips constructed with billions of transistors manufactured at feature sizes smaller than X-rays. Ironically, buying cycles are also accelerating ensuring strong competition as players try to leap-frog each other in innovation. According to JPR, we’ll see considerable innovation in 2018, with AI being the leading application that will permeate every sector of our lives. The JPR GPU Developments in 2017 Report is free to all subscribers of JPR. Individual copies of the report can be purchased for $100.

Photo 1.
The Internet of Displays is a range of miniature displays that offer small color displays with integrated Wi-Fi and a microSD/HDC slot.

Internet of Displays

Focusing on the small side of the display spectrum, in November 4D Systems announced the latest addition to its Internet-of-Display module family with its smallest LCD display yet. At 0.9-inch and powered by the Wi-Fi enabled ESP8266, it is well suited for miniature IoT projects. The Internet of Displays is the company’s range of miniature feature rich displays that offer small color displays with integrated Wi-Fi and a microSD/HDC slot (Photo 1). …

Read the full article in the April 333 issue of Circuit Cellar

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!
Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

Fanless SBC Targets Industrial IoT

Technologic Systems is now shipping its newest single board computer, the TS-7553-V2. The board is developed around the NXP i.MX6 UltraLite, a high performance  processor family featuring an advanced implementation of a single ARM Cortex-A7 core, which operates at speeds up to 696 MHz. While able to support a wide range of embedded applications, the TS-7553-V2 was specifically designed to target the industrial Internet of Things (IIoT) sector.

ts-7553-v2The TS-7553-V2 was designed with connectivity in mind. An on-board Xbee interface, capable of supporting Xbee or NimbleLink, provides a simple path to adding a variety of Wireless interfaces. An Xbee radio can be used to link in with a local 2.4GHz or sub 1 GHz mesh networks, allowing for gateway or node deployments. Either Digi or NimbleLink offer cellular radios for this socket, providing cellular connectivity for applications such as remote equipment monitoring and control. There is also the option for a cellular modem via daughter card. This allows transmission of serial data via TCP, UDP or SMS over the cellular network. The TS-7553-V2 also includes an on board WiFi b/g/n and Bluetooth 4.0 option, providing even more connectivity.

Further radio expansion can be accomplished with the two internal USB interfaces (one on a standard USB Type A connector, and the second on simple pin headers). The USB interfaces enable support for multiple proprietary networks via a dongle or USB connected device. This provides the opportunity to run mesh, LoRa, ZigBee, automotive WiFi or other protocols with the TS-7553-v2 . All of these radio options combined with the on board 10/100Base-T Ethernet create the opportunity to communicate seamlessly with up to 5 different networks simultaneously from a single point.

The TS-75553-V2 supports standard interfaces including:

  •     10/100 Ethernet
  •     TTL UART
  •     4 USB ports (3 host interfaces and, 1 device)
  •     3 RS-232 Serial/COM ports
  •     RS-485 port
  •     CAN bus
  •     Up to 5 GPIO

A Nine-Axis Micro-Electro-Mechanical System (MEMS) motion tracking device containing a gyroscope, accelerometer and compass are optional on-board in for asset management, fleet management and other applications which would require sensing motion or vibration in the environment.

A low cost monochrome 128x64px LCD with 4 button keypad is available for Human Machine Interface (HMI) applications.  The keypad offers intuitive operation using 4 tactile function keys and the LCD is ideal for simple visualization tasks, even in harsh environments.  If HMI is not a consideration compact, lightweight, rugged enclosures are available to contain your gateway in a secure fanless enclosure. Both enclosures are DIN mountable.

Technologic Systems has taken the lead in combating read/write errors to memory that can prove fatal to Operating Systems. TS-SILO is an optional feature which will provide up to 30 seconds of reserve power in the event of a power failure. This precious extra time gives the board time to gracefully power down and ensures file system integrity. Additionally, for heavy data logging applications The TS-7553-V2 is the first SBC from Technologic Systems to include Ferroelectric RAM (FeRAM or FRAM). FeRAM advantages over flash include: lower power usage, faster write performance and a much greater maximum read/write endurance, allowing a user to keep running data logs without prematurely wearing out their flash memory. Combined these two features provide you with insurance from abrupt power loss, read/write errors and startup difficulties.

Applications with strict low power requirements will appreciate the work that’s been done to reduce power consumption to less than 2 W in typical conditions and a 9 mW sleep mode. Power over Ethernet (PoE) is supported via a daughter card, if desired.

Development can begin out-of-the-box with pre-installed Linux and utilities for controlling DIO, UARTS, CAN bus, and more. A complete board support package is provided, as well as access to our software repository and online support. Third party application support can be provided via the Technologic Systems’ Partner Network.

Technologic Systems | www.embeddedARM.com

Designing High Performance GUIs

329 Brumby Lead Image for Web

UIs for the Multicore Era

For embedded developers, it’s critical to understand the types of performance problems a typical end-user might encounter and the performance metrics relevant to user
interface (UI) design. Phil examines these and other important UI design challenges.

By Phil Brumby
Mentor, Embedded Systems Division

The widespread proliferation of portable media devices has changed the way we interact with each other on a daily basis. In fact, there is now a generation of users who grew up with some type of touchscreen device. These users no longer see the UI as new or revolutionary, but rather as a standard piece of mobile device functionality. This phenomenon has created a new set of expectations. It means any device with an LCD must offer a fluid and intuitive user experience. It’s also expected that the touchscreen has to be “smartphone-like” whenever the device is powered on. Embedded system developers are now under pressure across multiple markets and device types to replicate the smartphone UI interactive experience.

The importance of getting the UI right is absolutely critical to the success of the device. Underpinning documented UI design methodologies is a need for the device to operate in a way that it will not impinge or be detrimental to the user experience. For developers, it’s necessary to understand the types of performance problems a typical end-user might encounter, and through an understanding of performance metrics employ various analyses to highlight the bottlenecks and performance degradation issues.

A key advantage to system start-up is analyzing selected input events.

A key advantage to system start-up is
analyzing selected input events.

TYPICAL PERFORMANCE ISSUES

To understand how to best analyze performance, it’s important to look at typical performance issues from the end-user’s perspective. In identifying these issues, developers can begin to identify the first data points or metrics needed for feedback on system performance.

Responsiveness: Responsiveness can be thought of as the time it takes for the user to receive feedback from the UI as a result of an input action made. Typically, this consists of a touchscreen input, but also includes hard key presses. Responsiveness is important as the user must feel the device performs within a certain timeframe to avoid the feeling a UI is “laggy” or slow to respond. Delays in updating the UI in response to input can result in frustration and mistakes made by the user.

Animation smoothness: Animation smoothness relates to the visible motion or change in appearance of elements displayed within the UI. As an element transitions from one point in 3D space to another, does it do so in a smooth manner that is pleasing to the eye? Animation smoothness is important because if the user perceives jagged or staggered motion in a transition, it will degrade the overall interactive experience.   …

Read the full article in the December 329 issue of Circuit Cellar

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!
Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

Low Power PC/104-Plus SBC has Rich I/O

Winsystems has announced Its new PPM-C412 series for demanding environments and applications. It offers a broad spectrum of I/O features and the ability to expand functionality in a densely populated, standalone SBC solution. The board delivers greater performance and a clear upgrade path for current PPM-LX800 users while providing full ISA-compatible PC/104-Plus expansion.

WinSystems_PPM_C412At the heart of the board is a Vortex DX3 System on Chip (SOC), which offers a 32-bit x86 architecture with a dual-core microprocessor. The PPM-C412 incorporates dual Ethernet ports coupled with four serial ports, four USB channels and an LPT port for myriad communications options. It also includes dual simultaneous display outputs, one LVDS and one VGA, for Human Machine Interface (HMI) displays. Further, It provides 24 GPIO for monitoring and control, resulting in an I/O-rich, rugged SBC occupying minimal space. The PPM-C412 can be used on its own or in combination with the PC/104-Plus bus to expand functionality and capitalize on its full ISA compatibility, averting the need to re-engineer system architectures.

The PPM-C412 is specifically built for rugged industrial environments, with low power requirements, up to 2 GB RAM and an operating temperature range of -40ºC to +85ºC. With a 10-year availability, this new SBC also extends the product life of systems using commercial off the shelf (COTS) and proprietary PC/104 expansion modules.

Winsystems I www.winsystems.com

Renesas Expands HMI Support with RZ/G MPUs

Renesas has expanded its RZ microprocessor (MPU) Family to support the growing range of human-machine interface (HMI)- and vision-based systems, with performance scalability from entry-level to highly complex embedded applications. The new RZ/G1C MPUs from the Renesas RZ/G Series enable rapid development of high-performance HMI applications and support 3D graphics with full high-definition (FHD) video. The RZ/G1C is especially optimized for Linux-based application development.

20151007-hmi-solutions-rzg-series

The Renesas RZ/G MPU Series lets system manufacturers right-size their processor selection to support current and next-generation connected devices, ranging from home appliances with touch-based displays to industrial equipment with integrated embedded vision-equipped HMI that enables image recognition and artificial intelligence.

About the RZ/G1C MPUs

Based on the power-efficient ARM® Cortex-A7 CPU, the RZ/G1C offers a balance of performance and power for connected HMI-based systems. Support for multiple interfaces, including USB and Gigabit Ethernet (GbE), and full pin compatibility between parts provides customers the flexibility to scale up or down the RZ Family to address current and future embedded development needs. The new MPU features a PowerVR SGX531 3D graphics engine and an FHD H.264 video codec to support video encoding and decoding. Additionally, the RZ/G1C offers one analog and two digital camera inputs to facilitate embedded vision and other video applications.

The RZ/G1C MPU is offered in single and dual-core varieties, and brings a number of advantages over competing technology. For instance, RZ/G1C can be designed into a four-layer board to minimize cost and PCB design complexity. Competing parts  typically require a minimum of six to eight layers. Moreover, no special power sequencing or power management IC (PMIC) is needed on board, which reduces the bill of material (BOM) costs, streamlines manufacturing, and simplifies board bring-up.

Samples of the RZ/G1C MPUs are available now. The RZ/G1C is available in dual core or single core depending on customer requirements. Mass production will begin in December 2017.

Renesas Electronics America | www.renesas.com

FTDI Arduino-Compatible Touch-Enabled Display Shield Now Shipping

FTDI Chip recently announced the widespread availability of its originally crowdfunded CleO product (and accompanying accessories). FTDI Chip also offers access to software tools, step-by-step tutorials, and projects. FTDI CleOCleO is a simple to program, intelligent TFT display solution that for building human machine interfaces (HMIs) with higher performance than typical Arduino display shields. The initial CleO includes an HVGA resolution, 3.5″ TFT display featuring a resistive touchscreen. An FTDI Chip FT810 high-resolution embedded video engine (EVE) graphic controller executes the HMI operation. An FTDI FT903 microcontroller handles all the additional processing tasks. The advanced display shield provides high-quality graphical animation, even at 60-fps frame rates. In addition, its antialiased graphics capabilities render images in finer detail.

When CleO is combined with FTDI Chip’s NerO—which is an energy-efficient Arduino design capable of operating up to 1 W—it offers a far more powerful solution than a normal Arduino UNO/display shield package.

CleO has an array of useful accessories:

  • AT 57.15 mm × 54.35 mm, the CleO-RIO module provides a mechanism for stacking the CleO shield and an Arduino board together.
  • The CleO-Speaker module (63 mm × 63 mm × 23.8 mm) facilitates the playback music/tones for HMIs where audio functionality has been incorporated. There is also an audio line for input of audio from external sources.
  • The CleO-Camera module has an OV5640 0.25″ 5-megapixel CMOS image sensor plus flash LEDs and a 24-pin 0.5-mm pitch FFC cable.
  • A 9-V power adaptor provides the NerO/CleO solution with up to 1 A of current.

The CleO costs $69. Refer to FTDI’s new forum, www.CleOstuff.com, for design tips, application ideas, and more.

Source: FTDI Chip

ARM MCUs wtith Capacitive Touch Hardware Support for HMI and LIN Applications

Atmel recently announced its next-generation family of automotive-qualified ARM Cortext-M0+-based micrcontrollers with an integrated peripheral touch controller (PTC) for capacitive touch applications. The new SAM DA1 is the first series in this Atmel |SMART MCU automotive-qualified product family, operating at a maximum frequency of 48 MHz and reaching a 2.14 Coremark/MHz.Atmel Corporation SAM DA1

Atmel’s SAM DA1 series is ideal for capacitive touch button, slider, wheel or proximity sensing applications and offers high analog performance for greater front-end flexibility. The new devices are available down to a very compact QFN 5 × 5 mm package with wettable flanks for automated optical inspection.

Eliminating external components and offering more robust features, devices in the SAM DA1 series come with 32 to 64 pins, up to 64 KB of flash memory, 8 KB of SRAM, and 2-KB read-while-write flash memory and are qualified according to the AEC Q-100 Grade 2 (–40° to 105°C).

Key Features of Atmel’s SAM DA1 Series

  • Atmel |SMART ARM Cortex-M0+-based processor
  • 45 DMIPS
  • Vcc 2.7 to 3.63 V
  • 16- to 64-KB Flash; 32 to 64 pins
  • Up to six SERCOM (Serial Communication Interface), USB, I2S
  • Peripheral Touch Controller
  • Complex PWM
  • AEC Q100 Grade 2 Qualified

To accelerate the design development, the ATSAMDA1-XPRO development kit is available to support the new devices. The new SAM DA1 series is also supported by Atmel Studio, Atmel Software Framework and debuggers.

Contact Atmel to sample the SAM DA1 series.

Source: Atmel

A Rat’s Nest-Less Workspace: Clean with Plenty of Screens

Two sorts of things we love to see in an electronics workspace: cleanliness and multiple monitors! San Antonio, TX-based Jorge Amodio’s L-shaped modular desk is great setup that gives him easy access to his projects, test equipment, and computers. The wires to all of his equipment are intelligently placed behind and below the workspace. Hence, no rat’s nest of wires! He doesn’t need to work on top of cords and peripherals like, well, a few of us do here in our office. We like how he “sectioned” his space to provide maximum multitasking capability. The setup enables him to move easily from doing R&D work to emailing to grabbing his iPhone without any more effort than a slide of his chair. Very nice.

Jorge Amodio’s workspace (Source: J. Amodio)

Submitted by Jorge Amodio, independent consultant and principal engineer (Serious Integrated, Inc.), San Antonio, TX, USA

“For the past few years I’ve been working on R&D of intelligent graphic/touch display modules for HMI (Human Machine Interface) and control panels, with embedded networking for ‘Internet of Things’ applications.” – Jorge Amodio

Jorge perform R&D with handy test equipment an arm’s length away (Source: J. Amodio)

A closer look at Jorge’s project space (Source: J. Amodio)

Jorge has easy access to his other monitors and iPhone (Source: J. Amodio)

Do you want to share images of your workspace, hackspace, or “circuit cellar”? Send your images and space info to editor at circuitcellar dotcom.

HMI Development on Intelligent Displays

4dsystems_HRES4D Systems and Future Technology Devices International Limited (FTDI) (aka, FTDI Chip) recently introduced the 4DLCD-FT843. The intelligent display solution incorporates FTDI Chip’s FT800 Embedded Video Engine (EVE) with the subsequent introduction of two additional products. This combined product gives design engineers a foundation on which to quickly and easily construct human-machine interfaces (HMIs).

The first of these products is the ADAM (Arduino Display Adaptor Module). This 47.5-mm × 53.4-mm Arduino-compatible shield permits communication between the Arduino via the SPI. The shield is suitable for use with Arduino Uno, Due, Duemilanove, Leonardo, Mega 1280/2560, and Pro 5V. The shield’s micro-SD card provides the Arduino-based display system with ample data storage. The 4DLCD-FT843 can use the micro-SD card to retrieve objects (e.g., images, sounds, fonts, etc.). Drawing power from the Arduino’s 5-V bus, the ADAM regulates the 4DLCD-FT843’s supply to 3.3 V. The FT800 EVE controller can handle many of the graphics functions that would otherwise need to be managed by the Arduino.

The ADAM is complemented by the 4DLCD-FT843-Breakout. With a 26.5-mm × 12-mm footprint, this simple breakout module enables the 4DLCD-FT843 to be attached to a general host or breadboard for prototyping purposes. It features a 10-way FPC connection for attachment with the 4DLCD-FT843 along with a 10-way, 2.54-mm pitch male pin header that enables it to directly connect to the host board. Both products support a –10°C-to-70°C operational temperature range.

The EVE-driven 4DLCD-FT843 has a 4.3” TFT QWVGA display with a four-wire resistive touchscreen. It features a 64-voice polyphonic sound synthesizer, a mono PWM audio output, a programmable interrupt controller, a PWM dimming controller for the display’s backlight, and a flexible ribbon connector.

Contact 4D Systems or FTDI Chip for pricing.

4D Systems
www.4dsystems.com.au

Future Technology Devices International Limited (FTDI) (aka, FTDI Chip)
www.ftdichip.com