Compact Power Regulator Targets FPGAs, GPUs and ASICs

Analog Devices has announced the Power by Linear LTM4646, a dual 10 A or single 20 A output, step-down µModule point-of-load regulator from 5V or 12V input supply rails. The LTM4646 includes the inductors, MOSFETs, a DC/DC controller and supporting components and is housed in a 11.25 mm x 15 mm x 5.01 mm BGA package. Compared to the prior 2 x single 10 A output module solutions, the LTM4646 reduces the solution size of more than 25%.
With its dual regulator design, small package size, and precise voltage regulation, the LTM4646 meets the PCB area constraints of densely populated system boards to power low voltage and high current devices such as FPGAs, ASICs, microprocessors and GPUs. Applications include PCIe boards, communication infrastructure, cloud computing-based systems, as well as medical, industrial, and test and measurement equipment.

Total output voltage DC accuracy is guaranteed at ±1.5% over line, load and temperature (–40°C to 125°C). Moreover, the onboard remote sense amplifiers on both outputs compensate for voltage drop caused by trace impedance of the PC board due to large load currents. The LTM4646 has selectable internal or external feedback loop compensation, enabling users to optimize loop stability and transient performance while minimizing the number of output capacitors. The peak efficiency at 12 VIN to 1.0 VOUT is 86%. With 200LFM air flow, the LTM4646 delivers a full 20A  continuously up to 85°C ambient. The current mode architecture allows multiphase parallel operation to increase output current with very good current sharing.

Standalone, the LTM4646 operates from 4.5 V to 20 V input range. When 5 V external bias is available, the device can operate from 2.375 V. The output voltages are adjustable from 0.6 V to 5.5 V, enabling the device to generate not only low voltage for digital devices but also 2.5 V, 3.3 V and  5V, which are commonly needed in system bus voltages. The switching frequency can be programmed from 250 kHz to 1.3 MHz with one resistor, and can also be synchronized to an external clock ranging from 300 kHz to 1 MHz for noise-sensitive applications. Additionally, it features overvoltage and overcurrent protection. The LTM4646 operates from –40°C to 125°C.

Summary of Features: LTM4646

  •     Dual 10A or Single 20A Output
  •     Wide Input Voltage Range: 4.5V to 20V
  •     2.375VMIN with CPWR Bias
  •     Output Voltage Range: 0.6V to 5.5V
  •     ±1.5% Maximum Total DC Output Error
  •     Multiphase Current Sharing
  •     Differential Remote Sense Amplifier, Each Channel
  •     Internal or External Compensation
  •     11.25mm x 15mm x 5.01mm BGA Package
  •     BGA Ball Finishes Available: SAC305 (RoHS), SnPb (63/37)

 

Linear Technology | www.linear.com

30 A Encapsulated Digital Power Modules

Renesas Electronics has announced two new fully encapsulated digital DC/DC PMBus power modules that board high power density and efficiency. The dual ISL8274M operates from a 5 V or 12 V power rail, provides two 30 A outputs and up to 95.5% peak efficiency in a compact 18 mm x 23 mm2 footprint. The new ZL9024M operates from a 3.3V rail and outputs 33 A of power in a 17 mm x19 mm2 footprint. They deliver point-of-load (POL) conversions for advanced FPGAs, DSPs, ASICs and memory used in servers, telecom, datacom, optical networking and storage equipment. Both devices are easy-to-use, PMBus-configurable power supplies that include a controller, MOSFETs, inductor and passives encapsulated inside a module that increases available board space and reduces bill of materials (BOM).

The ISL8274M and ZL9024M digital power modules leverage Renesas’ patented ChargeMode control architecture, which provides the highest efficiencies with better than 90% on most conversions. The power modules also provide a single clock cycle fast transient response to output current load steps common in FPGAs and DSPs that process power bursts. Their compensation-free design keeps the modules stable regardless of output capacitor changes due to temperature, variation or aging. Eliminating the need for an external discrete compensation network also saves board space and additional BOM cost. The ISL8274M supports input voltages from 4.5 V to 1 4V, while the ZL9024M accepts input voltages from 2.75 V to 4 V. Both modules offer adjustable output voltages as low as 0.6 V.

The encapsulated modules use Renesas’ proprietary High Density Array (HDA) package, which offers unmatched electrical and thermal performance through a single-layer conductive substrate that reduces lead inductance and dissipates heat primarily through the system board. The HDA’s copper lead-frame structure allows the modules to operate at full load over a wide temperature range with no airflow or heatsinks. The ISL8274M and ZL9024M also provide several protection features that ensure safe operations under abnormal operating conditions, further enhancing their robustness and reliability.

Key Features of the ISL8274M Digital Power Module include:

  • 30 A dual digital switch mode power supply with input voltage range from 4.5 V to 14 V and programmable Vout from 0.6 V to 5 V
  • PMBus-enabled solution for full system configuration, telemetry and monitoring of all conversions and operating parameters
  • Programmable Vout, soft-start, soft-stop, sequencing, margining and under-voltage, over-voltage, under-current, over-current, under temperature and over-temperature
  • Monitors Vin, Vout, Iout, temperature, duty cycle, switching frequency, and faults
  • Power good indicator, and ±1.2% Vout accuracy over line, load, and temperature
  • Pin-strap mode using external resistors for standard settings
  • Internal nonvolatile memory saves module configuration parameters and fault logging

Key Features of the ZL9024M Digital Power Module include:

  • 33 A digital switch mode power supply with input voltage range from 2.75 V to 4 V and programmable Vout from 0.6 V to 1.5 V
  • PMBus-enabled solution for full system configuration, telemetry and monitoring of all conversions and operating parameters
  • Programmable Vout, soft-start, soft-stop, sequencing, margining and under-voltage, over-voltage, under-current, over-current, under temperature and over-temperature
  • Monitors Vin, Vout, Iout, temperature, duty cycle, switching frequency and faults
  • Power good indicator, and ±1.2% Vout accuracy over line, load, and temperature
  • Pin-strap mode using external resistors for standard settings
  • Internal nonvolatile memory saves module configuration parameters and fault logging

 

The ISL8274M is available now in a thermally enhanced 18 mm x 23 mm x 7.5 mm HDA package, and is priced at $39 (1,000). An ISL8274MEVAL1Z evaluation board is available for $150.

The ZL9024M is available now in a thermally enhanced 17 mm x 19 mm x 3.5 mm HDA package, and is priced at $29 (1,000s). The ZL9024MEVAL1Z evaluation board is available for $95.

Renesas Electronics | www.renesas.com

January Circuit Cellar: Sneak Preview

The January issue of Circuit Cellar magazine is coming soon. And it’s got a robust selection of embedded electronics articles for you. Here’s a sneak peak.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of January 2018 Circuit Cellar:

 

                                     IMPROVING EMBEDDED SYSTEM DESIGNS

Special Feature: Powering Commercial Drones
The amount of power a commercial drone can draw on has a direct effect on how long it can stay flying as well as on what tasks it can perform. Circuit Cellar Chief Editor Jeff Child examines solar cells, fuel cells and other technology options for powering commercial drones.

CC 330 CoverFPGA Design: A Fresh Take
Although FPGAs are well established technology, many embedded systems developers—particularly those used the microcontroller realm—have never used them before. In this article, Faiz Rahman takes a fresh look a FPGAs for those new to designing them into their embedded systems.

Product Focus: COM Express boards
COM Express boards provide a complete computing core that can be upgraded when needed, leaving the application-specific I/O on the baseboard. This brand new Product Focus section updates readers on this technology and provides a product album of representative COM Express products.

TESTING, TESTING, 1, 2, 3

LF Resonator Filter
In Ed Nisley’s November column he described how an Arduino-based tester automatically measures a resonator’s frequency response to produce data defining its electrical parameters. This time he examines the resultsand explains a tester modification to measure the resonator’s response with a variable series capacitance.

Technology Spotlight: 5G Technology and Testing
The technologies that are enabling 5G communications are creating new challenges for embedded system developers. Circuit Cellar Chief Editor Jeff Child explores the latest digital and analog ICs aimed at 5G and at the test equipment designed to work with 5G technology.

                                     MICROCONTROLLERS IN EVERYTHING

MCU-based Platform Stabilizer
Using an Inertial Measurement Unit (IMU), two 180-degree rotation servos and a Microchip PCI MCU, three Cornell students implemented a microcontroller-based platform stabilizer. Learn how they used a pre-programmed sensor fusion algorithm and I2C to get the most out of their design.

Designing a Home Cleaning Robot (Part 2)
Continuing on with this four-part article series about building a home cleaning robot, Nishant Mittal this time discusses the mechanical aspect of the design. The robot is based on Cypress Semiconductor’s PSoC microcontroller.

Massage Vest Uses PIC32 MCU
Microcontrollers are being used for all kinds of things these days. Learn how three Cornell graduates designed a low-cost massage vest that pairs seamlessly with a custom iOS app. Using the Microchip PIC32 for its brains, the massage vest has sixteen vibration motors that the user can control to create the best massage possible.

AND MORE FROM OUR EXPERT COLUMNISTS:

Five Fault Injection Attacks
Colin O’Flynn returns to the topic of fault injection security attacks. To kick off 2018, he summarizes information about five different fault injection attack stories from 2017—attacks you should be thinking about as an embedded designer.

Money Sorting Machines (Part 2)
In part 1, Jeff Bachiochi delved into the interesting world of money sort machines and their evolution. In part 2, he discusses more details about his coin sorting project. He then looks at a typical bill validator implementation used in vending systems.

Overstress Protection
Last month George Novacek reviewed the causes and results of electrical overstress (EOS). Picking up where that left off, in this article he looks at how to prevent EOS/ESD induced damage—starting with choosing properly rated components.

December Circuit Cellar: A Sneak Preview

The December issue of Circuit Cellar magazine is coming soon. Want a sneak peak? We’ve got a great selection of excellent embedded electronics articles for you.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 Here’s a sneak preview of December Circuit Cellar:

MICROCONTROLLERS IN MOTION

Special Feature: Electronics for Wearable Devices
Circuit Cellar Chief Editor Jeff Child examines how today’s microcontrollers, sensors and power electronics enable today’s wearable products.

329 Cover Screen CapSimulating a Hammond Tonewheel Organ
(Part 2)

Brian Millier continues this two-part series about simulating the Hammond tonewheel organ using a microcontrollers and DACs. This time he examines a Leslie speaker emulation.

Money Sorting Machines (Part 1)
In this new article series, Jeff Bachiochi looks the science, mechanics and electronics that are key to sorting everything from coins to paper money. This month he discusses a project that uses microcontroller technology to sort coins.

Designing a Home Cleaning Robot (Part 1)
This four-part article series about building a home cleaning robot starts with Nishant Mittal discussing his motivations behind to his design concept, some market analysis and the materials needed.

SPECIAL SECTION: GRAPHICS AND VISION

Designing High Performance GUI
It’s critical to understand the types of performance problems a typical end-user might encounter and the performance metrics relevant to user interface (UI) design. Phil Brumby of Mentor’s Embedded Systems Division examines these and other important UI design challenges.

Building a Robotic Candy Sorter
Learn how a pair of Cornell graduates designed and constructed a robotic candy sort. It includes a three degree of freedom robot arm and a vision system using a Microchip PIC32 and Raspberry Pi module.

Raster Laser Projector Uses FPGA
Two Cornell graduates describe a raster laser projector they designed that’s able to project images in 320 x 240 in monochrome red. The laser’s brightness and mirrors positions are controlled by an FPGA and analog circuitry.

ELECTRICITY UNDER CONTROL

Technology Spotlight: Power-over-Ethernet Solutions
Power-over-Ethernet (PoE) enables the delivery of electric power alongside data on twisted pair Ethernet cabling. Chief Editor Jeff Child explores the latest chips, modules and other gear for building PoE systems.

Component Overstress
When an electronic component starts to work improperly, Two likely culprits are electrical overstress (EOS) and electrostatic discharge (ESD). In his article, George Novacek breaks down the important differences between the two and how to avoid their effects.

AND MORE FROM OUR EXPERT COLUMNISTS:

Writing the Proposal
In this conclusion to his “Building an Embedded Systems Consulting Company” article series, Bob Japenga takes a detailed look at how to craft a Statement of Work (SOW) that will lead to success and provide clarity for all stakeholders.

Information Theory in a Nutshell
Claude Shannon is credited as one of the pioneers of computer science thanks to his work on Information Theory, informing how data flows in electronic systems. In this article, Robert Lacoste provides a useful exploration of Information Theory in an easily digestible way.

Microsoft Real-time AI Project Leverages FPGAs

At Hot Chips 2017 Microsoft unveiled a new deep learning acceleration platform, codenamed Project Brainwave. The system performs real-time AI. Real-time here means the system processes requests as fast as it receives them, with ultra-low latency. Real-time AI is becoming increasingly important as cloud infrastructures process live data streams, whether they be search queries, videos, sensor streams, or interactions with users.

Hot-Chips-Stratix-10-board-1-

 

The Project Brainwave system is built with three main layers: a high-performance, distributed system architecture; a hardware DNN engine synthesized onto FPGAs; and a compiler and runtime for low-friction deployment of trained models. Project Brainwave leverages the massive FPGA infrastructure that Microsoft has been deploying over the past few years. By attaching high-performance FPGAs directly to Microsoft’s datacenter network, they can serve DNNs as hardware microservices, where a DNN can be mapped to a pool of remote FPGAs and called by a server with no software in the loop. This system architecture both reduces latency, since the CPU does not need to process incoming requests, and allows very high throughput, with the FPGA processing requests as fast as the network can stream them.

Project Brainwave uses a powerful “soft” DNN processing unit (or DPU), synthesized onto commercially available FPGAs.  A number of companies—both large companies and a slew of startups—are building hardened DPUs.  Although some of these chips have high peak performance, they must choose their operators and data types at design time, which limits their flexibility.  Project Brainwave takes a different approach, providing a design that scales across a range of data types, with the desired data type being a synthesis-time decision. The design combines both the ASIC digital signal processing blocks on the FPGAs and the synthesizable logic to provide a greater and more optimized number of functional units.  This approach exploits the FPGA’s flexibility in two ways.  First, the developers have defined highly customized, narrow-precision data types that increase performance without real losses in model accuracy.  Second, they can incorporate research innovations into the hardware platform quickly (typically a few weeks), which is essential in this fast-moving space.  As a result, the Microsoft team achieved performance comparable to – or greater than – many of these hard-coded DPU chips but are delivering the promised performance today. At Hot Chips, Project Brainwave was demonstrated using Intel’s new 14 nm Stratix 10 FPGA.

Project Brainwave incorporates a software stack designed to support the wide range of popular deep learning frameworks. They support Microsoft Cognitive Toolkit and Google’s Tensorflow, and plan to support many others. They have defined a graph-based intermediate representation, to which they convert models trained in the popular frameworks, and then compile down to their high-performance infrastructure.

Microsoft | www.microsoft.com

Don’t Miss Our Bonus Newsletter: FPGA Technologies

As you know, Circuit Cellar’s newsletter covers four key themes each month. But August is a special month with a 5th Tuesday! As result, tomorrow coming to your inbox with be a special bonus newsletter theme: FPGA Technologies. In tomorrow’s newsletter you’ll get news about the products and technologies trends in the FPGA market. FPGAs have sv_gs_diagramevolved to become complete system chips. Today’s FPGAs pack in levels of processing, I/O and memory on one chip that once required several ICs or boards.

Also: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your “FPGA Technology” themed newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Remember, our new enhanced weekly CC Newsletter will switch its theme each week, so look for these in upcoming weeks:

Analog & Power. This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op-amps, batteries, and more.

Microcontroller Watch. This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

IoT Technology Focus. The Internet-of-Things (IoT) phenomenon is rich with opportunity. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Embedded Boards. Embedded boards are critical building blocks around which system developers can build all manor of intelligent systems. The focus here is on both standard and non-standard embedded computer boards.