One Professor and Two Orderly Labs

Professor Wolfgang Matthes has taught microcontroller design, computer architecture, and electronics (both digital and analog) at the University of Applied Sciences in Dortmund, Germany, since 1992. He has developed peripheral subsystems for mainframe computers and conducted research related to special-purpose and universal computer architectures for the past 25 years.

When asked to share a description and images of his workspace with Circuit Cellar, he stressed that there are two labs to consider: the one at the University of Applied Sciences and Arts and the other in his home basement.

Here is what he had to say about the two labs and their equipment:

In both labs, rather conventional equipment is used. My regular duties are essentially concerned  with basic student education and hands-on training. Obviously, one does not need top-notch equipment for such comparatively humble purposes.

Student workplaces in the Dortmund lab are equipped for basic training in analog electronics.

Student workplaces in the Dortmund lab are equipped for basic training in analog electronics.

In adjacent rooms at the Dortmund lab, students pursue their own projects, working with soldering irons, screwdrivers, drills,  and other tools. Hence, these rooms are  occasionally called the blacksmith’s shop. Here two such workplaces are shown.

In adjacent rooms at the Dortmund lab, students pursue their own projects, working with soldering irons, screwdrivers, drills, and other tools. Hence, these rooms are occasionally called “the blacksmith’s shop.” Two such workstations are shown.

Oscilloscopes, function generators, multimeters, and power supplies are of an intermediate price range. I am fond of analog scopes, because they don’t lie. I wonder why neither well-established suppliers nor entrepreneurs see a business opportunity in offering quality analog scopes, something that could be likened to Rolex watches or Leica analog cameras.

The orderly lab at home is shown here.

The orderly lab in Matthes’s home is shown here.

Matthes prefers to build his  projects so that they are mechanically sturdy. So his lab is equipped appropriately.

Matthes prefers to build mechanically sturdy projects. So his lab is appropriately equipped.

Matthes, whose research interests include advanced computer architecture and embedded systems design, pursues a variety of projects in his workspace. He describes some of what goes on in his lab:

The projects comprise microcontroller hardware and software, analog and digital circuitry, and personal computers.

Personal computer projects are concerned with embedded systems, hardware add-ons, interfaces, and equipment for troubleshooting. For writing software, I prefer PowerBASIC. Those compilers generate executables, which run efficiently and show a small footprint. Besides, they allow for directly accessing the Windows API and switching to Assembler coding, if necessary.

Microcontroller software is done in Assembler and, if required, in C or BASIC (BASCOM). As the programming language of the toughest of the tough, Assembler comes second after wire [i.e., the soldering iron].

My research interests are directed at computer architecture, instruction sets, hardware, and interfaces between hardware and software. To pursue appropriate projects, programming at the machine level is mandatory. In student education, introductory courses begin with the basics of computer architecture and machine-level programming. However, Assembler programming is only taught at a level that is deemed necessary to understand the inner workings of the machine and to write small time-critical routines. The more sophisticated application programming is usually done in C.

Real work is shown here at the digital analog computer—bring-up and debugging of the master controller board. Each of the six microcontrollers is connected to a general-purpose human-interface module.

A digital analog computer in Matthes’s home lab works on master controller board bring-up and debugging. Each of the six microcontrollers is connected to a general-purpose human-interface module.

Additional photos of Matthes’s workspace and his embedded electronics and micrcontroller projects are available at his new website.

 

 

 

Gigabit Ethernet Designs

WurthWurth Electronics Midcom and Lantiq recently announced The Evaluation Kit, a jointly developed demonstration kit. The kit enables users to easily add Ethernet hardware to an application or device and provides all necessary information to understand the demands of an Ethernet hardware design.

The Evaluation Kit includes an easy-to-use 1-Gbps demonstration board. The (54-mm × 92-mm) credit card-sized demonstration board is powered by USB. The board plugs into PCs and provides up to 1-Gbps bidirectional data rates.

The Evaluation Kit costs approximately $175.

Wurth Electronics Midcom, Inc.
www.we-online.com

Lantiq
www.lantiq.com

Client Profile: Integrated Knowledge Systems

Integrated Knowledge Systems' NavRanger board

Integrated Knowledge Systems’ NavRanger board

Phoenix, AZ

CONTACT: James Donald, james@iknowsystems.com
www.iknowsystems.com

EMBEDDED PRODUCTS: Integrated Knowledge Systems provides hardware and software solutions for autonomous systems.
featured Product: The NavRanger-OEM is a single-board high-speed laser ranging system with a nine-axis inertial measurement unit for robotic and scanning applications. The system provides 20,000 distance samples per second with a 1-cm resolution and a range of more than 30 m in sunlight when using optics. The NavRanger also includes sufficient serial, analog, and digital I/O for stand-alone robotic or scanning applications.

The NavRanger uses USB, CAN, RS-232, analog, or wireless interfaces for operation with a host computer. Integrated Knowledge Systems can work with you to provide software, optics, and scanning mechanisms to fit your application. Example software and reference designs are available on the company’s website.

EXCLUSIVE OFFER: Enter the code CIRCUIT2014 in the “Special Instructions to Seller” box at checkout and Integrated Knowledge Systems will take $20 off your first order.


 

Circuit Cellar prides itself on presenting readers with information about innovative companies, organizations, products, and services relating to embedded technologies. This space is where Circuit Cellar enables clients to present readers useful information, special deals, and more.

Client Profile: ImageCraft Creations, Inc.

CorStarter prototyping board

CorStarter prototyping board

2625 Middlefield Road, #685,
Palo Alto, CA 94306

CONTACT: Richard Man,
richard@imagecraft.com
imagecraft.com

EMBEDDED PRODUCTS:ImageCraft Version 8 C compilers with an IDE for Atmel AVR and Cortex M devices are full-featured toolsets backed by strong support.

CorStarter-STM32 is a complete C hardware and software kit for STM32 Cortex-M3 devices. The $99 kit includes a JTAG pod for programming and debugging.

ImageCraft products offer excellent features and support within budget requisitions. ImageCraft compiler toolsets are used by professionals who demand excellent code quality, full features, and diligent support in a timely manner.

The small, fast compilers provide helpful informational messages and include an IDE with an application builder (Atmel AVR) and debugger (Cortex-M), whole-program code compression technology, and MISRA safety checks. ImageCraft offers two editions that cost $249 and $499.

The demo is fully functional for 45 days, so it is easy to test it yourself.

EXCLUSIVE OFFER: For a limited time, ImageCraft is offering Circuit Cellar readers $40 off the Standard and PRO versions of its Atmel AVR and Cortex-M compiler toolsets. To take advantage of this offer, please visit http://imagecraft.com/xyzzy.html.


 

Circuit Cellar prides itself on presenting readers with information about innovative companies, organizations, products, and services relating to embedded technologies. This space is where Circuit Cellar enables clients to present readers useful information, special deals, and more.

Innovation Space: A Workspace for Prototyping, Programming, and Writing

RobotBASIC co-developer John Blankenship accomplishes a lot in his “cluttered” Vero Beach, FL-based workspace.

JohnBlankenship

John Blankenship in his workspace, where he develops, designs, and writes.

He develops software, designs hardware, packages robot parts for sale, and write books and magazine articles. Thus, his workspace isn’t always neat and tidy, he explained.

“The walls are covered with shelves filled with numerous books, a wide variety of parts, miscellaneous tools, several pieces of test equipment, and many robot prototypes,” he noted.

“Most people would probably find my space cluttered and confining, but for me it comforting knowing everything I might need is close at hand.”

Blankenship co-developed RobotBASIC with Samuel Mishal, a friend and talented programmer. The introductory programming language is geared toward high school-level students.

This PCB makes it easy to build a RobotBASIC-compatible robot.

This PCB makes it easy to build a RobotBASIC-compatible robot.

You can read Blankenship’s article, “Using a Simulated Robot to Decrease Development Time,” in the March 2014 edition of Circuit Cellar. He details how implementing a robotic simulation can reduce development time. Here’s an excerpt:

If you have ever built a robot, you know the physical construction and electronic aspects are only the first step. The real work begins when you start programming your creation.

A typical starting point is to develop a library of subroutines that implement basic behaviors. Later, the routines can be combined to create more complex behaviors and eventually full-blown applications. For example, navigational skills (e.g., hugging a wall, following a line, or finding a beacon) can serve as basic building blocks for tasks such as mowing a yard, finding a charging station, or delivering drinks to guests at a party. Developing basic behaviors can be difficult though, especially if they must work for a variety of situations. For instance, a behavior that enables a robot to transverse a hallway to find a specified doorway and pass through it should work properly with different-width hallways and doorways. Furthermore, the robot should at least attempt to autonomously contend with problems arising from the imprecise movements associated with most hobby robots.

Such problems can generally be solved with a closed-loop control system that continually modifies the robot’s movements based on sensor readings. Unfortunately, sensor readings in a real-world environment are often just as flawed as the robot’s movements. For example, tray reflections from ultrasonic or infrared sensors can produce erroneous sensor readings. Even when the sensors are reading correctly, faulty data can be obtained due to unexpected environmental conditions. These types of problems are generally random and are therefore difficult to detect and identify because the offending situations cannot easily be duplicated. A robot simulator can be a valuable tool in such situations.

Do you want to share images of your workspace, hackspace, or “circuit cellar”? Send your images and space info to editor@circuitcellar.com.