Odroid-N2 SBC has Hexa-Core Amlogic S922X and $63 to $79 Price

By Eric Brown

Hardkernel announced an “Odroid-N2” SBC with a Cortex-A73 and -A53 based Amlogic S922X SoC plus 2-4GB DDR4, 4x USB 3.0, HDMI 2.1, an audio DAC, and a 40-pin header.

Hardkernel unveiled its open-spec, Ubuntu-ready Odroid-N1 SBC a year ago with a Rockchip RK3399 SoC. Since it was scheduled for June shipment, we included it our reader survey of 116 hacker boards. Yet, just before we published the results, including a #16 ranking for the N1, Hardkernel announced it was shelving the board due to sourcing problems and switching to a similar new board with an unnamed new SoC. The Odroid-N2 would also switch to DDR4 RAM from the previously announced DDR3, which was in short supply.


 
Odroid-N1 with heatsink (left) and within black case
(click images to enlarge)
The Odroid-N2 will arrive in April about four months later than intended, but with a much lower $63 (2GB RAM) and $79 (4GB) price compared to the original Odroid-N1 goal of “about $110.” The new model has also advanced to a similarly hexa-core, but much faster Amlogic S922X SoC, which was unveiled in September along with the quad-core -A53 Amlogic S905X2 and S905Y2.

Amlogic has yet to post a product page for the 12nm-fabricated S922X, which integrates 4x Cortex-A73 cores instead of the RK3399’s 2x 2.0GHz -A72 cores. The S922X also has 2x -A53 cores that clock to 1.9GHz instead of 4x 1.5GHz -A53 cores on the high-end version of the RK3399 used by the N1. The N2 also moves up to a Mali-G52 GPU with 6x 846MHz execution engines, which the Odroid project benchmarks as 10 percent faster.


 
Odroid-N2 CPU benchmark comparison (left) and block diagram 
(click images to enlarge)
Hardkernel has posted benchmarks that claim around 20 percent faster CPU performance than the RK3399-driven N1. The inclusion of a substantial metal heatsink and the placement of the SoC and RAM on the bottom of the board enable top speeds “without thermal throttling,” says the Odroid project. With the 4GB version (the only configuration announced for the N1), the N2’s 1320MHz DDR4-RAM is claimed to be 35 percent faster than the N1’s 800MHz DDR3.

Although it may not make much sense to compare the Odroid-N2 to a board that never shipped, it should be noted that the Odroid-N1’s PCIe-based SATA connectors (also found on a few other RK3399 boards) have disappeared. However, you get 4x USB 3.0 host ports instead of a split between 3.0 and 2.0.



Odroid-N2 detail view (see legend farther below)
(click image to enlarge)
The USB ports sit next to a faster GbE port (about 1Gbps) and a 4K-ready HDMI port which is variablly listed as 2.0 and 2.1. For wireless, you’ll need to use one of the USB ports.



Legend for detail view above
(click image to enlarge)
The Odroid-N2 is slightly smaller than the N1 at 90 x 90 x 17mm and has a different design. Several ports such as the micro-USB OTG port and new IR sensor and composite A/V jack appear on the opposite coastline. The A/V jack includes a high-quality audio DAC (384Khz/32bit) with dynamic range, near-100dB SNR, and Total-Harmonic-Distortion lower than 0.006 percent, claims the Odroid project.

The 40-pin expansion header provides 25x GPIO, 2x I2C, SPDIF, and other 3.3V interfaces except for the dual 1.8V ADC signals. The pinout is said to be similar to the Amlogic S905 based Odroid-C2. There’s a wide-range 7.5-20V DC jack, and power consumption is listed as 1.8W idle to 5.5W CPU stress. No operating range was listed, but benchmarks suggest it runs run fine at 35°C.

The Odroid-N2 is available with 64-bit Ubuntu 18.04 LTS with Linux 4.9.152 LTS and Android 9 Pie “with full source code BSP and pre-built image together.” There is no X11 GPU driver and the Mali G52 GPU Linux driver currently works only on the framebuffer, but there’s a hardware-accelerated VPU driver. A Linux Wayland driver and Vulkan capable GPU driver for Android are in the works.


 
Odroid-N2 in white case (left) and GPIO pinout
(click images to enlarge)
The board ships with 8MB SPI along with a boot select switch and a Petitboot app. It requires removal of any bootable eMMC while you’re making the switch.

Odroid boards, such as the ever popular Odroid-XU4 have usually scored high in our reader surveys due to solid HW/SW quality, vigorous open source support, and a devoted community. The Odroid project recently branched into x86 territory with its Intel Gemini Lake based Odroid-H2.

Specifications listed for the Odroid-N2 include:

  • Processor — Amlogic S922X (4x Cortex-A73 @ 1.8GHz, 2x Cortex-A53 @ 1.9GHz); 12nm fab; Mali-G52 GPU with 6x 846MHz EEs
  • Memory/storage:
    • 2GB or 4GB DDR4 (1320MHz, 2640MT/s) 32-bit RAM
    • eMMC socket with optional 8GB to 128GB
    • MicroSD slot with UHS-1 SDR104 support
    • 8MB SPI flash with boot select switch and Petitboot app
  • Wireless — Optional USB WiFi adapter
  • Networking — Gigabit Ethernet port (Realtek RTL8211F); about 1Gbps
  • Media I/O:
    • HDMI 2.1 port for up to 4K@60Hz with HDR, CEC, EDID
    • Composite video jack with stereo line-out and 384Khz/32bit audio DAC
    • SPDIF audio via 40-pin
  • Other I/O:
    • 4x USB 3.0 host ports (340MB/s typical)
    • Micro-USB 2.0 OTG port (no power)
    • Serial console interface
    • Fan connector
  • Expansion — 40-pin GPIO header (25x GPIO, 2x i2C, 2x ADC, 6x PWM, SPI, UART, SPDIF, various power signals, etc.)
  • Other features — RTC (NXP PCF8563) with battery connector; IR receiver; metal heatsink; 2x LEDs; optional $4 acrylic case
  • Power — 7.5-20V DC jack; 12V/2A adapter recommended; consumption: 1.8W idle to 5.5W stress
  • Dimensions — 90 x 90 x 17mm
  • Operating system — Ubuntu 18.04 LTS with Kernel 4.9.152 LTS and Android 9 Pie BSPs

Further information

The Odroid-N2 will go on sale in late March with shipments beginning in April. Some engineering samples will head out to a lucky few over the next week. Pricing is $63 (2GB RAM) and $79 (4GB) price. More information may be found on Hardkernel’s Odroid-N1 announcement and product page and wiki.

This article originally appeared on LinuxGizmos.com on February 13.

Odroid by Hardkernel | forum.odroid.com

Secure Cellular Router Serves Industrial and Transportation Needs

Digi International has announced the Digi WR54, a rugged, secure, high-performance wireless router for complex mobile and industrial environments. With dual cellular interfaces, Digi WR54 provides immediate carrier failover for near-constant uptime and continuous connectivity, especially as vehicles move throughout a city or for locations with marginal cellular coverage. Together with a hardened milspec-certified design and built-in Digi TrustFence security framework, this LTE-Advanced router is designed specifically to meet the connectivity challenges inherent in multi-location, on-the-move conditions, from rail and public transit to trucking fleets and emergency vehicle applications.

LTE-Advanced technologies with carrier aggregation are pushing theoretical download speeds to 300 Mbps, and the next generation of cellular radios is capable of aggregating three or more channels for capabilities up to 600 Mbps. It’s expected that 5G deployments this year will push the demands for performance and edge computing even further. Digi WR54 provides an LTE-Advanced cellular module built on a platform that supports higher speeds to optimize bandwidth today while also being positioned for the future as network capabilities improve.

Multiple transit system use cases require rugged, reliable, high-speed connectivity solutions to carry mission-critical data and communications. Transit system integrators require connectivity for fleet tracking, logistics, engine and driver performance monitoring, fare collection and video monitoring; rail companies that are building in wayside data capabilities need constant visibility into complex systems; industrial corporations like utility companies need to monitor high-value assets.

The Digi WR54 architecture supports these performance requirements with not just the aforementioned LTE-Advanced cellular module, but four Gigabit Ethernet ports for wired systems and the latest 802.11 ac Wi-Fi which combine to support the needs of any user. Other key features include:

  • Dual-core 880 MHz MIPS processor: designed with this high-speed architecture, the Digi WR54 is future-built with a CPU capable of supporting higher network speeds and capabilities as infrastructure is updated to support them
  • SAE J1455, MILSTD-810G and IP-54 rated: tested and certified to withstand water, dust, heat, vibration and other environmental challenges suitable to transportation and many industrial applications
  • Optional dual-cellular radios for continuous connectivity between carriers: for users that cannot afford downtime, if the primary cellular carrier drops out, the Digi WR54 automatically and immediately switches over to the secondary carrier
  • Digi TrustFence: a device-security framework that simplifies the process of securing connected devices and adapts to new and evolving threats
  • Digi Remote Manager: with this Digi web-based management tool, users can simply manage their devices, receive alerts and monitor the health of their deployed devices

For users looking to add high-speed passenger Wi-Fi to mass transit systems, the recently launched Digi WR64 dual LTE-Advanced cellular and dual 802.11ac Wi-Fi router offers an all-in-one mobile communications solution for secure cellular connectivity between vehicles and a central operations center. It offers a flexible interface design with integrated Wi-Fi for client and access point connectivity along with USB, serial, a four-port wired Ethernet switch, GPS and Bluetooth in order to consolidate multiple transit or industrial applications into a single, consolidated router.

Digi International| www.digi.com

Tiny, Single-GbE Arm Networking SBC Runs Linux

By Eric Brown

Gateworks has spun a 100 mm x 35 mm, single-GbE “Newport GW6100” networking SBC, which follows a recent dual-GbE “GW6200” model. Both run Linux on a dual-core Cavium Octeon TX SoC and offer mini-PCIe expansion and -40 to 85°C support.

In Nov. 2017, when Gateworks unveiled its Newport family of Linux-driven, Octeon TX based SBCs with the 105 mm x 100 mm, dual GbE port Newport GW6300, it promised several more models in 2018. The 140 mm x 100 mm, 5-GbE port Newport GW6400 was announced in May along with a GW6404 sibling that swaps two of the GbE ports to SFP ports. Now, the company has launched the single-GbE port GW6100 model, which had been scheduled for a 2018 Q2 arrival. There was no announcement of the GW6100, which was discovered by CNXSoft, nor of the dual-port, 100 mm x 75 mm GW6200, which now has a product page (see farther below).

 
Newport GW6100 (left) and recent Newport GW6200
(click images to enlarge)
Like the other Newport SBCs, the new entries run OpenWrt or Ubuntu on Cavium’s networking focused Octeon TX SoC, which has Cortex-A53 like ”Thunder” cores. The embedded-oriented Octeon TX competes directly with NXP’s QorIQ line. Optimized to run multiple concurrent data and control planes simultaneously, the headless SoC integrates security architecture from Cavium’s Nitrox V security processors.

While the Newport GW6300 and GW6400 both offer a choice of dual- (800MHz) or quad-core (1.5GHz) Octeon TX configurations, the GW6100 and GW6200 are limited to the 800MHz dual-core models. Volume orders are required to switch to the quad-core SoC or make other customizations, including boosting the standard 1GB DDR4 to up to 4GB or the standard 8GB eMMC to up to 64GB.

The Newport GW6100 and GW6200 provide OpenWrt or Ubuntu Linux BSPs with U-Boot. A full development kit is available with a power supply, passive PoE injector, JTAG programmer, and cables.

Newport GW6100

The tiny new GW6100 offers 1GB DDR4, 8GB eMMC, and a GbE port with PoE support. You can also draw power from the USB Type-C port, and there’s a JTAG connection and an I/O connector. The latter offers serial, analog, and digital I/O, as well as I2C, SPI, and power.


Newport GW6100 front detail view
(click image to enlarge)
A single mini-PCIe slot accompanied by a nano-SIM slot supports third-party PCIe, USB 3.0, and mSATA cards. You can also choose from several Gateworks mini-PCIe options, including USB, DIO/analog I/O, microSD/USB/SIM, Femto, and IoT Radio (Sub-1GHz) modules.


GW6100 rear detail view
(click image to enlarge)
Like all the Newport SBCs, the GW6100 provides standard -40 to 85°C support. There’s an 8-60V DC jack in addition to the PoE, Type-C, and power header options. Other features include reverse power protection, programmable wake-up/shutdown, a watchdog, real-time clock, and more. A Ublox GNSS receiver is optional.


GW6100 block diagram
(click image to enlarge)

Specifications listed for the Newport GW6100 include:

  • Processor — Cavium Octeon TX (2x ARMv8 ThunderX cores @ 800MHz); networking and security extensions
  • Memory/storage:
    • 1GB DDR4
    • 8GB eMMC
    • mSATA (SATA III) via mini-PCIe
  • Networking — Gigabit Ethernet port with passive PoE 8-60V input
  • Other I/O:
    • USB 2.0 Type-C port with 1.5A, 7.5W power support
    • Application connector (serial I/O, digital I/O, analog, I2C, SPI, and power)
    • JTAG interface
  • Expansion — Mini-PCIe slot with 8W power for “PCIe, USB 3.0 or mSATA with USB 2.0”; Nano-SIM slot
  • Other features – Watchdog; RTC with battery; LED, tamper switch support; voltage and temp. monitor; serial config EEPROM; programmable fan controller with tach support; Optional Ublox ZOE-MQ8 GNSS GPS Receiver with PPS
  • Operating temperature — -40 to 85°C
  • Power:
    • 8-60V DC jack (or PoE or Type-C)
    • 0.13A @ 24VDC typical operating current
    • Voltage reverse protection
    • Programmable shut-down and wake-up
  • Dimensions — 100 x 35 x 21mm
  • Weight — 85 g
  • Operating system — OpenWrt or Ubuntu BSPs

Newport GW6200

The 100 x 75mm Newport GW6200 adds to the GW6100 feature set with a microSD slot, a second GbE port (both with PoE), plus a second mini-PCIe slot. In place of the Type-C port you get 2x USB 3.0 ports.

 
Newport GW6200 detail view (left) and block diagram
(click images to enlarge)
The CW6200 is further equipped with side-mounted connectors for SPI, DIO, I2C, and either 2x RS232 or a single RS232/422/485 interface. A CAN bus controller is optional.

Further information

The Newport GW6100 and Newport GW6200 appear to be available now at undisclosed prices. More information may be found on Gateworks’ Newport GW6100and Newport GW6200 product pages.

Gateworks | www.gateworks.com

Linux-Driven SMARC Module Supports Up to Five Time-Sensitive GbE Ports

By Eric Brown

Kontron invented the ULP-COM standard that formed the basis of the SMARC form factor, and it has delivered numerous SMARC modules over the years, including Arm products such as the Nvidia Tegra K1 based SMC-NTKE1. Now it has unveiled the first module we’ve seen in any form factor with NXP’s dual-core, Cortex-A72 powered QorIQ Layerscape LS1028 SoC.

The 82 mm x 50 mm SMARC-sAL28 module runs a Yocto Project based Linux stack (with U-Boot) on the LS1028. The module exploits the SoC’s Time Sensitive Networking (TSN) support with up 2x or 5x TSN-capable Gigabit Ethernet ports.



SMARC-sAL28
(click image to enlarge)
The SMARC-sAL28 module is compliant with the IEEE 802.1 TSN standard, which offers guaranteed latency and Quality of Service (QoS) with time synchronization to enable “a timely and highly available delivery of data packets,” says Kontron. TSN Ethernet can replace more expensive, proprietary fieldbus technology while also offering the advantage of being able to “simultaneously communicate seamlessly to the IT level.”

No clock rate was listed for the LS1028 SoC, which NXP refers to as the LS1028A. The SoC integrates a four-port TSN switch and two separate TSN Ethernet controllers. Like NXP’s other networking oriented LSx QorIQ Layerscape SoCs, it supports NXP’s EdgeScale suite of secure edge computing device management tools. It’s the only LSx SoC that features a 3D graphics capable GPU.

 
SMARC-sAL28 (left) and NXP LS1028A block diagrams 
(click images to enlarge)
The SMARC-sAL28 ships with 4GB of soldered DDR3L with optional ECC, as well as 2GB to 64GB eMMC 5.1 storage. The 3V-5.25V module supports -40 to 85°C operation.

Two models are available. One has 2x TSN-capable, switched GbE controllers “that can be directly used by the carrier,” says Kontron. The second version supports 4x switched TSN-capable GbE ports via the QSGMII interface with an additional TSN-capable GbE controller. This second option provides a total of 5x TSN-ready GbE ports ports “using a quad-PHY on the carrier.” This 5x GbE model sacrifices one of the 2x PCIe x1 interfaces, which can also be deployed as a single PCIe x4 connection.

The SMARC-sAL28 provides a dual-channel LVDS interface, one of which can be swapped out for eDP as a BOM option. The second LVDS offers a BOM option swap-out for either an HDMI or DisplayPort.

The module is further equipped with a single USB 3.0, 6x USB 2.0, and 4x RX/TX serial interfaces. Other I/O includes 2x I2C, 2x SPI, 12x GPIO, and single SDIO, CAN, and I2S connections. Options include a Wibu security chip with Kontron Approtect security software, as well as an RTC.

Further information

The SMARC-sAL28 is “coming soon” at an undisclosed price. More information may be found in Kontron’s SMARC-sAL28 announcement and product page.

Kontron | www.kontron.com

CompactPCI Serial Board Delivers Four Gbit Ethernet Channels

MEN Micro has announced the G211X Ethernet interface card. It ensures fast data transmission with four X-coded M12 connectors connected to the backplane via an x4 link. The G211X is a new quad Ethernet card based on CompactPCI Serial. It can be used in combination with a CompactPCI Serial or CompactPCI PlusIO CPU board in a CompactPCI Serial or hybrid system. The four Gigabit Ethernet interfaces on the front panel are accessible via robust, X-coded M12 connectors.

All four interfaces are controlled by an Ethernet controller connected to the backplane via an x4 PCI Express connection. Each interface also supports a data transmission rate of 1 Gbit/s—even if all four channels are used simultaneously. For better control, two LEDs each indicate the connection and activity status of the interfaces. The G211X is designed for the extended operating temperature and prepared for conformal coating for use in harsh and mobile environments, in particular for rolling stock applications.

  • Four 10/100/1000BASE-T Ethernet channels
  • Intel i350 Server chipset with support for 8 virtual machines
  • Full-duplex or half-duplex
  • X-coded M12 connectors
  • 500 V insulation voltage
  • -40°C to +85°C operating temperature
  • Based on PICMG CPCI-S.0 CompactPCI Serial

MEN Micro | www.menmicro.com

Apollo Lake Pico-ITX SBC Sports Dual GbE Ports

AAEON has released the PICO-APL4, a compact SBC that features onboard memory and storage along with dual Gbit Ethernet support. The board is well suited for factory automation and IoT gateway systems. AAEON’s latest PICO form factor board is powered by an Intel Atom, Pentium N4200 or Celeron N3350 processor. By fitting the controller with up to 4 GB of onboard DDR3L memory and up to 64 GB of onboard eMMC storage, AAEON has made the board more resistant to the shocks and vibrations regularly experienced in industrial settings. This also cuts application development times because system developers don’t need to test the compatibility of external memory and storage.

The flexible PICO-APL4 houses USB ports and connectors, COM ports, a HDMI port and optional eDP. There’s also a 4-bit DIO to manage peripherals and an optional four-lane MIPI-CSI. Expansion is easily achieved with M.2 B and E keys enabling the connection of additional storage and WiFi/Bluetooth modules. Through an optional board-to-board interface, customers can also extend the IO interface and add a larger DIO.

Features:

  • Intel Atom/ Pentium N4200/ Celeron N3350 Processor SoC
  • Onboard DDR3L 2 GB (Optional to 4 GB)
  • Onboard Storage eMMC 16 GB (Optional to 32 GB / 64 GB)
  • Dual Gigabit Ethernet Support
  • HDMI 1.4b, eDP (Optional) for Display
  • BIO Reserved (Optional)
  • USB 3.0 x 2, USB 2.0 x 2, SATA 6.0 Gb/s x 1
  • 2 B Key (2280) x 1, M.2 E Key (2230) x 1

AAEON | www.aaeon.com

Mini PCIe Expansion Module Delivers Dual Gbit Ethernet

Versalogic has extended its line of industrial temperature, rugged Mini PCIe expansion products with the “E5”. This new Dual Gbit Ethernet expansion board provides an easy and economical way to add additional Ethernet ports to high-stress embedded computer systems. Unlike similar Mini PCIe boards, the E5 is completely self-contained with on-board magnetic isolation. There is no need for off-board magnetics or special cabling.

The E5’s extremely small form factor format allows it to be added to systems with very little impact to the overall size of the solution. It’s well suited for size and weight optimized applications.

Many applications required extreme temperature operation. Fully tested thermal management assures reliable operation over the full industrial temperature range (-40° to +85°C). Latching connectors and Mil Standard 202 shock and vibration testing ensure performance in demanding environments. The E5E is engineered and validated to excel in unforgiving environments. Bundle it with a rugged embedded computer board from VersaLogic for a one-stop solution to your industrial application needs.

The E5 is customizable, even in low OEM quantities. Customization options include conformal coating, revision locks, custom labeling, customized testing and screening and so on. The E5 is compatible with a variety of popular operating systems such as Linux and Windows.

The E5, part number VL-MPEe-E5E, is in stock at both Versalogic and Digi-Key. OEM quantity pricing starts at $137.

Versalogic | www.versalogic.com

Pico-ITX and 3.5-inch SBCs Feature Dual-Core i.MX6 SoCs

IBASE Technology has announced two SBCs, both powered by an NXP i.MX 6Dual Cortex-A9 1.0GHz high performance processor. The IBR115 2.5-inch SBC and the IBR117 3.5-inch SBC are designed for use in applications in the automation, smart building, transportation and medical markets.
IBR115 and IBR117 are highly scalable SBCs with extended operating temperature support of -40°C to 85°C and an optional heatsink. Supporting 1 GB DDR3 memory on board, the boards provide a number of interfaces for HDMI and single LVDS display interface, 4 GB eMMC, Micro SD, COM, GPIO, USB, USB-OTG, Gbit Ethernet and a M.2 Key-E interface. These embedded I/Os provide connection to peripherals such as WiFi, Bluetooth, GPS, storage, displays, and camera sensors for use in a variety of application environment while consuming low levels of power.

Both models ship with BSPs for Yocto Project 2.0 Linux and Android 6.0. They both run on dual-core, 1 GHz i.MX6 SoCs, but the IBR115 uses the DualLite while the IBR117 has a Dual with a slightly more advanced Vivante GPU.

IBR115/IBR117 Features:

  • With NXP Cortex-A9, i.MX 6Dual-Lite (IBR115) / i.MX 6Dual (IBR117) 1GHz processor
  • Supports HDMI and Dual-channel LVDS interface
  • Supports 1 GB DDR3, 4 GB eMMC and Micro SD (IBR115) / SD (IBR117) socket for expansion
  • Embedded I/O as COM, GPIO, USB, USB-OTG, audio and Ethernet
  • 2 Key-E (2230) and Mini PCI-E w/ SIM socket (IBR117) for wireless connectivity
  • OpenGL ES 2.0 for 3D BitBlt for 2D and OpenVG 1.1
  • Wide-range operating temperature from -40°C to 85°C

IBASE Technology | www.ibase.com.tw

Cavium Octeon-Based SBCs Provide Networking Solution

Gateworks has announced the release of the Newport GW6400 SBC, featuring the Cavium Octeon TX Dual/Quad Core ARM processor running up to 1.5 GHz. The GW6400 is the latest Newport family member with an extensive list of features, including five Gigabit Ethernet ports and two SFP fiber ports. The GW6400 comes in two standard stocking models, the Dual Core GW6400 and the fully loaded Quad Core GW6404 (shown)..

The GW6400 and GW6404 are members of the Gateworks 6th generation Newport family of single board computers targeted for a wide range of indoor and outdoor networking applications. The SBCs feature the Cavium OcteonTX ARMv8 SoC processor, up to five Gigabit Ethernet ports, and four Mini-PCIe expansion sockets for supporting 802.11abgn/ac wireless radios, LTE/4G/3G CDMA/GSM cellular modems, mSATA drives and other PCI Express peripherals. A wide-range DC input power supply provides up to 15 W to the Mini-PCIe sockets for supporting the latest high-power radios and up to 10 W to the USB 2.0/3.0 jacks for powering external devices. Power is applied through a barrel jack or an Ethernet jack with either 802.3at or Passive Power over Ethernet. The GW6400 does not have SFP Ports loaded.

Gateworks | www.gateworks.com

Tiny i.MX8M Module Focuses on Streaming Media

By Eric Brown

Innocomm announced a 50 mm x 50 mm “WB10” module with an NXP i.MX8M Quad SoC, 8 GB eMMC, Wi-Fi-ac, BT 4.2, GbE, HDMI 2.0 with 4K HDR and audio I/O including SAI, SPDIF and DSD512.Among the many embedded products announced in recent weeks that run NXP’s 1.5 GHz, Cortex-A53-based i.MX8M SoC, Innocomm’s 50 mm x 500 mm WB10 is one of the smallest. The top prize goes to Variscite’s SODIMM-style, 55 mm x 30 mm DART-MX8M. Like Emcraft’s 80 mm x 60mm i.MX 8M SOM, the home entertainment focused WB10 supports only the quad-core i.MX8M instead of the dual-core model. Other i.MX8M modules include Compulab’s 68 mm x 42mm CL-SOM-iMX8.

WB10 (above) and NXP i.MX8M block diagram (below)
(click images to enlarge)
No OS support was listed, but all the other i.MX8M products we’ve seen have either run Linux or Linux and Android. The i.MX8M SoC incorporates a Vivante GC7000Lite GPU and VPU, enabling 4K HEVC/H265, H264, and VP9 video decoding with HDR. It also provides a 266MHz Cortex-M4 core for real-time tasks, as well as a security subsystem.

The WB10 module offers only 2 GB LPDDR4 instead of 4 GB for the other i.MX8M modules, and is also limited to 8GB eMMC. You do, however, get a GbE controller and onboard 802.11 a/b/g/n/ac with MIMO 2×2 and Bluetooth 4.2.

The WB10 is designed for Internet audio, home entertainment, and smart speaker applications, and offers more than the usual audio interfaces. Media I/O expressed via its three 80-pin connectors include HDMI 2.0a with 4K and HDR support, as well as MIPI-DSI, 2x MIPI-CSI, SPDIF Rx/Tx, 4x SAI and the high-end DSD512 audio interface.

WB10 block diagram (above) and WB10 mounted on optional carrier board (below)
(click images to enlarge)

You also get USB 3.0 host, USB 2.0 device, 2x I2C, 3x UART and single GPIO, PWM, SPI, and PCIe interfaces. No power or temperature range details were provided. The WB10 is also available with an optional, unnamed carrier board that is only slightly larger than the module itself. No more details were available. Further information

No pricing or availability information was provided for the WB10. More information may be found on Innocomm’s WB10 product page.

Innocomm | www.innocomm.com

This article originally appeared on LinuxGizmos.com on March 6.

Rugged COM Express Module Sports AMD V1000

MEN Micro has announced the CB71C, a rugged COM Express module for rail, public transportation and industry applications like data acquisition, infotainment, transcoding and live 3D. It is 100% compatible with COM Express Type 6 pin-out and conforms to the VITA 59 standard, which specifies robust mechanics to ensure reliable operation even under the harshest environmental conditions.

The CB71C is based on AMD’s V1000 APU family. It is equipped with a Radeon Vega next-generation 3D graphics engine with up to 11 compute units, and supports up to 4 displays with a resolution of up to 4k without the need for additional graphics hardware. With up to four high-performance processor cores, the CB71C is also suitable for virtualization. Based on the Rugged COM Express standard, the CB71C is embedded in a closed aluminum frame, which ensures optimum EMC protection and efficient conduction cooling supporting a temperature range of -40°C to +85°C. To withstand serious shock and vibration, only soldered components are used.

The CB71C can be equipped with a wide range of long-term available processors with scalable performance, all supporting ECC. Passive cooling is possible with low-power versions. The CB71C can also be equipped with up to 32 GB of directly soldered DDR4 main memory and a 16 GB eMMC. Available high-speed interfaces include PCI Express 3.0 links, DDI (DP, eDP, HDMI), SATA 3.0, Gbit Ethernet and USB 3.0.

The board features an advanced board management controller with monitoring functions for safety-relevant applications. In addition, the CB71C has a Trusted Platform Module and supports hardware memory encryption, providing protection against both physical and inter-VM storage attacks. This is essential for security-critical applications such as payment and ticketing terminals, fleet management or monitoring.

MEN Micro | www.menmicro.com

COMe Mini GbE Card for Harsh Environments

Diamond Systems has unveiled the EPSM-10GX Gbit Ethernet switch module with managed Layer 2/3 switch capabilities in an ultra-compact COM Express Mini 2.2″ x 3.3″ (55 mm x 84mm) form factor. Featuring 24 10/100/1000 Mbps copper twisted pair ports and two 10 Gbps SFI ports, the EPSM-10GX is a well suited for use as a building block for creating custom Ethernet switch solutions in a variety of space-critical applications, such as drones, ground and underwater vehicles and robots.

The EPSM-10GX offers managed layer 2+ performance (layer 3 capable with software upgrade) via its built-in 500 MHz MIPS processor and comprehensive suite of software features. All features are manageable via any Ethernet port or an auxiliary “out of band” serial interface. The switch operates at non-blocking wire-speed performance, meaning all ports can operate at full speed simultaneously, resulting in a 44 Gbps total throughput capability.

Like a Computer-on-Module, the EPSM-10GX provides the complete core Ethernet switch functionality in a proven solution, vastly simplifying the effort required to design a complete Ethernet switch. The module is intended to be mounted on a carrier board, which requires only the necessary power supplies and “final inch” of magnetics, I/O connectors and SFP+ sockets for the ports.

For a complete off-the-shelf solution, Diamond Systems also introduced the EPS-24G2X (EPSM-10GX combined with carrier board) which provides access to all features of the module to create an off-the-shelf complete solution in the industry standard 3.5 inch form factor. For rapid development of custom solutions, Diamond offers under NDA a complete design package for the EPS-24G2X, enabling customers to quickly and easily design a custom solution with minimum risk.

The EPSM-10GX is designed to meet the demands imposed by harsh environments and is tested and guaranteed to MIL-STD-202G shock/vibration levels and can be operated in temperatures from -40°C to 85°C.

The EPSM-10GX includes the following key features and functionality:

  • 24 10/100/1000Mbps copper Ethernet ports
  • Integrated 500 MHz MIPS 24KEc CPU
  • Serial port for out of band management and software updates
  • IEEE802.1Q switch with 4K VLANs and 32K MAC table entries
  • Multiple protocol support: IEEE 802.1d, IEEE 802.1w, IEEE 802.1s, and IEEE 802.1X
  • Flexible link aggregation support based on Layer-2 through Layer-4 information (IEEE 802.3ad)
  • Multicast and broadcast storm control, as well as flooding control
  • COM Express Mini, Type 10 Form Factor (2.2” x 3.3″ / 55 mm x 84 mm)
  • Power input: 5VDC
  • -40°C to +85°C (-40°F to +185°F) operating temperature

EPSM-10GX is supplied with all required firmware pre-installed and pre-configured, enabling immediate operation without any software development effort. The EPSM-10GX managed 26-Port Gigabit Ethernet Switch Module is shipping now.

Diamond Systems | www.diamondsystems.com

COM Express Type 7 Card Sports Atom C3000

Congatec has announced the launch of the conga-B7AC, a new Intel Atom C3000 processor based COM Express Type 7 Server-on-Module with 10 GbE support. With a power consumption starting at only 11 W, the board blends the 16-core Atom processor with a four a channel GbE real-time capable network. The feature set is designed for modular industrial micro servers as well as rugged telecom and network equipment, such as small cells, factory gateways and storage systems. It is deployable even in the extended temperature range from -40°C to +85°C.

The conga-B7AC is based on the new PICMG COM Express 3.0 specification. As a standardized building block, it is well suited for efficient custom designs of very small sized, passively cooled embedded edge systems. The new modules are application ready for redundant, real-time communication and virtualization platforms.

conga-B7AC_pressThey are designed to maximize uptime and resilience, minimize latency and to get the most out of each processing core. Their cloud API for distributed embedded edge servers further provides all the capabilities that data center managers need to remotely monitor system health, power consumption and environmental conditions. With the support of up to 20 PCIe lanes, the new Intel Atom C3000 processor based COM Express Type 7 Server-on-Modules also offer minimum latency for storage devices as well as very fast access lanes to all the various sensor networks, field buses and industrial Ethernet links.

The new conga-B7AC COM Express Type 7 Server-on-Modules are available with 8 different Intel Atom server processors, from the 16-core Intel Atom C3958 processor to the quad-core C3508 for the extended temperature range (-40°C to +85°C). All modules provide up to 48 GB of fast 2400 DDR4 memory with or without error correction code (ECC) depending on customers’ requirements. They offer very high network capabilities with up to 4x 10 GbE and the Network Controller Sideband Interface (NC-SI) for connecting a baseboard management controller (BMC) allowing out-of-band remote manageability. Flexible system extensions including NVMe flash storage can be connected via up to 12x PCIe Gen 3.0 lanes and 8x PCIe Gen 2.0 lanes. 2x SATA 6G ports are available for conventional storage media. Further I/O interfaces include 2x USB 3.0, 4x USB 2.0, LPC, SPI, I2C Bus and 2x UART. Additionally, the module hosts a trusted platform module (TPM) for security sensitive network appliances.

Congatec | www.congatec.com