Xilinx Provides Design Platform for Scalable Storage

At the Flash Memory Summit earlier this month in Santa Clara, CA, leading FPGA vendor Xilinx rolled out the Xilinx NVMe-over-Fabrics reference design. It provides designers a flexible platform to enable scalable storage solutions and integrate custom acceleration functions into their storage arrays. The reference design eliminates the need for a dedicated x86 processor or an external NIC, thus creating a highly integrated, reliable and cost-effective solution. The NVMe-over-Fabrics (NVM-oF) reference platform is implemented on the Fidus Sidewinder card which supports up to 4 NVMe SSDs, and has a Xilinx ZU19EG Ultrascale+ MPSoC device. The reference platform is delivered with the required software drivers.

The Xilinx NVMe-over-Fabric Platform is a single-chip storage solution that integrates NVMe-over-Fabric and target RDMA offloads with a processing subsystem to provide a very power-efficient and low-latency solution compared to existing products that require both an external host chip and a Network Interface Card (NIC). This 2x100Gb Ethernet platform enables customers to implement value-added storage workload acceleration, such as compression and erasure code.

Xilinx | www.xilinx.com

Cypress MCUs Selected for Toyota Camry Instrument Cluster

Cypress Semiconductor has announced that global automotive supplier DENSO has selected Cypress’ Traveo automotive microcontroller (MCU) family and FL-S Serial NOR Flash memory family to drive the advanced graphics in its instrument cluster for the 2017 Toyota Camry. The DENSO instrument cluster uses Traveo devices that Cypress says were the industry’s first 3D-capable ARM Cortex-R5 cluster MCUs.

Denso Instrument Cluster

The FL-S memory in the cluster is based on Cypress’ proprietary MirrorBit NOR Flash process technology, which enables high density serial NOR Flash memory by storing two bits per cell. The DENSO instrument cluster has 4.2- and 7.0-inch screens capable of audio, video and navigation in the center display of the 2017 Toyota Camry.

Cypress works with the world’s top automotive companies to support automotive systems including Advanced Driver Assistance Systems (ADAS), 3-D graphics displays, wireless connectivity, full-featured touchscreens and superior body electronics. Cypress’ automotive portfolio includes the Traveo MCU family, power-management ICs (PMICs), PSoC programmable system-on-chip solutions, CapSense capacitive-sensing solutions, TrueTouch touchscreens, NOR flash, F-RAM and SRAM memories, and USB, Wi-Fi and Bluetooth connectivity solutions. The portfolio is backed by Cypress’ commitment to zero defects, excellent service and adherence to the most stringent industry standards, such as the ISO/TS 16949 quality management system, the Automotive Electronics Council (AEC) guidelines for ICs and the Production Part Approval Process (PPAP).

Cypress Semiconductor | www.cypress.com

New SLC NAND Flash Memory Family for High-Security Apps

Cypress Semiconductor Corp. recently announced a high-endurance, 1-to-4-Gb Single-Level Cell (SLC) SecureNAND family that reduces system costs and improves system security. It does this by providing a single nonvolatile memory with integrated block protection features for a variety of high-security applications, such as point-of-sale systems and wearables.Cypress SecureNAND

The SecureNAND family includes 1-Gb S34SL01G2, 2-Gb S34SL02G2, and 4-Gb S34SL04G2 devices. You can configure each device with nonvolatile block protection to store protected boot code, system firmware, and applications. They provide 100,000 program/erase cycles to ensure more than five years of system life. Their operating voltage range is 2.7  to 3.6 V and they support the industrial temperature range of –40° to 85°C.

The currently sampling 1-Gb S34SL01G2, 2-Gb S34SL02G2, and 4-Gb S34SL04G2 SecureNAND devices are available in a 63-BGA package.

Source: Cypress Semiconductor

Dynamic Efficiency Microcontrollers

STMicroThe STM32F401 Dynamic Efficiency microcontrollers extend battery life and support innovative new features in mobile phones, tablets, and smart watches. They help manage MEMS sensors in smart-connected devices and are well suited for Internet-of-Things (IoT) applications and fieldbus-powered industrial equipment.

The STM32F401 microcontrollers include an ART accelerator, a prefetch queue, and a branch cache. This enables zero-wait-state execution from flash, which boosts performance to 105 DMIPS (285 CoreMark) at 84 MHz. The microcontrollers’ 90-nm process technology boosts performance and reduces dynamic power. Its dynamic voltage scaling optimizes the operating voltage to meet performance demands and minimize leakage.

The STM32F401 microcontrollers integrate up to 512 KB of flash and 96 KB SRAM in a 3.06-mm × 3.06-mm chip-scale package and feature a 9-µA at 1.8 V Stop mode current. The devices’ peripherals include three 1-Mbps I2C ports, three USARTs, four SPI ports, two full-duplex I2S audio interfaces, a USB 2.0 OTG full-speed interface, an SDIO interface, 12-bit 2.4-MSPS 16-channel ADC, and up to 10 timers.

Pricing for the STM32F401 microcontrollers starts at $2.88 in 10,000-unit quantities.


TRACE32 Now Supports Xilinx MicroBlaze 8.50.C

LauterbachThe TRACE32 modular hardware and software supports up to 350 different CPUs. The microprocessor development tools now support the latest version of Xilinx’s MicroBlaze 8.50.c, which is a soft processor core designed for Xilinx FPGAs. The MicroBlaze core is included with Xilinx’s Vivado Design Edition and IDS Embedded Edition.

The TRACE32 tools have supported MicroBlaze for many years by providing efficient and user-friendly debugging at the C or C++ level using the on-chip JTAG interface. This interface also provides code download, flash programming, and quick access to all internal chip peripherals and registers.
Contact Lauterbach for pricing.

Lauterbach GmbH

Xilinx, Inc.