ST and Virscient Team Up for Connected-Car Effort

STMicroelectronics has teamed up with Virscient to help system designers build automotive solutions using ST’s Telemaco3P secure telematics and connectivity processors. Virscient offers support to ST customers in the development and delivery of advanced automotive applications based on the ST Modular Telematics Platform (MTP). MTP is a comprehensive development and demonstration platform incorporating ST’s Telemaco3P telematics and connectivity microprocessor.

MTP enables the rapid prototyping and development of smart-driving applications, including vehicle connectivity to back-end servers, road infrastructure, and other vehicles. Virscient brings a deep understanding of wireless connectivity technologies and protocols ideal for architecting connected-car systems that rely on technologies such as GNSS (Precise Positioning), LTE/cellular modems, V2X technologies, Wi-Fi, Bluetooth and Bluetooth Low Energy (BLE).

The Telemaco3P incorporates dual Arm Cortex-A7 processors with an embedded Hardware Security Module (HSM), an independent Arm Cortex-M3 subsystem, and a rich set of connectivity interfaces. With security at its core, and considerable flexibility in both hardware and software configurations, the Telemaco3P provides an excellent platform for connectivity within the vehicular environment.

ST’s Telemaco3P system-on-chip is designed as a solution for ensuring a secure connection between the vehicle and the Cloud. Its asymmetric multi-core architecture provides powerful application processors as well as an independent CAN control subsystem with optimized power management. Its ISO 26262 silicon design, its embedded Hardware Security Module, and automotive-grade qualification up to 105°C ambient temperature make it well suited for implementing a wide range of secure telematics applications supporting high-throughput wireless connectivity and over-the-air firmware upgrades.

STMicroelectronics | www.st.com
Virscient | www.virscient.com

 

U-blox Low Power GNSS Receiver Tapped for Smart Watch Design

Technologies from U‑blox and TransSiP have been selected for the recently announced PowerWatch 2 from MATRIX Industries. Power Watch 2 claims to be the world’s first GPS smartwatch that you never need to recharge. The smartwatch embeds the ultra‑small, ultra‑low power U‑blox ZOE‑M8B GNSS receiver. Meanwhile, TransSiP’s PI technology ensures energy harvested is used at maximum efficiency.

The PowerWatch 2 does away with cables and external batteries by continually topping up its battery using thermoelectric energy generated from body heat as well as solar energy. The watch can connect to your smartphone and display notifications on your wrist, while tracking activities and visualizing them using dedicated iOS and Android apps, as well as with popular third-party health and fitness platforms.

The PowerWatch 2 delivers location tracking using the low‑power U‑blox ZOE‑M8B GNSS receiver module that consumes as low as 12 mW. Packaged as a (System‑in‑Package), the 4.5 x 4.5 x 1.0 mm module helps achieve the watch’s comparatively low 16‑mm thickness. And concurrent reception of up to three GNSS constellations means that it delivers high accuracy positioning in challenging situations such as urban or dense forest environments and when swimming.

Satellite based positioning is typically the most power‑hungry process on a sports watch. Providing highly efficient conversion of harvested energy into a very quiet supply of DC power, TransSiP PI enhances the ability of the ZOE‑M8B GNSS receiver module incorporating U‑blox Super‑E technology, to strike an ideal balance between power and performance. Working on a tight power budget, the watch supports 30 minutes of continuous GNSS tracking per day, with unused time accumulating in the watch’s battery pack—powering two hours of location tracking every four days.

TransSiP | www.transsip.com

U‑blox | www.u‑blox.com

Modular DIN Rail Box PC Targets Transportation Systems

MEN Micro has announced the MC50M, a modular DIN rail box PC for embedded applications in transportation. The computer platform is based on Intel’s Atom E3900 CPU series. This makes the MC50M the ideal basis for functions such as security gateway, predictive maintenance, CCTV, ticketing systems or as a diagnostic server.

The MC50M can be used as a stand-alone product or in combination with a range of pre-fabricated extension modules, providing additional features and short delivery times. Extension modules can provide application-specific functions such as wireless communication (LTE advanced, WLAN, GNSS), MVB, CAN bus or other I/Os. A removable storage shuttle supports the integration of one to two 2.5″ SATA hard disks/SSDs. The wide range PSU allows isolated power supply from 24 V DC to 110 V DC nominal and extends the entire system to EN 50155 compliance.

The board management controller provides increased reliability and reduces downtime. The Trusted Platform Module supports security and encryption features. With the ignition switch for remote startup and shutdown control, the platform provides additional energy saving features. The aluminum housing with cooling fins ensures conductive cooling and fanless operation. The MC50M has no moving parts, so it can be operated maintenance-free.

The long-term availability of 15 years from product launch minimizes life cycle management by making the MC50M available for at least this period. MEN’s DIN rail concept is designed for flexible configuration of module combinations and is suitable for embedded IoT applications in various markets. The CPU modules can be flexibly combined with various expansion modules and power supplies.

In the modular system, the data transfer between the individual modules as well as the power supply of the components is implemented via the expansion connectors standardized by MEN.The concept specifications include housing dimensions, mounting, cooling and IP protection. In addition, the expansion connectors and their pin assignment are defined. DIN rail mounting (35 mm) is standard. Wall and 19” rack mounting is possible using adaption brackets.

MEN Micro | www.menmicro.com

GNSS Modules Enable Low-Power Location-Based IoT

Telit has announced the SE878Kx-A series of GPS and GNSS integrated antenna receiver modules for applications that require high performance, maximum reliability and low power consumption. Compatible with GPS, GLONASS, Beidou and Galileo, the new SE878K3-A and SE878K7-A enable device vendors to develop quickly and cost-effectively location-based IoT solutions for use in virtually any country worldwide.

The SE878Kx-A series supports dual internal-external antennas to ensure connectivity when one is broken or compromised, along with a SAW filter to maximize jamming immunity. These features make the modules well suited for mission-critical applications and other use cases where reliability is key, such as alarms, stolen cars or high-end asset tracking. The SE878Kx-A series also provides seamless integration with Telit’s cellular modules, including eCall/ERA-GLONASS compliant solutions, making them ideal for telematics applications such as fleet management, road tolling and in-vehicle navigation systems.

Telit | www.telit.com

Small, Self-Contained GNSS Receiver

TM Series GNSS modules are self-contained, high-performance global navigation satellite system (GNSS) receivers designed for navigation, asset tracking, and positioning applications. Based on the MediaTek chipset, the receivers can simultaneously acquire and track several satellite constellations, including the US GPS, Europe’s GALILEO, Russia’s GLONASS, and Japan’s QZSS.

LinxThe 10-mm × 10-mm receivers are capable of better than 2.5-m position accuracy. Hybrid ephemeris prediction can be used to achieve less than 15-s cold start times. The receiver can operate down to 3 V and has a 20-mA low tracking current. To save power, the TM Series GNSS modules have built-in receiver duty cycling that can be configured to periodically turn off. This feature, combined with the module’s low power consumption, helps maximize battery life in battery-powered systems.

The receiver modules are easy to integrate, since they don’t require software setup or configuration to power up and output position data. The TM Series GNSS receivers use a standard UART serial interface to send and receive NMEA messages in ASCII format. A serial command set can be used to configure optional features. Using a USB or RS-232 converter chip, the modules’ UART can be directly connected to a microcontroller or a PC’s UART.

The GPS Master Development System connects a TM Series Evaluation Module to a prototyping board with a color display that shows coordinates, a speedometer, and a compass for mobile evaluation. A USB interface enables simple viewing of satellite data and Internet mapping and custom software application development.
Contact Linx Technologies for pricing.

Linx Technologies
www.linxtechnologies.com