Eurotech IoT Tech Tapped for Smart Agriculture Projects

Eurotech has announced that AVR, a potato harvester manufacturer based in Belgium, has chosen the ReliaGATE family of intelligent edge computers running Eurotech’s Everyware Software Framework and Everyware Cloud to manage the edge devices for its smart agriculture project to connect its harvesting machinery. These IoT building blocks are integrated by AVR partner Delaware Consulting with a Microsoft MS Azure-based IoT platform that gathers, analyzes and visualizes data from sensors on tractors and other farming vehicles.
With a showcase version up and running, AVR plans to release the platform for end users later in 2018, gathering market feedback to drive the development of new capabilities. No financial information has been disclosed. AVR has a decades-long history in the field of potato agriculture, designing and manufacturing harvesters, planters and cultivators. It’s a niche market, but they are one of the world’s biggest players, exporting equipment to every continent. However, even a traditional industry like agriculture is being impacted by emerging IoT innovations.

According to AVR, Agriculture adopts new tech relatively slowly compared to other sectors. But the key words “smart farming: and :precision agriculture” are cropping up more and more often. In the past, AVR focused much more on the mechanical side of agriculture. Now, its goal is to develop smarter machines with many more sensors and use the data its collects to bring value and transparency to stakeholders along the entire value chain.

Eurotech | www.eurotech.com

IoT: From Gateway to Cloud

Starting Up, Scaling Up

In this follow on to our March “IoT: From Device to Gateway” Special Feature, here we look at technologies and solutions for the gateway-to-cloud side of IoT. These solutions ease the way toward getting a cloud-connected system up and running.

By Jeff Child, Editor-in-Chief

After exploring the edge device side of the Internet-of-Things (IoT) last month, now we’ll look at cloud side the equation. Even though the idea of Internet-linked embedded devices has been around for decades, multiple converging technology trends have brought us to the IoT phenomenon of today. The proliferation of low cost wireless technology has coincided with significant decrease in the costs of computing, data storage and sensor components. Meanwhile, that same computing and storage are now widely available as cloud-based platforms that can scale linearly.

Much attention has been focused on the size of the growing IoT market in terms of revenue and number of devices. But another interesting metric is the number of IoT developers working on IoT-based systems. According to analysts, that number will approach 10 million within the next few years and a lot of that growth will be among smaller firms starting from the ground up or adding IoT to their infrastructure for the first time. For those smaller organizations the process of getting started with cloud-connected infrastructure can be a hurdle. And even after that step, there’s the issue of scaling up as the need arises to expand their IoT implementation.

Feeding both those needs, a number of companies ranging from IoT specialists to embedded software vendors to microcontroller vendors have over the past six months, rolled out a variety of solutions to help developers get started with their cloud-connected IoT system and scale that system to larger numbers of IoT edge nodes and increased cloud-based service functionality.

IoT for the Masses

With both those trends in mind, Atmosphere IoT positions itself as focused on the mass market of IoT developers. Formerly part of Anaren, Atmosphere IoT Corp. was previously Anaren’s IoT Group before Anaren divested that division in January into the newly formed Atmosphere IoT Corp. For its Atmosphere IDE product, the company provides an interesting business model. Atmosphere IDE is available for free—anyone can log on and use it. Once you get over 5 connected things and want to have Atmosphere IoT store more data and manage more things, you start paying incrementally. The idea is to make it easy for developers to generate code and get prototype systems and a limited pilot program up and running. When users are ready to scale up or when they find commercial success, they can scale linearly because all of Atmosphere’s software is built on the Amazon Web Services (AWS) cloud.

Photo 1
The Cloud View part of Atmosphere IDE lets developers use cloud elements to quickly connect their projects to Atmosphere Cloud, sending data from an embedded system to the cloud for a cohesive sensor-to-cloud solution.

 

Using the IDE, developers can create either Wi-Fi or Bluetooth Smart projects and choose between supported platforms including Anaren hardware and the Intel Curie module. On the cloud development side, the Atmosphere IDE provides easy cloud connectivity access, connecting IoT devices to the cloud application to take advantage of data hosting, analysis, reporting, real-time monitoring and much more. The Cloud View (Photo 1) part of the IDE lets developers use cloud elements to quickly connect their projects to Atmosphere Cloud, sending data from an embedded system to the cloud for a cohesive sensor-to-cloud solution.

Industry 4.0 Solution

For its Industry 4.0 IoT solution, Mentor in February introduced its Mentor Embedded IoT Framework (MEIF). MEIF is a comprehensive, cloud vendor-agnostic embedded software framework designed to help developers create, secure and manage “cloud-ready” smart devices for Industry 4.0 applications. MEIF features well-defined interfaces engineered to complement and extend cloud vendor embedded software development kit (SDK) APIs. …

 

Read the full article in the April 333 issue of Circuit Cellar

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!
Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

Linux and Coming Full Circle

Input Voltage

–Jeff Child, Editor-in-Chief

JeffHeadShot

In terms of technology, the line between embedded computing and IT/desktop computing has always been a moving target. Certainty the computing power in small embedded devices today have vastly more compute muscle than even a server of 15 years ago. While there’s many ways to look at that phenomena, it’s interesting to look at it through the lens of Linux. The quick rise in the popularity of Linux in the 90s happened on the server/IT side pretty much simultaneously with the embrace of Linux in the embedded market.

I’ve talked before in this column about the embedded Linux start-up bubble of the late 90s. That’s when a number of start-ups emerged as “embedded Linux” companies. It was a new business model for our industry, because Linux is a free, open-source OS. As a result, these companies didn’t sell Linux, but rather provided services to help customers create and support implementations of open-source Linux. This market disruption spurred the established embedded RTOS vendors to push back. Like most embedded technology journalists back then, I loved having a conflict to cover. There were spirited debates on the “Linux vs. RTOS topic” on conference panels and in articles of time—and I enjoyed participating in both.

It’s amusing to me to remember that Wind River at the time was the most vocal anti-Linux voice of the day. Fast forward to today and there’s a double irony. Most of those embedded Linux startups are long gone. And yet, most major OS vendors offer full-blown embedded Linux support alongside their RTOS offerings. In fact, in a research report released in January by VDC Research, Wind River was named as the market leader in the global embedded software market for both its RTOS and commercial Linux segments.

According the VDC report, global unit shipments of IoT and embedded OSs, including free/non-commercial OSs, will grow to reach 11.1 billion units by 2021, driven primarily by ECU-targeted RTOS shipments in the automotive market, and free Linux installs on higher-resource systems. After accounting for systems with no OS, bare-metal OS, or an in-house developed OS, the total yearly units shipped will grow beyond 17 billion units in 2021 according to the report. VDC research findings also predict that unit growth will be driven primarily by free and low-cost operating systems such as Amazon FreeRTOS, Express Logic ThreadX and Mentor Graphics Nucleus on constrained devices, along with free, open source Linux distributions for resource-rich embedded systems.

Shifting gears, let me indulge myself by talking about some recent Circuit Cellar news—though still on the Linux theme. Circuit Cellar has formed a strategic partnership with LinuxGizmos.com. LinuxGizmos is a well-establish, trusted website that provides up-to-the-minute, detailed and insightful coverage of the latest developer- and maker-friendly, embedded oriented chips, modules, boards, small systems and IoT devices—and the software technologies that make them tick. As its name in implies, LinuxGizmos features coverage of open source, high-level operating systems including Linux and its derivatives (such as Android), as well as lower-level software platforms such as OpenWRT and FreeRTOS.

LinuxGizmos.com was founded by Rick Lehrbaum—but that’s only the latest of his accolades. I know Rick from way back when I first started writing about embedded computing in 1990. Most people in the embedded computing industry remember him as the “Father of PC/104.” Rick co-founded Ampro Computers in 1983 (now part of ADLINK), authored the PC/104 standard and founded the PC/104 Consortium in 1991, created LinuxDevices.com in 1999 and guided the formation of the Embedded Linux Consortium in 2000. In 2003, he launched LinuxGizmos.com to fill the void created when LinuxDevices was retired by Quinstreet Media.

Bringing things full circle, Rick says he’s long been a fan of Circuit Cellar, and even wrote a series of articles about PC/104 technology for it in the late 90s. I’m thrilled to be teaming up with LinuxGizmos.com and am looking forward to combing our strengths to better serve you.

This appears in the April (333) issue of Circuit Cellar magazine

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

IoT Security Solution for NXP MCUs

NXP Semiconductors has introduced its new A71CH Secure Element (SE), a trust anchor, ready-to-use security solution for next-generation IoT devices, such as edge nodes and gateways. Designed to secure peer-to-peer or cloud connections, the chip comes with the required credentials pre-injected for autonomous cloud onboarding and peer-to-peer authentication. The solution is a Root of Trust (RoT) at the silicon level, with security functionalities such as encrypted key storage, key generation and derivation to protect private information and credentials for mutual authentication.

Unique to the chip, is its ‘Plug & Trust” approach supporting easy integration of security and cloud onboarding. It does this using host libraries and a development kit compatible to different NXP microcontrollers (MCU and MPU) platforms such as Kinetis and i.MX. Also, example code and various application notes are available to streamline the design process.

Thanks to the collaboration with Data I/O, embedded systems developers further benefit from an easy personalization service on the A71CH for any quantities in addition to NXP’s trust provisioning service. As a result, the new security IC gives developers, even those with limited security expertise, freedom to innovate and deploy secure solutions.

The A71CH provides the following set of key features:

  • Protected access to credentials
  • Encrypted/authenticated interface to host processor
  • Certificate-based TLS set-up (NIST P-256)
  • TLS set-up using pre-shared secret (TLS-PSK)
  • Connectionless message authentication (HMAC)
  • ECC key generation & signature verification
  • Symmetric key derivation
  • Encrypted vault for product master secrets (key wrapping, derivation, locking)
  • Encrypted key injection

 

NXP Semiconductors | www.nxp.com

Circuit Cellar and LinuxGizmos.com Form Strategic Partnership

Partnership offers an expanded technical resource for embedded and IoT device developers and enthusiasts

Today Circuit Cellar is announcing a strategic partnership with LinuxGizmos.com to offer an expanded resource of information and know-how on embedded electronics technology for developers, makers, students and educators, early adopters, product strategists, and technical decision makers with a keen interest in emerging embedded and IoT technologies.

The new partnership combines Circuit Cellar’s uniquely in depth, “down-to-the-bits” technical articles with LinuxGizmos.com’s up-to-the-minute, detailed, and insightful coverage of the latest developer-  and maker-friendly, embedded oriented chips, modules, boards, small systems, and IoT devices, and the software technologies that make them tick. Additionally, as its name implies, LinuxGizmos.com’s coverage frequently highlights open source, high-level operating systems including Linux and its derivatives (e.g. Android), as well as lower-level software platforms such as OpenWRT and FreeRTOS.

Circuit Cellar is one of the electronics industry’s most highly technical information resources for professional engineers, academics, and other specialists involved in the design and development of embedded processor- and microcontroller-based systems across a broad range of applications. It gets right down to the bits and bytes and lines of code, at a level its readers revel in. Circuit Cellar is a trusted brand engaging readers every day on its website, each week with its newsletter, and each month through Circuit Cellar magazine’s print and digital formats.

LinuxGizmos.com is a free-to-use website that publishes daily news and analysis on the hardware, software, protocols, and standards used in new and innovative embedded, mobile, and Internet of Things (IoT) devices.  The site is lauded for its detailed and insightful, timely coverage of newly introduced single board computers (SBCs), computer-on-modules (COMs), system-on-chips (SoCs), and small form factor (SFF) systems, along with their software platforms.

“The synergies between LinuxGizmos and Circuit Cellar are great and I’m excited to see the benefits of this partnership passed on to our combined audience,” said Jeff Child, Editor-in-Chief, Circuit Cellar. “LinuxGizmos.com has the kind of rich, detail-oriented structure that I’m a fan of. Over the many years I’ve been following the site, I’ve relied on it as an important information resource, and its integrity has always impressed me.”

“I’ve been a fan of Circuit Cellar magazine since it was first launched, and wrote a series of articles for it in the late 90s about PC/104 embedded modules,” added Rick Lehrbaum, founder and Editor-in-Chief of LinuxGizmos.com. “I’m thrilled to see LinuxGizmos become associated with one of the computing industry’s pioneering publications.”

“I see this partnership as a perfect way to enhance both the Circuit Cellar and LinuxGizmos brands as key information platforms,” stated KC Prescott, President, KCK Media Corp. “In this era where there’s so much compelling technology innovation happening in the industry, our combined strengths will help inform and inspire embedded systems developers.”

Read Announcement on LinuxGizmos.com here:

Circuit Cellar and LinuxGizmos.com join forces

Dotdot Spec to Run on Thread’s IP Network

The Zigbee Alliance and Thread Group have announced the availability of the Dotdot specification over Thread’s IP network. This enables developers to confidently use an established, open and interoperable IoT language over a low-power wireless IP network. This is expected to help unify the fragmented connected device industry and unlock new markets.

Dotdot is the Zigbee Alliance’s universal language for the IoT, making it possible for smart objects to work together on any network. Thread is the Thread Group’s open, IPv6-based, low-power, secure and future-proof mesh networking technology for IoT products. These two organizations have come together to deliver a mature, scalable solution for IoT interoperability that isn’t confined to single-vendor ecosystems or technologies.

Dotdot-over-Thread-no-sub-01The early Internet faced the same challenges as today’s IoT. Currently, connected devices can struggle to deliver a seamless experience because they speak different languages (or in technical terms, use different “application layers”). For the internet, the industry solved this problem with open, universal protocols over IP. Dotdot’s common device language over Thread’s IP network extends this same proven approach to the Internet of Things. With Dotdot over Thread, product and platform vendors can ensure the high-quality, interoperable user experiences needed to drive growth, while IP allows vendors to maintain a direct connection to their device.

It’s important to note that Dotdot over Thread is not another new standard. Dotdot enables the open, mature, and already widely adopted application layer at the heart of Zigbee to work across Thread’s IP network. It uses the same network technology fundamental to the internet. For product managers, new standards represent risk. Dotdot and Thread are backed by global, industry-leading companies and represent two of the most robust, widely deployed, and well-supported connectivity and interoperability technologies, driving billions of products and networks already in homes and offices.

The Dotdot specification is available today to Zigbee Alliance members. Additional resources, including the Dotdot Commissioning Application, will be available in Summer 2018, along with the opening of the Dotdot Certification program from the Zigbee Alliance. Thread launched its 1.1 specification and opened its certification program in February 2017. The Zigbee Alliance and Thread Group now share a number of common authorized test service providers, and are working with them to ensure an efficient, seamless certification process for Dotdot over Thread adopters. More information on this program will be announced soon.

The Zigbee Alliance | www.zigbee.org

Thread Group | www.threadgroup.org

Automotive-Grade IoT Gateways

Eurotech has expanded its range of Multi-service IoT Gateways with the launch of the DynaGATE 10-12 and the announcement of the DynaGATE 10-06. Both systems are carrier pre-certified, with an integrated LTE Cat 1 cellular, GPS, Wi-Fi, BLE, E-Mark and SAE/J1455 certifications and a -40 ºC to +85 ºC operating temperature.

The DynaGATE 10-12 is a low-power gateway based on the TI AM335X Cortex-A8 (Sitara) processor family, with 1 GB RAM and 4 GB eMMC. It features a 6 to 36VDC power supply with transient protection and vehicle ignition sense, 2x protected RS-232/RS-485 serial ports, 2x CAN bus interfaces, 3x noise and surge protected USB ports and 4x isolated digital I/Os. The DynaGATE 10-12 is suitable for on-board applications, with a metal enclosure, high retention connectors and screw-flange terminal blocks.

The connectivity capabilities of the DynaGATE 10-12 include an internal LTE Cat 1 modem with dual Micro-SIM support, Wi-Fi, Bluetooth Low Energy, 2x Fast Ethernet ports, and an internal GPS (optionally with Dead Reckoning) for precise geolocation.

DynaGATE 10-06.jpgThe DynaGATE 10-06 (shown) is an IP67, heavy-duty IoT gateway for Automotive applications. It features an internal battery that provides minutes of uninterrupted operation in case of power failure. Based on the NXP i.MX 6UltraLite Cortex-A7 processor, with 512MB RAM and 4GB eMMC, the DynaGATE 10-06 features a 6 to 36V power supply with protections and vehicle ignition sense, 3x protected RS-232/RS-485 serial ports, 2x CAN bus interfaces, 1x noise and surge protected USB port and 2x protected digital I/O. All these interfaces are available through a rugged AMPSEAL connector.

The DynaGATE 10-06 connectivity capabilities range from an internal LTE Cat 1 modem with dual Micro-SIM support, Wi-Fi, Bluetooth Low Energy, to a dedicated GPS with optional Dead Reckoning and 2x Fast Ethernet ports on rugged M12 connectors.

In addition, the DynaGATE 10-12 and DynaGATE 10-06 connectivity capabilities can be expanded through the ReliaCELL 10-20 family, that includes several 2G/3G/LTE global, rugged cellular modules certified by leading carriers. The DynaGATE 10-12 is also expandable with Eurotech ReliaLORA 10-12, a LoRa LPWAN Gateway unit, and the ReliaIO 10-12, a DAQ unit that provides analog inputs, more digital I/O interfaces and other functionalities.

The DynaGATE 10-12 and the DynaGATE 10-06 come with a genuine Oracle Java SE Embedded 8 Virtual Machine and Everyware Software Framework (ESF), a commercial, enterprise version of Eclipse Kura, the Java/OSGi edge computing platform for IoT gateways. Distributed and supported by Eurotech, ESF adds advanced security, diagnostics, provisioning, remote access and full integration with Everyware Cloud (EC), the Eurotech IoT integration platform (separately available).

Eurotech | www.eurotech.com

NXP and Alibaba Cloud Team up for IoT Deal

NXP Semiconductors has announced a strategic partnership with Alibaba Cloud, the cloud computing and business unit of Alibaba Group. The two companies are working together to enable development of secure smart devices for edge computing applications and have plans to further develop solutions for the IoT.

NXP_logo_RGB_webAs part of the partnership, AliOS Things, the Alibaba IoT operating system has been integrated onto NXP applications processors, microcontroller chips, and Layerscape multicore processors. Both NXP’s i.MX and Layerscape processors are currently the only embedded systems on the market using the Alibaba Cloud TEE OS platform. The new solution benefits various markets including automotive, smart retail and smart home. And it is currently being applied in applications such as automotive entertainment and infotainment systems, QR code payment scanning applications and smart home speakers.

With the partnership between NXP and Alibaba Cloud Link in the field of IoT security, NXP has become a council member of the ICA IoT Connectivity Alliance. In the future, the two companies plan to jointly develop solutions to support application development in different fields including smart manufacturing and smart city.

The ‘Annual Report of China IoT Development 2015-2016’ predicts that the amount of equipment connected to IoT globally will reach 20-50 billion by 2020, with 80 percent of that equipment in China. NXP’s robust product portfolio covers offering from the edge node to gateway and comprehensive cloud IoT solutions. NXP’s products are widely used in smart homes, smart cities, smart transportation and secure connectivity.

NXP Semiconductors | www.nxp.com

Microsoft IoT Central Gets Public Preview

Microsoft has launched the public preview of Microsoft IoT Central. The company clains Microsoft IoT Central is the first true highly scalable IoT software-as-a-service (SaaS) solution that offers built-in support for IoT best practices and world-class security. Microsoft IoT Central enables companies to build production-grade IoT applications in hours—without having to manage all the necessary back-end infrastructure or learn new skills.

14According to the company, Microsoft IoT Central takes the hassle out of creating an IoT solution by eliminating the complexities of initial setup as well as the management burden and operational overhead of a typical IoT project. That means users can bring their connected product vision to life faster while staying focused on their customers and products. The complete IoT solution lets users seamlessly scale from a few to millions of connected devices as IoT needs grow. Moreover, it removes guesswork thanks to simple and comprehensive pricing that makes it easier to plan IoT investments.

On the security front, Microsoft IoT Central leverages privacy standards and technologies to help ensure data is only accessible to the right people in an organization. With IoT privacy features such as role-based access and integration with Azure Active Directory permissions, users stay in control of their information. In the coming months, Microsoft IoT Central will also be able to integrate with customers’ existing business systems—such as Microsoft Dynamics 365, SAP and Salesforce.

Microsoft is also announcing the availability of Azure IoT Hub Device Provisioning Service. Azure IoT Hub Device Provisioning Service enables zero-touch device provisioning and configuration of millions of devices to Azure IoT Hub in a secure and scalable manner. Device Provisioning Service adds important capabilities that, together with Azure IoT Hub device management, help customers easily manage all stages of the IoT device lifecycle.

For a deeper look into the features of Microsoft IoT Central, go to its new website.

Mircosoft | www.microsoft.com

IoTSF Updates IoT Security Compliance Framework

The Internet of Things Security Foundation (IoTSF) announced today that it has updated its industry leading IoT Security Compliance Framework to Release 1.1. The Framework was created by security practitioners and aimed at product developers, manufacturers and supply chain managers. This release details 204 controls across 14 themes that businesses can use to ensure their consumer category products are IoT ready. A companion questionnaire is also supplied and provides a simple mechanism for documenting requirement responses.

Compliance-Framework-and-Questionnaire-1-1-1-400x400IoTSF also extended its best practice guidance for connected consumer products to include logging and software update policy as part of its review. The framework, questionnaire and best practice guidelines are available to download for free from the IoTSF website. Users are also invited to use the Best Practice User Mark to inform their public that they observe security best practices in their organizations.

Richard Marshall, IoTSF Executive Steering Board member, said “since we published the first version of the Framework it has been downloaded, used and referenced by a wide number of stakeholders. These updates build on the first release and further strengthen the security mechanisms that organizations need to provide. We’ve also added a companion questionnaire to assist businesses in their security risk assessments. As IoT covers a vast number of use cases, the Framework is written in a manner that makes it extensible, and we will add categories beyond its consumer based origins in future releases.”

John Moor, IoTSF Managing Director also commented that “the era of IoT is characterized by hyper-connectivity and software defined products. Ensuring fit for purpose security is recognized as a wicked challenge which requires many stakeholders, and more than technical solutions alone. We are encouraging all organizations that provide or use IoT-class technology to be proactive, and think about their duty of care to their customers and wider society. We’re here to help in that endeavor, and we’re delighted to announce these updates to our publications today. Further, we encourage industry to provide feedback so that we can ensure they are easy to use and stay relevant in the fast-paced world of connected and digital technology.”

The publications can be downloaded direct from the IoTSF website: www.iotsecurityfoundation.org/best-practice-guidelines

Internet of Things Security Foundation | www.iotsecurityfoundation.org

A Year in the Drone Age

Input Voltage

–Jeff Child, Editor-in-Chief

JeffHeadShot

When you’re trying to keep tabs on any young, fast-growing technology, it’s tempting to say “this is the big year” for that technology. Problem is that odds are the following year could be just as significant. Such is the case with commercial drones. Drone technology fascinates me partly because it represents one of the clearest examples of an application that wouldn’t exist without today’s level of chip integration driven by Moore’s law. That integration has enabled 4k HD video capture, image stabilization, new levels of autonomy and even highly compact supercomputing to fly aboard today’s commercial and consumer drones.

Beyond the technology side, drones make for a rich topic of discussion because of the many safety, privacy and regulatory issues surrounding them. And then there are the wide-open questions on what new applications will drones be used for?

For its part, the Federal Aviation Administration has had its hands full this year regarding drones. In the spring, for example, the FAA completed its fifth and final field evaluation of potential drone detection systems at Dallas/Fort Worth International Airport. The evaluation was the latest in a series of detection system evaluations that began in February 2016 at several airports. For the DFW test, the FAA teamed with Gryphon Sensors as its industry partner. The company’s drone detection technologies include radar, radio frequency and electro-optical systems. The FAA intends to use the information gathered during these kinds of evaluations to craft performance standards for any drone detection technology that may be deployed in or around U.S. airports.

In early summer, the FAA set up a new Aviation Rulemaking Committee tasked to help the agency create standards for remotely identifying and tracking unmanned aircraft during operations. The rulemaking committee will examine what technology is available or needs to be created to identify and track unmanned aircraft in flight.

This year as also saw vivid examples of the transformative role drones are playing. A perfect example was the role drones played in August during the flooding in Texas after Hurricane Harvey. In his keynote speech at this year’s InterDrone show, FAA Administrator Michael Huerta described how drones made an incredible impact. “After the floodwaters had inundated homes, businesses, roadways and industries, a wide variety of agencies sought FAA authorization to fly drones in airspace covered by Temporary Flight Restrictions,” said Huerta. “We recognized that we needed to move fast—faster than we have ever moved before. In most cases, we were able to approve individual operations within minutes of receiving a request.”

Huerta went on to described some of the ways drones were used. A railroad company used drones to survey damage to a rail line that cuts through Houston. Oil and energy companies flew drones to spot damage to their flooded infrastructure. Drones helped a fire department and county emergency management officials check for damage to roads, bridges, underpasses and water treatment plants that could require immediate repair. Meanwhile, cell tower companies flew them to assess damage to their towers and associated ground equipment and insurance companies began assessing damage to neighborhoods. In many of those situations, drones were able to conduct low-level operations more efficiently—and more safely—than could have been done with manned aircraft.

“I don’t think it’s an exaggeration to say that the hurricane response will be looked back upon as a landmark in the evolution of drone usage in this country,” said Huerta. “And I believe the drone industry itself deserves a lot of credit for enabling this to happen. That’s because the pace of innovation in the drone industry is like nothing we have seen before. If people can dream up a new use for drones, they’re transforming it into reality.”

Clearly, it’s been significant year for drone technology. And I’m excited for Circuit Cellar to go deeper with our drone embedded technology coverage in 2018. But I don’t think I’ll dare say that “this was the big year” for drones. I have a feeling it’s just one of many to come.

This appears in the December (329) issue of Circuit Cellar magazine

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

Hop on the Moving Train

Input Voltage

–Jeff Child, Editor-in-Chief

JeffHeadShot

We work pretty far in advance to get Circuit Cellar produced and in your hands on-time and at the level of quality you expect and deserve. Given that timing, as we go to press on this issue we’re getting into the early days of fall. In my 27 years in the technology magazine business, this part of the year has always included time set aside to finalize next year’s editorial calendar. The process for me over years has run the gamut from elaborate multi-day summer meetings to small one-on-one conversations with a handful of staff. But in every case, the purpose has never been only about choosing the monthly section topics. It’s also a deeper and broader discussion about “directions.” By that I mean the direction embedded systems technologies are going in—and how it’s impacting you our readers. Because these technologies change so rapidly, getting a handle on it is a bit like jumping onto a moving train.

A well thought out editorial calendar helps us plan out and select which article topics are most important—for both staff-written and contributed articles. And because we want to include all of the most insightful, in-depth stories we can, we will continue to include a mix of feature articles beyond the monthly calendar topics. Beyond its role for article planning, a magazine’s editorial calendar also makes a statement on what the magazine’s priorities are in terms of technology, application segments and product areas. In our case, it speaks to the kind of magazine that Circuit Cellar is—and what it isn’t.

An awareness of what types of product areas are critical to today’s developers is important. But because Circuit Cellar is not just a generic product magazine, we’re always looking at how various chips, boards and software solutions fit together in a systems context. This applies to our technology trend features as well as our detailed project-based articles that explore a microcontroller-based design in all its interesting detail. On the other hand, Circuit Cellar isn’t an academic style technical journal that’s divorced from any discussion of commercial products. In contrast, we embrace the commercial world enthusiastically. The deluge of new chip, board and software products often help inspire engineers to take a new direction in their system designs. New products serve as key milestones illustrating where technology is trending and at what rate of change.

Part of the discussion—for 2018 especially—is looking at how the definition of a “system” is changing. Driven by Moore’s Law, chip integration has shifted the level of system functionally at the IC, board and box level. We see an FPGA, SoC or microcontroller of today doing what used to require a whole embedded board. In turn, embedded boards can do what once required a box full of slot-card boards. Meanwhile, the high-speed interconnects between those new “system” blocks constantly have to keep those processing elements fed. The new levels of compute density, functionality and networking available today are opening up new options for embedded applications. Highly integrated FPGAs, comprehensive software development tools, high-speed fabric interconnects and turnkey box-level systems are just a few of the players in this story of embedded system evolution.

Finally, one of the most important new realities in embedded design is the emergence of intelligent systems. Using this term in a fairly broad sense, it’s basically now easier than ever to apply high-levels of embedded intelligence into any device or system. In some cases, this means adding a 32-bit MCU to an application that never used such technology. At the other extreme are full supercomputing-level AI technologies installed in a small drone or a vehicle. Such systems can meet immense throughput and processing requirements in space-constrained applications handling huge amounts of real-time incoming data. And at both those extremes, there’s connectivity to cloud-based computing analytics that exemplifies the cutting edge of the IoT. In fact, the IoT phenomenon is so important and opportunity rich that we plan to hit it from a variety of angles in 2018.

Those are the kinds of technology discussions that informed our creation of Circuit Cellar’s 2018 Ed Cal. Available now on www.circuitcellar.com, the structure of the calendar has been expanded for 2018 to ensure we cover all the critical embedded technology topics important to today’s engineering professional. Technology changes rapidly, so we invite you to hop on this moving train and ride along with us.

This appears in the November (328) issue of Circuit Cellar magazine

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

Embedded Analytics Firm Makes ‘Self-Aware Chip’ Push

UltraSoC has announced a significant global expansion to address the increasing demand for more sophisticated, ‘self-aware’ silicon chips in a range of electronic products, from lightweight sensors to the server farms that power the Internet. The company’s growth plans are centering on shifts in applications such as server optimization, the IoT, and UltraSoC_EmbeddedAnalyticsautomotive safety and security, all of which demand significant improvements in the intelligence embedded inside chips.

UltraSoC’s semiconductor intellectual property (SIP) simplifies development and provides valuable embedded analytic features for designers of SoCs (systems on chip). UltraSoC has developed its technology—originally designed as a chip development tool to help developers make better products—to now fulfill much wider, pressing needs in an array of applications: safety and security in the automotive industry, where the move towards autonomous vehicles is creating unprecedented change and risk; optimization in big data applications, from Internet search to data centers; and security for the Internet of Things.

These developments will be accelerated by the addition of a new facility in Bristol, UK, which will be home to an engineering and innovation team headed by Marcin Hlond, newly appointed as Director of System Engineering. Hlond will oversee UltraSoC’s embedded analytics and visualization products, and lead product development and innovation. He has over two decades of experience as system architect and developer, most recently at Blu Wireless, NVidia and Icera. He will focus on fulfilling customers’ needs for more capable analytics and rich information to enable more efficient development of SoCs, and to enhance the reliability and security of a broad range of electronic products. At the same time, the company will continue to expand engineering headcount at its headquarters in Cambridge, UK.

UltraSoC | www.ultrasoc.com

Fresenius Taps Eurotech Gear for Medical IoT Project

Eurotech announced that Fresenius Medical Care has chosen Eurotech’s IoT Gateways, IoT device middleware ESF and integration platform Everyware Cloud as the hardware and software building blocks for their IoT project to connect globally deployed medical everyware_server_M2M_clouddevices. Given the confidentiality agreements in force, no further financial details were disclosed. Fresenius Medical Care and Eurotech have been collaborating closely to integrate Eurotech’s IoT technologies with both Fresenius Medical Cares’ products on the field and Fresenius Medical Cares’ software applications on the IT side, with the goal of zero changes on both the products and the applications.

According to  Eurotech, the successful result is a solution that enables, in a very secure and effective way, to carry out technical services of Fresenius Medical Care medical devices installed in dialysis clinics worldwide. The challenges associated with the global deployment and servicing of intelligent medical devices are manifold and require the highest levels of flexibility when it comes to the software at the edge. A IoT architecture for distributed medical devices has to offer solid end-to-end security and has to provide local processing capabilities to enable functionality like access to technical data of medical devices and their configuration management. This is achieved by leveraging both ESF andEveryware Cloud in combination with Eurotech’s ReliaGATE Multi-service IoT Gateway.

The IoT device application framework ESF (Everyware Software Framework), speeds up the development and deployment of the specific application or business logic on the IoT edge device. ESF is a commercial, enterprise-ready edition of Eclipse Kura, the popular open source Java/ OSGi middleware for IoT multi-service gateways and smart devices.

Everyware Cloud, the IoT/M2M integration platform interfaces easily with existing enterprise IT infrastructures, offering simple access through standard APIs to real-time and historical data from devices. In addition, this IoT Integration Platform also enables effective remote device management as well as the device life cycle features that ensure a smooth deployment and management of these devices in the field. This IoT/M2M integration platform is also available for on-premises and private cloud deployment.

Eurotech | www.eurotech.com

Declaration of Embedded Independence

Input Voltage

–Jeff Child, Editor-in-Chief

JeffHeadShot

There’s no doubt that we’re living in an exciting era for embedded systems developers. Readers like you that design and develop embedded systems no longer have to compromise. Most of you probably remember when the processor or microcontroller you chose dictated both the development tools and embedded operating system (OS) you had to use. Today more than ever, there are all kinds of resources available to help you develop prototypes—everything from tools to chips to information resources on-line. There’s inexpensive computing modules available aimed at makers and DIY experts that are also useful for professional engineers working on high-volume end products.

The embedded operating systems market is one particular area where customers no longer have to compromise. That wasn’t always the case. Most people identify the late 90s with the dot.com bubble … and that bubble bursting. But closer to our industry was the embedded Linux start-up bubble. The embedded operating systems market began to see numerous start-ups appearing as “embedded Linux” companies. Since Linux is a free, open-source OS, these companies didn’t sell Linux, but rather provided services to help customers create and support implementations of open-source Linux. But, as often happens with disruptive technology, the establishment then pushed back. The establishment in that case were the commercial “non-open” embedded OS vendors. I recall a lot of great spirited debates at the time—both in print and live during panel discussions at industry trade shows—arguing for and against the very idea of embedded Linux. For my part, I can’t help remembering, having both written some of those articles and having sat on those panels myself.

Coinciding with the dot-com bubble bursting, the embedded Linux bubble burst as well. That’s not to say that embedded Linux lost any luster. It continued its upward rise, and remains an incredibly important technology today. Case in point: The Android OS is based on the Linux kernel. What burst was the bubble of embedded Linux start-up companies, from which only a handful of firms survived. What’s interesting is that all the major embedded OS companies shifted to a “let’s not beat them, let’s join them” approach to Linux. In other words, they now provide support for users to develop systems that use Linux alongside their commercial embedded operating systems.

The freedom not to have to compromise in your choices of tools, OSes and systems architectures—all that is a positive evolution for embedded system developers like you. But in my opinion, I think it’s possible to misinterpret the user-centric model and perhaps declare victory too soon. When you’re developing an embedded system aimed at a professional, commercial application, not everything can be done in DIY mode. There’s value in having the support of sophisticated technology vendors to help you develop and integrate your system. Today’s embedded systems routinely use millions of lines of code, and in most systems these days software running on a processor is what provides most of the functionality. If you develop that software in-house, you need high quality tools to makes sure it’s running error free. And if you out-source some of that embedded software, you have to be sure the vendor of that embedded software is providing a product you can rely on.

The situation is similar on the embedded board-level computing side. Yes, there’s a huge crop of low-cost embedded computer modules available to purchase these days. But not all embedded computing modules are created equal. If you’re developing a system with a long shelf life, what happens when the DRAMs, processors or I/O chips go end-of-life? Is it your problem? Or does the board vendor take on that burden? Have the boards been tested for vibration or temperature so that they can be used in the environment your application requires? You have to weigh the costs versus the kinds of support a vendor provides.

All in all, the trend toward a ”no compromises” situation for embedded systems developers is a huge win. But when you get beyond the DIY project level of development, it’s important to keep in mind that the vendor-customer relationship is still a critical part of the system design process. With all that in mind, it’s cool that we can today make a declaration of independence for embedded systems technology. But I’d rather think of it as a declaration of interdependence.

This appears in the October (327) issue of Circuit Cellar magazine

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today: