Chip-Level Solutions Feed AI Needs

Embedded Supercomputing

Gone are the days when supercomputing meant big, rack-based systems in an air conditioned room. Today, embedded processors, FPGAs and GPUs are able to do AI and machine learning operations, enabling new types of local decision making in embedded systems.

By Jeff Child, Editor-in-Chief

Embedded computing technology has evolved way past the point now where complete system functionality on a single chip is remarkable. Today, the levels of compute performance and parallel processing on an IC means that what were once supercomputing levels of capabilities can now be implemented in in chip-level solutions.

While supercomputing has become a generalized term, what system developers are really interested in are crafting artificial intelligence, machine learning and neural networking using today’s embedded processing. Supplying the technology for these efforts are the makers of leading-edge embedded processors, FPGAs and GPUs. In these tasks, GPUs are being used for “general-purpose computing on GPUs”, a technique also known as GPGPU computing.

With all that in mind, embedded processor, GPU and FPGA companies have rolled out a variety of solutions over the last 12 months, aimed at performing AI, machine learning and other advanced computing functions for several demanding embedded system application segments.

FPGAS Take AI Focus

Back March, FPGA vendor Xilinx announced its plans to launch a new FPGA product category it calls its adaptive compute acceleration platform (ACAP). Following up on that, in October the company unveiled Versal—the first of its ACAP implementations. Versal ACAPs combine scalar processing engines, adaptable hardware engines and intelligent engines with advanced memory and interfacing technologies to provide heterogeneous acceleration for any application. But even more importantly, according to Xilinx, the Versal ACAP’s hardware and software can be programmed and optimized by software developers, data scientists and hardware developers alike. This is enabled by a host of tools, software, libraries, IP, middleware and frameworks that facilitate industry-standard design flows.

Built on TSMC’s 7-nm FinFET process technology, the Versal portfolio combines software programmability with domain-specific hardware acceleration and adaptability. The portfolio includes six series of devices architected to deliver scalability and AI inference capabilities for a host of applications across different markets, from cloud to networking to wireless communications to edge computing and endpoints.

The portfolio includes the Versal Prime series, Premium series and HBM series, which are designed to deliver high performance, connectivity, bandwidth, and integration for the most demanding applications. It also includes the AI Core series, AI Edge series and AI RF series, which feature the AI Engine (Figure 1). The AI Engine is a new hardware block designed to address the emerging need for low-latency AI inference for a wide variety of applications and also supports advanced DSP implementations for applications like wireless and radar.

Figure 1
Xilinx’s AI Engine is a new hardware block designed to address the emerging need for low-latency AI inference for a wide variety of applications. It also supports advanced DSP implementations for applications like wireless and radar.

It is tightly coupled with the Versal Adaptable Hardware Engines to enable whole application acceleration, meaning that both the hardware and software can be tuned to ensure maximum performance and efficiency. The portfolio debuts with the Versal Prime series, delivering broad applicability across multiple markets and the Versal AI Core series, delivering an estimated 8x AI inference performance boost compared to industry-leading GPUs, according to Xilinx.

Low-Power AI Solution

Following the AI trend, back in May Lattice Semiconductor unveiled Lattice sensAI, a technology stack that combines modular hardware kits, neural network IP cores, software tools, reference designs and custom design services. In September the company unveiled expanded features of the sensAI stack designed for developers of flexible machine learning inferencing in consumer and industrial IoT applications. Building on the ultra-low power (1 mW to 1 W) focus of the sensAI stack, Lattice released new IP cores, reference designs, demos and hardware development kits that provide scalable performance and power for always-on, on-device AI applications.

Embedded system developers can build a variety of solutions enabled by sensAI. They can build stand-alone iCE40 UltraPlus/ECP5 FPGA based always-on, integrated solutions, with latency, security and form factor benefits. Alternatively, they can use CE40 UltraPlus as an always-on processor that detects key phrases or objects, and wakes-up a high-performance AP SoC / ASIC for further analytics only when required, reducing overall system power consumption. And, finally, you can use the scalable performance/power benefits of ECP5 for neural network acceleration, along with I/O flexibility to seamlessly interface to on-board legacy devices including sensors and low-end MCUs for system control.

Figure 2
Human face detection application example. iCE40 UlraPlus enables AI with an always-on image sensor, while consuming less than 1 mW of active power.

Updates to the sensAI stack include a new CNN (convolutional neural networks) Compact Accelerator IP core for improved accuracy on iCE40 UltraPlus FPGA and enhanced CNN Accelerator IP core for improved performance on ECP5 FPGAs. Software tools include an updated neural network compiler tool with improved ease-of-use and both Caffe and TensorFlow support for iCE40 UltraPlus FPGAs. Also provided are reference designs enabling human presence detection and hand gesture recognition reference designs and demos (Figure 2). New iCE40 UltraPlus development platform support includes a Himax HM01B0 UPduino shield and DPControl iCEVision board.. …

Read the full article in the December 341 issue of Circuit Cellar

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!

Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

Slim Signage Player Features Radeon E8860 GPU and 6 HDMI Ports

By Eric Brown

Ibase’s new SI-626 digital signage and video wall (VW) player combines high-end functionality with a slim 30 mm height—1.5 mm thinner than its AMD Ryzen V1000 based SI-324 player. Like the SI-324, the SI-626 features hardware based EDID remote management with software setting mode to prevent display issues due to cable disconnection or display identification failures.


 
SI-626 from two angles
(click images to enlarge)
The system is notable for providing AMD’s Radeon E8860 graphics, which can drive six HDMI 1.4b displays. There’s also hardware EDID emulation for remote operation, as well as a “flexible VW display configuration setting.”

Like Ibase’s recent SI-614 and OPS-compatible IOPS-602
players, the SI-626 supports Intel’s 7th Gen “Kaby Lake” Core processors, and like the IOPS-602, it also supports 6th Gen Skylake parts. The system supports 7th and 6th Gen chips with FCBGA1440 sockets and Intel QM170 or HM170 chipsets by way of a “MBD626” mainboard.


SI-626 front view
(click image to enlarge)
The product page notes that the Core CPUs have 35 W TDPs or lower. Yet, the press release notes only one model: the quad-core 2.8 GHz/ 3.5 GHz Core i7-6820EQ from the Skylake family, which has a 45 W TDP. OS support is listed as “Win7 64-bit, Win10 64-bit Enterprise, and Linux Ubuntu 64-bit (Installation).”

The SI-626 can load up to 32GB of DDR4-2133 RAM and offers an M.2 M-Key 2280 slot for storage. There’s also a 2.5-inch SATA bay and an M.2 E-Key 2230 slot, as well as a full-size mini-PCIe slot for WiFi/BT, 4G LTE, and capture cards.

The SI-626 is equipped with 6x HDMI 1.4 ports with independent audio output and “ultra-high resolution” support. You also get 4x USB 3.0 ports, 2x RS-232 serial ports with RJ45 connectors, and dual GbE ports (Realtek RTL8111G). The system is further equipped with an audio jack, watchdog, mounting brackets, and 2x LEDs.

The 290 mm x 222 mm x 29.9 mm, 2.2 kg signage player provides a 0 to 45°C range with 5 grms, 5~500 Hz, random vibration resistance (with SSD). A segregated ventilation system is said to reduce internal dust.

The SI-626 offers a 12 V DC jack with a 150 W power adapter supported with Ibase iControl power management and Observer remote monitoring technologies. These work together to provide automatic power scheduling, power failure detection, and restoration to default state in the event of a system crash. You can even boot up the system “under low ambient conditions,” says Ibase.

Further information

The SI-626 appears to be available now at an undisclosed price with a standard configuration of 16 GB RAM and a 128 GB SSD. More information may be found at Ibase’s SI-626 product page.

This article originally appeared on LinuxGizmos.com on September 20..

Ibase | www.ibase.com.tw

Linux-Powered Jetson Xavier Module Gains Third-Party Carriers

By Eric Brown

Connect Tech (CTI) has released two new developer options for Nvidia’s octa-core Jetson AGX Xavier computer-on-module, which is already supported by Nvidia’s innovative, $1,299 Jetson Xavier Developer Kit. Like the official dev kit, CTI’s 105 mm x 92 mm Rogue board is approximately the same size as the 105 mm x 87 mm x 16 mm Xavier, making it easier to use for robotics applications.


 
Rogue carrier with Xavier module (equipped with fan)
(click images to enlarge)
CTI also launched a Jetson AGX Xavier Mimic Adapter board that mediates between the Xavier and any CTI carrier for the Jetson TX1, TX2, and the latest industrial-focused version of the TX2 called the Jetson TX2i. These include the three TX2 boardsannounced in early 2017: the Cogswell carrier with GigE Vision, the Spacely carrier designed for cam-intensive Pixhawk drones, and the tiny, $99 Sprocket. CTI’s Jetson TX1 boards include the original Astro, as well as its later Orbitty and Elroy.

 
Jetson AGX Xavier Mimic Adapter with Xavier and Elroy carrier (left) and exploded view
(click images to enlarge)
The Jetson Xavier “enables a giant leap forward in capabilities for autonomous machines and edge devices,” says CTI. Nvidia claims the Xavier has greater than 10x the energy efficiency and more than 20x the performance of its predecessor, the Jetson TX2. The module — and the new CTI carriers — are available with a BSP with Nvidia’s Linux4Tegra stack. Nvidia also offers an AI-focused Isaac SDK.

The Xavier features 8x ARMv8.2 cores and a high-end, 512-core Nvidia Volta GPU with 64 tensor cores with 2x Nvidia Deep Learning Accelerator (DLA) — also called NVDLA — engines. The module is also equipped with a 7-way VLIW vision chip, as well as 16 GB 256-bit LPDDR4 RAM and 32GB eMMC 5.1.


Nvidia Drive AGX Xavier Developer Kit
(click image to enlarge)
Since the initial Xavier announcements, Nvidia has added AGX to the Jetson Xavier name. This is also applied to the automotive version, which was originally called the Drive PX Pegasus when it was announced in Nov. 2017. This Linux-driven development kit recently began shipping as part of the Nvidia Drive AGX Xavier Developer Kit, which supports a single Xavier module or else a Drive AGX Pegasus version with dual Xaviers and dual GPUs.

Rogue

CTI’s Rogue carrier board provides 2x GbE, 2x HDMI 1.4a, 3x USB 3.1, and a micro-USB OTG port. Other features include MIPI-CSI, deployable either as 6x x2 lanes or 4x x4 lanes, and expressed via a high-density camera connector breakout that mimics that of the official dev kit. CTI will offer a variety of rugged camera add-on expansion boards with options described as “up to 6x MIPI I-PEX, SerDes Inputs: GMSL or FPD-Link III, HDMI Inputs).”


 
Rogue, front and back
(click images to enlarge)

For storage, you get a microSD slot with UFS support, as well as 2x M.2 M-key slots that support NVMe modules. There’s also an M.2 E-key slot with PCIe and USB support that can load optional Wi-Fi/BT modules.

Other features include 2x CAN 2.0b ports, 2x UARTs, 4-bit level-shifted, 3.3 V GPIO, and single I2C and SPI headers. There’s a 9-19 V DC input that uses a positive locking Molex Mini-Fit Jr header. You also get an RTC with battery connector and power, reset, and recovery buttons and headers.

Mimic Adapter

The Jetson AGX Xavier Mimic Adapter has the same 105 x 92mm dimensions as the Rogue, but is a simpler adapter board that connects the Xavier to existing CTI Jetson carriers. It provides an Ethernet PHY and regulates and distributes power from the carrier to the Xavier.


 
Mimic Adapter, front and back
(click images to enlarge)

The Mimic Adapter expresses a wide variety of interfaces detailed on the product page, including USB 3.0, PCIe x4, SATA, MIPI-CSI, HDMI/DP/eDP, CAN, and more. Unlike the Rogue, it’s listed with an operating range: an industrial -40 to 85°C.

Further information

The Rogue carrier and Mimic Adapter for the Nvidia AGX Xavier are available now with undisclosed pricing. More information may be found in Connect Tech’’s Xavier carrier announcement, as well as its Rogue and Mimic Adapter product pages.

This article originally appeared on LinuxGizmos.com on October 17.

Connect Tech | www.connecttech.com

SDR Meets AI in a Mash-Up of Jetson TX2, Artix-7 and 2×2 MIMO

By Eric Brown

A Philadelphia based startup called Deepwave Digital has gone to Crowd Supply to launch its “Artificial Intelligence Radio – Transceiver” (AIR-T) SBC. The AIR-T is a software defined radio (SDR) platform for the 300 MHz to 6 GHz range with AI and deep learning hooks designed for “low-cost AI, deep learning, and high-performance wireless systems,” says Deepwave Digital. The 170 mm x 170 mm Mini-ITX board is controlled by an Ubuntu stack running on an Arm hexa-core powered Nvidia Jetson TX2 module. There’s also a Xilinx Artix-7 FPGA and an Analog Devices AD9371 RFIC 2×2 MIMO transceiver.


 
AIR-T with Jetson TX2 module
(click images to enlarge)

The AIR-T is available through Aug. 14 for $4,995 on Crowd Supply with shipments due at the end of November. Deepwave Digital has passed the halfway point to its $20K goal, but it’s already committed to building the boards regardless of the outcome.

The AIR-T is designed for researchers who want to apply the deep learning powers of the Jetson TX2’s 256-core Pascal GPU and its CUDA libraries to the SDR capabilities provided by the Artix 7 and AD9371 transceiver. The platform can function as a “highly parallel SDR, data recorder, or inference engine for deep learning algorithms,” and provides for “fully autonomous SDR by giving the AI engine complete control over the hardware,” says Deepwave Digital. Resulting SDR applications can process bandwidths greater than 200MHz in real-time, claims the company.

The software platform is built around “custom and open” Ubuntu 16.04 software running on the Jetson TX2, as well as custom FPGA blocks that interface with the open source GNU Radio SDR development platform.

The combined stack enables developers to avoid coding CUDA or VHDL. You can prototype in GNU Radio, and then optionally port it to Python or C++. More advanced users can program the Artix 7 FPGA and Pascal GPU directly. AIR-T is described as an “open platform,” but this would appear to refer to the software rather than hardware.



AIR-T software flow
(click image to enlarge)

The AIR-T enables the development of new wireless technologies, where AI can help maximize resources with today’s increasingly limited spectrum. Potential capabilities include autonomous signal identification and interference mitigation. The AIR-T can also be used for satellite and terrestrial communications. The latter includes “high-power, high-frequency voice communications to 60GHz millimeter wave digital technology,” says Deepwave.

Other applications include video, image, and audio recognition. You can “demodulate a signal and apply deep learning to the resulting image, video, or audio data in one integrated platform,” says the company. The product can also be used for electrical engineering or applied physics research.


Jetson TX2

Nvidia’s Jetson TX2 module features 2x high-end “Denver 2” cores, 4x Cortex-A57 cores, and the 256-core Pascal GPU with CUDA libraries for running machine learning algorithms. The TX2 also supplies the AIR-T with 8 GB of LPDDR4 RAM, 32 GB of eMMC 5.1, and 802.11ac Wi-Fi and Bluetooth.

The Xilinx Artix-7 provides 75k logic cells. The FPGA interfaces with the Analog Devices AD9371 (PDF) dual RF transceiver designed for 300 MHz to 6 GHz frequencies. The AD9371 features 2x RX and 2x TX channels at 100 MHz for each channel, as well as auxiliary observation and sniffer RX channels.

The AIR-T is further equipped with a SATA port and a microSD slot loaded with the Ubuntu stack, as well as GbE, USB 3.0, USB 2.0 and 4K-ready HDMI ports. You also get DIO, an external LO input, a PPS and 10 MHz reference input, and a power supply. It typically runs on 22 W, or as little as 14 W with reduced GPU usage. Other features include 4x MCX-to-SMA cables and an optional enclosure.

Further information

The Artificial Intelligence Radio – Transceiver (AIR-T) is available through Aug. 14 for $4,995 on Crowd Supply — at a 10 percent discount from retail — with shipments due at the end of November. More information may be found on the AIR-T Crowd Supply page and the Deepwave Digital website.

This article originally appeared on LinuxGizmos.com on July 18..

Deepwave Digital | www.deepwavedigital.com

June Circuit Cellar: Sneak Preview

The June issue of Circuit Cellar magazine is coming soon. And we’ve planted a lovely crop of embedded electronics articles for you to enjoy.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of June 2018 Circuit Cellar:

PCB DESIGN AND POWER: MAKING SMART CHOICES

PCB Design and Verification
PCB design tools and methods continue to evolve as they race to keep pace with faster, highly integrated electronics. Automated, rules-based chip placement is getting more sophisticated and leveraging AI in interesting ways. And supply chains are linking tighter with PCB design processes. Circuit Cellar Chief Editor Jeff Child looks at the latest PCB design and verification tools and technologies.

PCB Ground Planes
Tricky design decisions crop up when you’re faced with crafting a printed circuit board (PCB) for any complex system—and many of them involve the ground plane. There is dealing with noisy components and deciding between a common ground plane or separate ones—and that’s just the tip of the iceberg. Robert Lacoste shares his insights on the topic, examining the physics, simulation tools and design examples of ground plane implementations.

Product Focus: AC-DC Converters
To their peril, embedded system developers often treat their choice of power supply as an afterthought. But choosing the right AC-DC converter is critical to the ensuring your system delivers power efficiently to all parts of your system. This Product Focus section updates readers on these trends and provides a product album of representative AC-DC converter products.

SENSORS TAKE MANY FORMS AND FUNCTIONS

Sensors and Measurement
While sensors have always played a key role in embedded systems, the exploding Internet of Things (IoT) phenomenon has pushed sensor technology to the forefront. Any IoT implementation depends on an array of sensors that relay input back to the cloud. Circuit Cellar Chief Editor Jeff Child dives into the latest technology trends and product developments in sensors and measurement.

Passive Infrared Sensors
One way to make sure that lights get turned off when you leave a room is to use Passive Infrared (PIR) sensors. Jeff Bachiochi examines the science and technology behind PIR sensors. He then details how to craft effective program code and control electronics to use PIR sensors is a useful way.

Gesture-Recognition in Boxing Glove
Learn how two Boston University graduate students built a gesture-detection wearable that acts as a building block for a larger fitness telemetry system. Using a Linux-based Gumstix Verdex, the wearable couples an inertial measurement unit with a pressure sensor embedded in a boxing glove to recognize the user’s hits and classify them according to predefined, user-recorded gestures.

SECURITY, RELIABILITY AND MORE

Internet of Things Security (Part 3)
In this next part of his article series on IoT security, Bob Japenga looks at the security features of a specific series of microprocessors: Microchip’s SAMA5D2. He examines these security features and discusses what protection they provide.

Aeronautical Communication Protocols
Unlike ground networks, where data throughout is the priority, avionics networks are all about reliability. As a result, the communications protocols used in for aircraft networking seem pretty obscure to the average engineer. In this article, George Novacek reviews some of the most common aircraft comms protocols including ARINC 429, ARINC 629 and MIL-STD-1553B

DEEP DIVES ON PROCESSOR DESIGN AND DIGITAL SIGNAL PROCESSING

Murphy’s Laws in the DSP World (Part 1)
A Pandora’s box of unexpected issues gets opened the moment you move from the real world of analog signals and enter the world of digital signal processing (DSP). In Part 1 of this new article series, Mike Smith defines six “Murphy’s Laws of DSP” and provides you with methods and techniques to navigate around them.

Processor Design Techniques and Optimizations
As electronics get smaller and more complex day by day, knowing the basic building blocks of processors is more important than ever. In this article, Nishant Mittal explores processor design from various perspectives—including architecture types, pipelining and ALU varieties.

Non-isolated Up Converters Support High-Performance GPUs

Vicor has announced a 12 V to 48 V non-isolated up converter to support 48 V high-performance GPUs in data centers that are still relying on legacy 12 V power distribution. The 2317 NBM converts 12 V to 48 V with over 98% peak efficiency, 750 W continuous and 1 kW peak power in a 23 mm x 17 mm x 7.4mm surface-mount SM-ChiP package. The NBM (NBM2317S14B5415T00) provides a complete solution with no external input filter or bulk capacitors required. By switching at 2 MHz with ZVS and ZCS, the NBM provides low output impedance and Megahertz-fast transient response to dynamic loads. The NBM incorporates hot-swap and inrush current limiting.

The NBM supports state-of-the-art 48 V input GPUs using Power-on-Package (“PoP”) Modular Current Multipliers (“MCMs”) driven from a 48 V node sourcing a small fraction (1/48th) of the GPU current. Current multiplication overcomes the power delivery boundaries imposed by traditional 12 V systems standing in the way of higher bandwidth and connectivity.

The Vicor Power-on-Package modules build upon Factorized Power Architecture (FPA) systems deployed in high-performance computers and large-scale data centers. FPA provides efficient power distribution and direct conversion from 48 V to 1 V for GPUs, CPUs and ASICs demanding up to 1,000 A. By deploying current multiplication in close proximity to high-current Artificial Intelligence (AI) processors, PoP MCMs enable higher performance and system efficiency.

Vicor | www.vicorpower.com

 

SMARC Module Features Hexa-Core i.MX8 QuadMax

By Eric Brown

iWave has unveiled a rugged, wireless enabled SMARC module with 4 GB LPDDR4 and dual GbE controllers that runs Linux or Android on NXP’s i.MX8 QuadMax SoC with 2x Cortex-A72, 4x -A53, 2x -M4F and 2x GPU cores.

iW-RainboW-G27M (front)

iWave has posted specs for an 82 mm x 50 mm, industrial temperature “iW-RainboW-G27M” SMARC 2.0 module that builds on NXP’s i.MX8 QuadMax system-on-chip. The i.MX8 QuadMax was announced in Oct. 2016 as the higher end model of an automotive focused i.MX8 Quad family.

Although the lower-end, quad-core, Cortex-A53 i.MX8M SoC was not fully announced until after the hexa-core Quad, we’ve seen far more embedded boards based on the
i.MX8M , including a recent Seco SM-C12

iW-RainboW-G27M (back)

SMARC module. The only other i.MX8 Quad based product we’ve seen is Toradex’s QuadMax driven Apalis iMX8 module. The Apalis iMX8 was announced a year ago, but is still listed as “coming soon.”

 

 

i.MX8 Quad block diagram (dashed lines indicate model-specific features) (click image to enlarge)

 

Like Rockchip’s RK3399, NXP’s i.MX8 QuadMax features dual high-end Cortex-A72 cores and four Cortex-A53 cores. NXP also offers a similar i.MX8 QuadPlus design with only one Cortex-A72 core.

The QuadMax clock rates are lower than on the RK3399, which clocks to 1.8 GHz (A72) and 1.2 GHz (A53). Toradex says the Apalis iMX8’s -A72 and -A53 cores will clock to 1.6 GHz and 1.2 GHz, respectively.

Close-up of i.MX8 QuadMax on iW-RainboW-G27M

Whereas the i.MX8M has one 266 MHz Cortex-M4F microcontroller, the Quad SoCs have two. A HIFI4 DSP is also onboard, along with a dual-core Vivante GC7000LiteXS/VX GPU, which is alternately referred to as being two GPUs in one or having a split GPU design.

iWave doesn’t specifically name these coprocessors except to list features including a “4K H.265 decode and 1080p H.264 enc/dec capable VPU, 16-Shader 3D (Vec4), and Enhanced Vision Capabilities (via GPU).” The SoC is also said to offer a “dual failover-ready display controller.” The CPUs, meanwhile, are touted for their “full chip hardware virtualization capabilities.”

Inside the iW-RainboW-G27M

Like iWave’s SMARC 2.0 form factor Snapdragon 820 SOM, the iW-RainboW-G27M supports Linux and Android, in this case running Android Nougat (7.0) or higher. (Toradex’s Apalis iMX8 supports Linux, and also supports FreeRTOS running on the Cortex-M4F MCUs.)

Like Toradex, iWave is not promoting the automotive angle that was originally pushed by NXP. iWave’s module is designed to “offer maximum performance with higher efficiency for complex embedded application of consumer, medical and industrial embedded computing applications,” says iWave.

Like the QuadMax based Apalis iMX8, as well as most of the i.MX8M products we’ve seen, the iW-RainboW-G27M supports up to 4 GB LPDDR4 RAM and up to 16 GB eMMC. iWave notes that the RAM and eMMC are “expandable,” but does not say to what capacities. There’s also a microSD slot and 256 MB of optional QSPI flash.

Whereas Apalis iMX8 has a single GbE controller, iWave’s COM has two. It similarly offers onboard 802.11ac Wi-Fi and Bluetooth (4.1). The Microchip ATWILC3000-MR110CA module, which juts out a bit on one side, is listed by Digi-Key as 802.11b/g/n, but iWave has it as 802.11ac.

Interfaces expressed via the SMARC edge connector include 2x GbE, 2x USB 3.0 host (4-port hub), 4x USB 2.0 host, and USB 2.0 OTG. Additional SMARC I/O includes 3x UART (2x with CTS & RTS), 2x CAN, 2x I2C, 12x GPIO, and single PCIe, SATA, debug UART, SD, SPI and QSPI

Media features include an HDMI/DP transmitter, dual-channel LVDS or MIPI-DSI, and an SSI/I2S audio interface. iWave also lists HDMI, 2x LVDS, SPDIF, and ESAI separately under “expansion connector interfaces.” Other expansion I/O is said to include MLB, CAN and GPIO.

The 5 V module supports -40 to 80°C temperatures. There is no mention of a carrier board.

Further information

No pricing or availability was listed for the iW-RainboW-G27M, but a form is available for requesting a quote. More information may be found on iWave’s iW-RainboW-G27M product page.

iWave | www.iwavesystems.com

This article originally appeared on LinuxGizmos.com on March 13.

April Circuit Cellar: Sneak Preview

The April issue of Circuit Cellar magazine is coming soon. And we’ve got a healthy serving of embedded electronics articles for you. Here’s a sneak peak.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of April 2018 Circuit Cellar:

NAVIGATING THE INTERNET-OF-THINGS

IoT: From Gateway to Cloud
In this follow on to our March “IoT: Device to Gateway” feature, this time we look at technologies and solutions for the gateway to cloud side of IoT.  Circuit Cellar Chief Editor Jeff Child examines the tools and services available to get a cloud-connected IoT implementation up and running.

Texting and IoT Embedded Devices (Part 2)
In Part 1, Jeff Bachiochi laid the groundwork for describing a project involving texting. He puts that into action this, showing how to create messages on his Espressif System’s ESP8266EX-based device to be sent to an email account and end up with those messages going as texts to a cell phone.

Internet of Things Security (Part 2)
In this next part of his article series on IoT security, Bob Japenga takes a look at side-channel attacks. What are they? How much of a threat are they? And how can we prevent them?

Product Focus: 32-Bit Microcontrollers
As the workhorse of today’s embedded systems, 32-bit microcontrollers serve a wide variety of embedded applications—including the IoT. This Product Focus section updates readers on these trends and provides a product album of representative 32-bit MCU products.

GRAPHICS, VISION AND DISPLAYS

Graphics, Video and Displays
Thanks to advances in displays and innovations in graphics ICs, embedded systems can now routinely feature sophisticated graphical user interfaces. Circuit Cellar Chief Editor Jeff Child dives into the latest technology trends and product developments in graphics, video and displays.

Color Recognition and Segmentation in Real-time
Vision systems used to require big, multi-board systems—but not anymore. Learn how two Cornell undergraduates designed a hardware/software system that accelerates vision-based object recognition and tracking using an FPGA SoC. They made a min manufacturing line to demonstrate how their system can accurately track and categorize manufactured candies carried along a conveyor belt.

SPECIFICATIONS, QUALIFICATIONS AND MORE

Component tolerance
We perhaps take for granted sometimes that the tolerances of our electronic components fit the needs of our designs. In this article, Robert Lacoste takes a deep look into the subject of tolerances, using the simple resistor as an example. He goes through the math to help you better understand accuracy and drift along with other factors.

Understanding the Temperature Coefficient of Resistance
Temperature coefficient of resistance (TCR) is the calculation of a relative change of resistance per degree of temperature change. Even though it’s an important spec, different resistor manufacturers use different methods for defining TCR. In this article, Molly Bakewell Chamberlin examines TCR and its “best practice” interpretations using Vishay Precision Group’s vast experience in high-precision resistors.

Designing of Complex Systems
While some commercial software gets away without much qualification during development, the situation is very different when safety in involved. For aircraft, vehicles or any complex system where failure unacceptable, this means adhering to established standards throughout the development life cycle. In this article, George Novacek tackles these issues and examines some of these standards namely ARP4754.

AND MORE IN-DEPTH PROJECT ARTICLES

Build a Marginal Oscillator Proximity Switch
A damped or marginal oscillator will switch off when energy is siphoned from its resonant LC tank circuit. In his article, Dev Gualtieri presents a simple marginal oscillator that detects proximity to a small steel screw or steel plate. It lights an LED, and the LED can be part of an optically-isolated solid-state relay.

Obsolescence-Proof Your UI (Part 1)
After years of frustration dealing with graphical interface technologies that go obsolete, Steve Hendrix decided there must be a better way. Knowing that web browser technology is likely to be with us for a long while, he chose to build a web server that could perform common operations that he needed on the IEEE-488 bus. He then built it as a product available for sale to others—and it is basically obsolescence-proof.

 

 

Xeon D and NVIDIA GPUs Share COMe Board

Connect Tech has announced the release of its new COM Express Type 7 + GPU Embedded System. This system combines Intel Xeon D (Server Class) x86 processors with high-end NVIDIA Quadro and Tesla GPUs, all in a small form factor embedded system. This V7G system is not a replacement to Connect Tech’s VXG Type 6 systems, but rather a next-generation platform that incorporates the new COM Express Type 7 PICMG standard and employs 10 Gbit Ethernet connectivity and expanded PCI Express interfaces.
Embedded system developers can choose from highest-end, highest-performance models or from low-powered models all ideal for high-end encode/decode video applications or GPGPU CUDA processing, Deep Learning and Artificial Intelligence applications. This embedded computer exposes all of the latest generation interconnect including: 10 Gbit Ethernet and Gbit Ethernet, USB 3.0 and 2.0, HDMI, SATA III, GPIO, I2C, M.2, Mini PCIe. The system uses PC-style connectors for ease of cabling and packaging.

Connect Tech | www.connecttech.com

3.5″ SBC Serves up Skylake Processors

COMMELL has announced its LS-37K 3.5-inch embedded mini-board based on Intel 6th/7th generation FCLGA1151 Skylake / Kaby Lake Core processor family and Xeon E3-1200 v5 processor. The Skylake PC is claimed to deliver 30 percent better performance than a PC base on Ivy Bridge architecture, 20 percent better performance than a PC based on Haswell, and 10 percent better performance than a Broadwell PC.

LS-37K-3D8The LS-37K desktop 3.5-inch mini-board platform supports DDR4 memory DIMM 1866/2133 MHz up to 16 GB. The platform is based on Intel HD530 (Skylake) HD630, (Kaby Lake) and HD P530 (Xeon E3-1200v5). For graphics, the Skylake GPU offers 24 execution units (EUs) clocked at up to 1150Mhz (depending on the CPU model). The revised video engine now decodes H.265/HEVC completely in hardware and thereby much more efficiently than before, and HD Graphics 630 GPU is largely identical to the 530 found in Skylake, The only real upgrade here is the HEVC and VP9 support. LS-37K Displays can be connected via 1 VGA, 1 LVDS, 1 DVI, 1 HDMI and one DP port, up to three displays can be controlled simultaneously.

LS-37K offers lots of features including high-speed data transfer interfaces such as 4 x USB3.0 and 2 x SATAIII, equipped with dual Gigabit Ethernet (One of the dual LAN with iAMT 11.0 supported), and comes with PS/2 port, 5 x RS232 and 1 x RS232/422/485, 4 x USB2.0, Intel® High Definition Audio, and 1 Mini PCIe socket (supporting mSATA) and 9 to 30 VDC input.

COMMELL | www.commell.com

Current Multipliers Improve Processor Performance

Vicor has announced the introduction of Power-on-Package modular current multipliers for high performance, high current, CPU/GPU/ASIC (“XPU”) processors. By freeing up XPU socket pins and eliminating losses associated with delivery of current from the motherboard to the XPU, Vicor’s Power-on-Package solution enables higher current delivery for maximum XPU performance.

In response to the ever-increasing demands of high performance applications–artificial intelligence, machine learning, big data mining—XPU operating currents have risen to Power-on-Package-Enables-Higher-Performance-for-Artificial-Intelligence-Processorshundreds of Amperes. Point-of-Load power architectures in which high current power delivery units are placed close to the XPU, mitigate power distribution losses on the motherboard but do nothing to lessen interconnect challenges between the XPU and the motherboard. With increasing XPU currents, the remaining short distance to the XPU—the “last inch”—consisting of motherboard conductors and interconnects within the XPU socket has become a limiting factor in XPU performance and total system efficiency.

Vicor’s new Power-on-Package Modular Current Multipliers (“MCMs”) fit within the XPU package to expand upon the efficiency, density, and bandwidth advantages of Vicor’s Factorized Power Architecture, already established in 48 V Direct-to-XPU motherboard applications by early adopters. As current multipliers, MCMs mounted on the XPU substrate under the XPU package lid, or outside of it, are driven at a fraction (around 1/64th) of the XPU current from an external Modular Current Driver (MCD). The MCD, located on the motherboard, drives MCMs and accurately regulates the XPU voltage with high bandwidth and low noise. The solution profiled today, consisting of two MCMs and one MCD, enables delivery of up to 320 A of continuous current to the XPU, with peak current capability of 640 A.

With MCMs mounted directly to the XPU substrate, the XPU current delivered by the MCMs does not traverse the XPU socket. And, because the MCD drives MCMs at a low current, power from the MCD can be efficiently routed to MCMs reducing interconnect losses by 10X even though 90% of the XPU pins typically required for power delivery are reclaimed for expanded I/O functionality. Additional benefits include a simplified motherboard design and a substantial reduction in the minimum bypass capacitance required to keep the XPU within its voltage limits.

Multiple MCMs may be operated in parallel for increased current capability. The small (32mm x 8mm x 2.75mm) package and low noise characteristics of the MCM make it suitable for co-packaging with noise-sensitive, high performance ASICs, GPUs and CPUs. Operating temperature range is -40°C to +125°C. These devices represent the first in a portfolio of Power-on-Package solutions scalable to various XPU needs.

Vicor | www.vicorpower.com

Arduino-Based Hand-Held Gaming System

gameduino2-WEBJames Bowman, creator of the Gameduino game adapter for microcontrollers, recently made an upgrade to the system adding a Future Technology Devices International (FTDI) FT800 chip to drive the graphics. Associate Editor Nan Price interviewed James about the system and its capabilities.

NAN: Give us some background. Where do you live? Where did you go to school? What did you study?

Bowman-WEB

James Bowman

 JAMES: I live on the California coast in a small farming village between Santa Cruz and San Francisco. I moved here from London 17 years ago. I studied computing at Imperial College London.

NAN: What types of projects did you work on when you were employed by Silicon Graphics, 3dfx Interactive, and NVIDIA?

JAMES: Always software and hardware for GPUs. I began in software, which led me to microcode, which led to hardware. Before you know it you’ve learned Verilog. I was usually working near the boundary of software and hardware, optimizing something for cost, speed, or both.

NAN: How did you come up with the idea for the Gameduino game console?

JAMES: I paid for my college tuition by working as a games programmer for Nintendo and Sega consoles, so I was quite familiar with that world. It seemed a natural fit to try to give the Arduino some eye-catching color graphics. Some quick experiments with a breadboard and an FPGA confirmed that the idea was feasible.

NAN: The Gameduino 2 turns your Arduino into a hand-held modern gaming system. Explain the difference from the first version of Gameduino—what upgrades/additions have been made?

Gameduinofinal-WEB

The Gameduino2 uses a Future Technology Devices International chip to drive its graphics

JAMES: The original Gameduino had to use an FPGA to generate graphics, because in 2011 there was no such thing as an embedded GPU. It needs an external monitor and you had to supply your own inputs (e.g., buttons, joysticks, etc.). The Gameduino 2 uses the new Future Technology Devices International (FTDI) FT800 chip, which drives all the graphics. It has a built-in color resistive touchscreen and a three-axis accelerometer. So it is a complete game system—you just add the CPU.

NAN: How does the Arduino factor into the design?

GameduinoPCB-WEB

An Arduino, Ethernet adapter, and a Gameduino

 JAMES: Arduino is an interesting platform. It is 5 V, believe it or not, so the design needs a level shifter. Also, the Arduino is based on an 8-bit microcontroller, so the software stack needs to be carefully built to provide acceptable performance. The huge advantage of the Arduino is that the programming environment—the IDE, compiler, and downloader—is used and understood by hundreds of thousands of people.

 NAN: Is it easy or possible to customize the Gameduino 2?

 JAMES: I would have to say no. The PCB itself is entirely surface mount technology (SMT) and all the ICs are QFNs—they have no accessible pins! This is a long way from the DIP packages of yesterday, where you could change the circuit by cutting tracks and soldering onto the pins.

I needed a microscope and a hot air station to make the Gameduino2 prototype. That is a long way from the “kitchen table” tradition of the Arduino. Fortunately the Arduino’s physical design is very customization-friendly. Other devices can be stacked up, adding networking, hi-fi sound, or other sensor inputs.

 NAN: The Gameduino 2 project is on Kickstarter through November 7, 2013. Why did you decide to use Kickstarter crowdfunding for this project?

 JAMES: Kickstarter is great for small-scale inventors. The audience it reaches also tends to be interested in novel, clever things. So it’s a wonderful way to launch a small new product.

NAN: What’s next for Gameduino 2? Will the future see a Gameduino 3?

 JAMES: Product cycles in the Arduino ecosystem are quite long, fortunately, so a Gameduino 3 is distant. For the Gameduino 2, I’m writing a book, shipping the product, and supporting the developer community, which will hopefully make use of it.