3.5″ SBC Serves up Skylake Processors

COMMELL has announced its LS-37K 3.5-inch embedded mini-board based on Intel 6th/7th generation FCLGA1151 Skylake / Kaby Lake Core processor family and Xeon E3-1200 v5 processor. The Skylake PC is claimed to deliver 30 percent better performance than a PC base on Ivy Bridge architecture, 20 percent better performance than a PC based on Haswell, and 10 percent better performance than a Broadwell PC.

LS-37K-3D8The LS-37K desktop 3.5-inch mini-board platform supports DDR4 memory DIMM 1866/2133 MHz up to 16 GB. The platform is based on Intel HD530 (Skylake) HD630, (Kaby Lake) and HD P530 (Xeon E3-1200v5). For graphics, the Skylake GPU offers 24 execution units (EUs) clocked at up to 1150Mhz (depending on the CPU model). The revised video engine now decodes H.265/HEVC completely in hardware and thereby much more efficiently than before, and HD Graphics 630 GPU is largely identical to the 530 found in Skylake, The only real upgrade here is the HEVC and VP9 support. LS-37K Displays can be connected via 1 VGA, 1 LVDS, 1 DVI, 1 HDMI and one DP port, up to three displays can be controlled simultaneously.

LS-37K offers lots of features including high-speed data transfer interfaces such as 4 x USB3.0 and 2 x SATAIII, equipped with dual Gigabit Ethernet (One of the dual LAN with iAMT 11.0 supported), and comes with PS/2 port, 5 x RS232 and 1 x RS232/422/485, 4 x USB2.0, Intel® High Definition Audio, and 1 Mini PCIe socket (supporting mSATA) and 9 to 30 VDC input.

COMMELL | www.commell.com

Current Multipliers Improve Processor Performance

Vicor has announced the introduction of Power-on-Package modular current multipliers for high performance, high current, CPU/GPU/ASIC (“XPU”) processors. By freeing up XPU socket pins and eliminating losses associated with delivery of current from the motherboard to the XPU, Vicor’s Power-on-Package solution enables higher current delivery for maximum XPU performance.

In response to the ever-increasing demands of high performance applications–artificial intelligence, machine learning, big data mining—XPU operating currents have risen to Power-on-Package-Enables-Higher-Performance-for-Artificial-Intelligence-Processorshundreds of Amperes. Point-of-Load power architectures in which high current power delivery units are placed close to the XPU, mitigate power distribution losses on the motherboard but do nothing to lessen interconnect challenges between the XPU and the motherboard. With increasing XPU currents, the remaining short distance to the XPU—the “last inch”—consisting of motherboard conductors and interconnects within the XPU socket has become a limiting factor in XPU performance and total system efficiency.

Vicor’s new Power-on-Package Modular Current Multipliers (“MCMs”) fit within the XPU package to expand upon the efficiency, density, and bandwidth advantages of Vicor’s Factorized Power Architecture, already established in 48 V Direct-to-XPU motherboard applications by early adopters. As current multipliers, MCMs mounted on the XPU substrate under the XPU package lid, or outside of it, are driven at a fraction (around 1/64th) of the XPU current from an external Modular Current Driver (MCD). The MCD, located on the motherboard, drives MCMs and accurately regulates the XPU voltage with high bandwidth and low noise. The solution profiled today, consisting of two MCMs and one MCD, enables delivery of up to 320 A of continuous current to the XPU, with peak current capability of 640 A.

With MCMs mounted directly to the XPU substrate, the XPU current delivered by the MCMs does not traverse the XPU socket. And, because the MCD drives MCMs at a low current, power from the MCD can be efficiently routed to MCMs reducing interconnect losses by 10X even though 90% of the XPU pins typically required for power delivery are reclaimed for expanded I/O functionality. Additional benefits include a simplified motherboard design and a substantial reduction in the minimum bypass capacitance required to keep the XPU within its voltage limits.

Multiple MCMs may be operated in parallel for increased current capability. The small (32mm x 8mm x 2.75mm) package and low noise characteristics of the MCM make it suitable for co-packaging with noise-sensitive, high performance ASICs, GPUs and CPUs. Operating temperature range is -40°C to +125°C. These devices represent the first in a portfolio of Power-on-Package solutions scalable to various XPU needs.

Vicor | www.vicorpower.com

Arduino-Based Hand-Held Gaming System

gameduino2-WEBJames Bowman, creator of the Gameduino game adapter for microcontrollers, recently made an upgrade to the system adding a Future Technology Devices International (FTDI) FT800 chip to drive the graphics. Associate Editor Nan Price interviewed James about the system and its capabilities.

NAN: Give us some background. Where do you live? Where did you go to school? What did you study?

Bowman-WEB

James Bowman

 JAMES: I live on the California coast in a small farming village between Santa Cruz and San Francisco. I moved here from London 17 years ago. I studied computing at Imperial College London.

NAN: What types of projects did you work on when you were employed by Silicon Graphics, 3dfx Interactive, and NVIDIA?

JAMES: Always software and hardware for GPUs. I began in software, which led me to microcode, which led to hardware. Before you know it you’ve learned Verilog. I was usually working near the boundary of software and hardware, optimizing something for cost, speed, or both.

NAN: How did you come up with the idea for the Gameduino game console?

JAMES: I paid for my college tuition by working as a games programmer for Nintendo and Sega consoles, so I was quite familiar with that world. It seemed a natural fit to try to give the Arduino some eye-catching color graphics. Some quick experiments with a breadboard and an FPGA confirmed that the idea was feasible.

NAN: The Gameduino 2 turns your Arduino into a hand-held modern gaming system. Explain the difference from the first version of Gameduino—what upgrades/additions have been made?

Gameduinofinal-WEB

The Gameduino2 uses a Future Technology Devices International chip to drive its graphics

JAMES: The original Gameduino had to use an FPGA to generate graphics, because in 2011 there was no such thing as an embedded GPU. It needs an external monitor and you had to supply your own inputs (e.g., buttons, joysticks, etc.). The Gameduino 2 uses the new Future Technology Devices International (FTDI) FT800 chip, which drives all the graphics. It has a built-in color resistive touchscreen and a three-axis accelerometer. So it is a complete game system—you just add the CPU.

NAN: How does the Arduino factor into the design?

GameduinoPCB-WEB

An Arduino, Ethernet adapter, and a Gameduino

 JAMES: Arduino is an interesting platform. It is 5 V, believe it or not, so the design needs a level shifter. Also, the Arduino is based on an 8-bit microcontroller, so the software stack needs to be carefully built to provide acceptable performance. The huge advantage of the Arduino is that the programming environment—the IDE, compiler, and downloader—is used and understood by hundreds of thousands of people.

 NAN: Is it easy or possible to customize the Gameduino 2?

 JAMES: I would have to say no. The PCB itself is entirely surface mount technology (SMT) and all the ICs are QFNs—they have no accessible pins! This is a long way from the DIP packages of yesterday, where you could change the circuit by cutting tracks and soldering onto the pins.

I needed a microscope and a hot air station to make the Gameduino2 prototype. That is a long way from the “kitchen table” tradition of the Arduino. Fortunately the Arduino’s physical design is very customization-friendly. Other devices can be stacked up, adding networking, hi-fi sound, or other sensor inputs.

 NAN: The Gameduino 2 project is on Kickstarter through November 7, 2013. Why did you decide to use Kickstarter crowdfunding for this project?

 JAMES: Kickstarter is great for small-scale inventors. The audience it reaches also tends to be interested in novel, clever things. So it’s a wonderful way to launch a small new product.

NAN: What’s next for Gameduino 2? Will the future see a Gameduino 3?

 JAMES: Product cycles in the Arduino ecosystem are quite long, fortunately, so a Gameduino 3 is distant. For the Gameduino 2, I’m writing a book, shipping the product, and supporting the developer community, which will hopefully make use of it.