High-Performance MCUs Serve IoT Device Needs

STMicroelectronics has added two new lines to its STM32 MCU family, the STM32F7x0 and H7x0 Value Line. The MCUs are aimed at enabling system designers to create affordable performance-oriented systems including real-time IoT devices, without compromising features or cyber protection.

These new lines trim embedded flash to the essential, still allowing secure boot, sensitive code and real-time routines to run safely on-chip, leveraging access times over 25 times faster than for external Flash (for cache miss). If needed, applications can scale-up either by adding off-chip serial or parallel (up to 32-bit) memories and leveraging the MCUs’ broad external interfaces and eXecute in Place (XiP) capability, or by porting to other pin-to-pin compatible STM32F7 or STM32H7 MCU lines, with up to 2 MB Flash and up to 1 MB RAM, supported by the same ecosystem with the same easy-to-use tools.

The Value Lines retain powerful STM32F7 and H7 features, such as the state-of-the-art peripherals, hardware accelerators, and the real-time architecture with ultra-fast internal buses, short interrupt latency, and fast (approximately 1 ms) boot-up. The MCUs are also energy efficient, with flexible power modes, gated power domains, and on-chip power management that simplify design and reduce BOM cost.

With execution performance up to 2020 CoreMark at the heart of a secure and power-efficient architecture, the new Value Line devices are the entry point to IoT innovation in medical, industrial, and consumer applications. CoreMark is the EEMBC standardized benchmark for embedded-CPU performance. With up to 125°C as the maximum junction temperature, developers can leverage the full core and peripherals performance even when ambient temperature increases.

The entry-level STM32F730 delivers 1082 CoreMark performance running at 216MHz aided by ST’s unique ART Accelerator for zero-wait-state execution from Flash. Features include cryptographic hardware acceleration, a USB 2.0 High Speed port with PHY, and a CAN interface. There is a 64Kbyte Flash, 8KByte Instruction and data caches for high-performance execution from internal or external memories, 256KB of system RAM and 16 KB plus 64 KB of Tightly Coupled Memory (TCM) for the most critical routines and data.

The STM32F750 adds a TFT-LCD controller with ST’s proprietary Chrom-ART Graphics Accelerator. It has hardware acceleration for hash algorithms, two CAN interfaces, an Ethernet MAC, camera interface, and two USB 2.0 interfaces with Full Speed PHY. There are 64Kbytes of Flash, 4Kbyte instruction and 4 KB data caches, 320 KB of system RAM and 16 KB plus 64 KB TCM.

The high-end STM32H750 delivers 2020 CoreMark performance at 400 MHz and adds a hardware JPEG coder/decoder to the TFT controller and Chrom-ART Accelerator for even faster GUI performance. There is also a CANFD port and additional CANFD with time-trigger capability and best-in-class operational amplifiers and 16-bit ADCs running at up to 3.6 Msample/s. The 128 KB flash, 16 KB instruction and data caches, 864 KB system RAM and the 64 KB+128 KB of TCM all feature ECC (Error Correction Code) for safe execution from internal or external memory.

The STM32F730, STM32F750, and STM32H750 Value Line MCUs are in production, in various LQFP and BGA package options from 64-pin to 240-pin. Prices start from $1.64 for the STM32F730, $2.39 for the STM32F750 and $2.69 for the STM32H750 for orders of 1,000 pieces.

STMicroelectronics | www.st.com

MCU-Based Blood Pressure Monitoring Eval Kit

Renesas Electronics has announced an expansion of its healthcare solution lineup with the launch of a new blood pressure monitoring evaluation kit. The new blood pressure monitoring evaluation kit comprises hardware and software elements needed to jump start blood pressure measurement design. The kit includes a pressure sensor, arm cuff, pump, electronically controlled valve, LCD panel and a reference board. The reference board incorporates an RL78 MCU-based ASSP (application specific standard product) that includes analog functions required for blood pressure measurement. Reference software and graphical user interface (GUI) development tool are also part of the new evaluation kit. Using the new evaluation kit, system manufacturers can immediately begin their system evaluations and significantly reduce their development time.


The Internet of Things offers consumers connected tools with which to manage their personal healthcare more efficiently. For instance, blood pressure monitors are already popular personal medical devices and the market is expected to grow further as blood pressure monitoring functions are incorporated into wearable devices. The growth of this market offers new business opportunities, but can also be challenging, particularly for system manufacturers who are new to the connected healthcare device ecosystem and may not have the built-in application-specific expertise. Blood pressure measurement requires a specific expertise, including filtering functions for extracting the waveforms required for measurement, making it extremely time consuming to start studying this area from the very beginning.

Renesas has developed the new blood pressure monitoring evaluation kit to alleviate the development pain points, providing functions close to those used in actual blood pressure monitors thus accelerating blood pressure measurement system development.

Key features of the blood pressure monitoring evaluation kit:

The new blood pressure monitoring evaluation kit comprises hardware and software elements needed to jump start blood pressure measurement design, including:

  • A full range of hardware components, including a pressure sensor, arm cuff, pump, electronically controlled valve, LCD panel, and a reference board that incorporates the newly-developed RL78/H1D ASSP with the analog functions required for blood pressure measurement.
  • Reference software that provides the algorithms required for blood pressure measurement and that can be easily modified, as well as access to smartphone applications, and a graphical user interface (GUI) tool.
  • A Bluetooth Low Energy (BLE) module, which enables the measured data to be transmitted to a smartphone under the Continua standard blood pressure monitoring (BPM) profile is also provided in the new evaluation kit.

Development support with GUI tool, specialized for blood pressure measurement

  • The pressure sensor, pump, electronically controlled valve components, and pulse width modulation control can be set from the GUI tool. If the system structure is the same, the GUI tool can also be used for system evaluation of the actual application the system manufacturer is developing.
  • The IIR digital filter calculations required for extracting the pulse waveform from the cuff pressure output waveform during blood pressure measurement can also be simulated using the GUI tool. The digital filter constants calculated based on this simulation can be written from the GUI tool to the RL78/H1D firmware and verified in the actual application being developed. This significantly reduces the number of steps in the development process.

RL78/H1D ASSP with optimized analog functions for healthcare applications

  • The RL78/H1D is a new ASSP of the RL78 Family of MCU. The RL78/H1D, designed to control systems required for blood pressure measurement with a single chip. It incorporates rich analog functions including high-resolution delta sigma A/D converters, programmable gain instrumentation amplifiers, D/A converters, operational amplifiers, and other circuits required for blood pressure measurement, as well as timers for PWM (pulse-width modulation) control.
  • In addition to the delta sigma 24-bit A/D converters, the RL78/H1D also provides 10-bit sequential comparison A/D converters that operate asynchronously. This simplifies implementation of systems providing temperature measurement and battery voltage monitoring while measuring the blood pressure.
  • The Rich analog functions make the new ASSP ideal not only for blood pressure monitoring systems but also for a wide array healthcare application including biosensors.
  • Samples of the RL78/H1D ASSP are available now. Pricing varies depending on the memory capacity, package and number of pins. For example, the R5F11NMG 80-pin LQFP package type with 128 KB flash ROM capacity is priced at US$3.50. The R5F11NMG includes an LCD controller for arm- and wrist-type blood pressure monitors, and a 4mm x 4 mm miniature ball grid array (BGA) package for use in wearable devices.

Renesas plans to expand its range of solutions for the healthcare field and will continue to contribute to the realization of a safe and secure smart society, including the development of smart connected devices for the industrial and healthcare industries.

 

The new blood pressure monitoring evaluation kit is scheduled to be available for order from May 10 priced at $600 per unit.

Renesas Electronics | www.renesas.com

SST and UMC Qualify Flash Tech on 40-nm Process

Microchip Technology subsidiary Silicon Storage Technology (SST) and United Microelectronics Corporation (UMC) have announced the full qualification and availability of SST’s embedded SuperFlash non-volatile memory on UMC’s 40 nm CMOS platform. The 40-nm process features a more than 20 percent reduction in embedded Flash cell size and a 20- to 30-percent reduction in macro area over their 55-nm process.
The high endurance of embedded SuperFlash IP offers System on a Chip (SoC) customers extensive reliability and design flexibility combined with reduced power usage. SST’s SuperFlash non-volatile memory technology is qualified for a minimum of 100,000 cycles, underscoring the technology’s reliability. Ideal for edge computing in IoT devices, SST embedded SuperFlash technology features power benefits that derive from low-power standby and read operations, with core supply as low as 0.81 V. SuperFlash also secures applications with code maintained on chip, which is the first step in preventing illegal access through hardware and software attacks.

 

SST’s SuperFlash technology complements UMC’s embedded memory portfolio with high density and low-power IP. Combined with SST’s inherent technology reliability, UMC’s flexible capacity and high-yield maturity for its 55 nm and 40 nm platform provides foundry customers the manufacturing support needed to build a range of product applications.

To date, more than 80 billion units have shipped with SST’s embedded SuperFlash technology. SuperFlash technology is based on a proprietary split-gate Flash memory cell with the following capabilities:

  • Low-power program, erase and read operations
  • High performance with fast read access
  • Good scalability from 1 µm technology node to 28 nm technology node
  • High endurance cycling up to 500,000 cycles
  • Excellent data retention of over 20 years
  • Good performance at high temperature for automotive-grade applications
  • Immunity to Stress-Induced Leakage Current (SILC)

Microchip Technology | www.microchip.com

Silicon Storage Technology | www.sst.com

On-Chip Flash MCU Uses 28 nm Process Technology

Renesas Electronics has announced the sample shipment of the industry’s first on-chip flash memory microcontroller using a 28 nm process technology. To contribute to the realization of next-generation green cars and autonomous vehicles with higher efficiency and higher reliability, the RH850/E2x Series MCU incorporates up to six 400 MHz CPU cores. According to Renesas, that makes it the first on-chip flash memory automotive MCU to achieve processing performance of 9600 MIPS. The new MCU series also features a built-in flash memory of up to 16 MB as well as enhanced security functions and functional safety.

Under Renesas Autonomy, an open, innovative and trusted platform for assisted and automated driving, Renesas provides end-to-end solutions that advance the evolution of vehicles towards next-generation green cars, connected cars and autonomous-driving vehicles. There are two main pillars of the Renesas Autonomy Platform. One is this new 28 nm automotive control MCU. And the other is the R-Car Family of SoCs designed for cloud connectivity and sensing.
Car OEMs and Tier 1 manufacturers, such as Denso, have already started to adopt the new 28 nm MCU. Reasons cited include the MCU’s superior processing performance capable of developing next-generation fuel-efficient engines, as well as its scalability. Scalability is important because of the expected electronic control unit (ECU) integration to come from changes in automotive electrics/electronics (E/E) architecture.

Following the development of the 28 nm embedded flash memory in February 2015, Renesas announced its collaboration with TSMC on 28nm MCUs in September 2016. The company today hit a major milestone by reaching sample shipment of the world’s first 28nm embedded flash memory MCU on the market. Renesas has already succeeded in verifying large-scale operation of fin-structure MONOS flash memory targeting 16/14nm and beyond generations of MCUs. As the leading supplier of automotive semiconductor solutions, Renesas is committed to advancing the industry through continued technological innovation to achieve a safe and secure automotive society.

To assure scalability in the RH850/E2x Series, in addition to the 28 nm flash memory MCU, Renesas has also launched a 40 nm process MCU. Samples of this MCU are available now. Samples of both 28 nm and 40 nm MCUs from RH850/E2x are  available.

Renesas Electronics | www.renesas.com

BLE ICs Boast -105 dBm Sensitivity

Toshiba Electronic Devices & Storage has added two new devices to its lineup of ICs that are compliant with the Bluetooth low energy standard. The new TC35680FSG (featuring built-in flash memory) and TC35681FSG are well-suited to applications requiring long-range communication, including beacon tags, IoT devices and industrial equipment. Sample shipments will begin later this month.

The new communication ICs support the full spectrum of data rates required for the high-speed features—2M PHY and Coded PHY (500 kbps and 125 kbps)—found in the Bluetooth 5.0 standard. The new devices also deliver an industry-leading receiver sensitivity level of -105 dBm (at125k bps ) and a built-in high efficiency power amplifier in the transmission block that provides up to +8 dBm transmission power.

Bluetooth technology continues to evolve to meet wireless connectivity needs, and recent enhancements to the standard have been designed to increase Bluetooth’s functionality with the IoT. By adding Bluetooth 5.0-compliant ICs to its extensive lineup, Toshiba helps companies integrate Bluetooth low energy products into IoT devices and addresses the growing demand for high-throughput, long-range communications.

Based on an ARM Cortex-M0 processor, the new ICs incorporate a 256 KB Mask ROM to support the Bluetooth baseband process, and 144 KB of RAM for processing Bluetooth baseband, stack and data. Toshiba’s TC35680FSG and TC35681FSG also feature 18-port GPIOs as interfaces, which can be set to 2 channels each for SPIs, I2C, and UART. This allows for the structuring of systems that connect to various peripheral devices. These GPIOs can be set for a wakeup function, 4-channel PWM, 5-channel AD converter interfaces, an external amplifier control interface for long-range communication and more.

The TC35680FSG includes 128 KB of flash memory for storing user programs and various data in stand-alone operations, making it well-suited to a wide range of applications and removing the need for external non-volatile memory. This also lowers the part count, which reduces both the cost and mounting area.

The TC35681FSG, which does not include a built-in flash memory, operates in conjunction with an external non-volatile memory or host processor. A wide operating range of -40° to +125°C makes it suitable for applications exposed to high temperatures.

Toshiba Electronic Devices & Storage | www.toshiba.semicon-storage.com

Qseven Card Sports Renesas RZ/G1M

iWave has announced a System-On-Module (SOM) based on Renesas RZ/G1M embedded processr. RZ/G1M SOM is Qseven R2.0 compatible industrial grade CPU module. Called the iW-RainboW-G20M, this SOM module supports 1 GB DDR3 RAM, 4 GB eMMC Flash and 2 MB SPI NOR Flash. Expandable memory is optional. The module also includes on SOM Gigabit Ethernet PHY, Micro SD slot and USB HUB.

renesas-rz-g1-mpu-embedded-boardRenesas’s RZG1M processor supports dual cortex A15 core operating at 1.5 GHz core and includes 64-bit DDR3 interface at 800 MHz. These features provide higher performance for applications such as image processing of multiple video streams and video sensing. The high-speed on-chip integrated USB 3.0, PCIe, Gbit Ethernet and SATA peripherals allows easy expansion of functionality without the need for external components. The RZ/G1M processor supports full HD hardware encode and decode processing up to 1,080 at 60 frames/s, dual display and three channel video input ports. The built-in PowerVR SGX544MP2 Graphics core at 520 MHz allows the user to develop highly effective user interfaces.

The RZ/G1M SOM is supported Linux 3.10 LTSI with Android BSP support to come. To enable quick prototyping of RZG1M SOM, iWave systems supports RZ/G1M development kit with comprehensive peripheral support. This will help customers to save up to 60% of new product development cycle using the RZ-G1M MPU.

iWave Systems Technologies | www.iwavesystems.com

Intel & Micron Expand Manufacturing Effort

Intel and Micron have announced the completion of an expansion to Building 60 (B60) at the IM Flash facilities in Lehi, Utah. The expanded fab will produce 3D XPoint memory media, a building block of Intel Optane technology that includes Intel Optane memory for clients, the recently announced Intel Optane SSD 900P Series and new capacities and form factors of the Intel Optane SSD DC P4800X Series. A ribbon-cutting was held at the facility with Utah Gov. Gary Herbert, employees of the facility and representatives from Intel and Micron.

Intel-Optane-SSD-900P-Series

The Intel Optane SSD 900P Series half-height half-length add-in card is available in 480 GB and 280 GB capacities.

The IM Flash joint venture was created in 2006 to manufacture non-volatile memory for both Intel and Micron, starting with NAND for use in SSDs, phones, tablets and more. In 2015, IM Flash began manufacturing 3D XPoint technology, the first entirely new memory media in 25 years. The technology was developed to meet the quickly expanding data needs for all types of customers. 3D XPoint technology uses a crosspoint structure to deliver a cell and array architecture that can switch states significantly faster than NAND.

Intel recently announced the Intel Optane SSD 900P Series for use in desktop and workstation PCs. It delivers incredibly low latency and best-in-class random read and write performance at low queue depths. Additionally, Intel expanded the Intel Optane technology offerings for the data center, introducing 750GB capacity and 2.5-inch U.2 form factor versions of the Intel Optane SSD DC P4800X Series. For details on these products and all Intel SSDs, visit Intel’s solid state drives website.

Intel | www.intel.com

Micron Technology | www.micron.com

MCU Delivers Enhanced Security for Connected Devices

Renesas Electronics has announced the expansion of its RX65N/RX651 Group microcontroller lineup that addresses advanced security needs for connected devices operating in industrial automation, building automation, and smart metering systems. The expanded lineup features MCUs with integrated Trusted Secure IP, and enhanced, trusted flash functionality and human-machine interface (HMI) for industrial and network control systems.

2017113-rx65n-rx651-securityThe expansion of devices operating at the edge of the Industrial Internet of Things (IIoT) has increased system manufacturers’ need for secure network connectivity and reliability, including secure on-the-go firmware updates. The expanded RX65N/RX651 devices support these evolving security and reprogrammability needs, offering integrated Trusted Secure IP, enhanced flash protection, and other technology advancements to create a secure and stable integrated solution far above others in the market, as proven by the Cryptographic Algorithm Validation (CAVP) certification. In turn, these security advancements enable seamless flash firmware updates in the field through secure network communications.

The new MCUs expanded with enhanced security features are based on the high-performance RXv2 core and a 40nm process, which provide strong power efficiency for CPU operation at 4.55 Core Mark/MHz. Integrating the Trusted Secure IP into the new MCUs enables system control engineers to realize high root-of-trust levels for device operation through a combination of three new features:

  •    Protect encryption key by Trusted Secure IP
  •    Integration of encryption hardware accelerators including AES, 3DES, SHA, and      TRNG as part of Trusted Secure IP
  •    Protect boot code by area of Flash

The Trusted Secure IP received the CAVP certification, which ensures the customer will use a device with a high security level.

Renesas has optimized the new RX65N/RX651 MCUs for connected industrial environments. The new MCUs offer network connectivity and HMI support that makes it possible to:

  •     Monitor the operating state of machinery from both inside and outside the factory
  •     Exchange data for making changes to production instructions
  •     Reprogram the MCU’s memory to update equipment settings

Design engineers are often asked to integrate small thin-film-transistor (TFT) displays into their IoT edge devices or system control applications. These displays allow users to monitor machine behavior through a modern low-cost HMI solution. The RX65N/RX651 is an ideal solution for controlling these displays as it features an embedded TFT controller and an integrated 2D graphic accelerator to provide advanced graphics features and high-performance applications. Selecting a WQVGA display size allows the large 640 KB of on-chip RAM to be used as display frame buffer, which saves external RAM, ensuring a cost-optimized design.

Compared with other IoT devices, industrial applications are designed for long-term operation, which involves unique and sometimes challenging requirements, such as firmware updates in the field. The new RX65N/RX651 MCUs feature dual bank flash integration supporting both BGO (Back Ground Operation) and the SWAP function, making it easier for system and network control manufacturers to execute in-the-field firmware updates securely and reliably.

Firmware Integration Technology (FIT) is a holistic concept that emphasizes the embedded peripheral function module drivers and portability improvement between the RX65N/RX651 MCUs. The technology aims to lighten the burden of program development and resource management in software development using the entire family of RX MCUs. FIT provides a common application program interface for peripheral drivers and middleware for RX family, based on a solid Board Support Package, which controls the common information for these functions like initial MCU, clock, and board settings. FIT is available for all RX devices and fully integrated into the development environment.

Renesas has expanded its robust RX tool infrastructure to help engineers jump start their development work. The new Envision Kit provides an evaluation environment that allows engineers to easily benchmark MCU performance and start developing their own software. The new RX65N Renesas Starter Kit (RSK) includes a development board with MCU, display, on-chip debugger, trial Renesas C compiler and Integrated Development Environment (IDE), enabling engineers to get their evaluations and development up and running within a matter of minutes. To jumpstart their display designs, RX users can also leverage several ecosystem partner tools, including easy-to-use graphic GUI tools.

The expanded RX65N/RX651 MCUs, Renesas RX65N Starter Kit, and Envision Kit are available now

.Renesas Electronics | www.renesas.com

Xilinx Provides Design Platform for Scalable Storage

At the Flash Memory Summit earlier this month in Santa Clara, CA, leading FPGA vendor Xilinx rolled out the Xilinx NVMe-over-Fabrics reference design. It provides designers a flexible platform to enable scalable storage solutions and integrate custom acceleration functions into their storage arrays. The reference design eliminates the need for a dedicated x86 processor or an external NIC, thus creating a highly integrated, reliable and cost-effective solution. The NVMe-over-Fabrics (NVM-oF) reference platform is implemented on the Fidus Sidewinder card which supports up to 4 NVMe SSDs, and has a Xilinx ZU19EG Ultrascale+ MPSoC device. The reference platform is delivered with the required software drivers.

The Xilinx NVMe-over-Fabric Platform is a single-chip storage solution that integrates NVMe-over-Fabric and target RDMA offloads with a processing subsystem to provide a very power-efficient and low-latency solution compared to existing products that require both an external host chip and a Network Interface Card (NIC). This 2x100Gb Ethernet platform enables customers to implement value-added storage workload acceleration, such as compression and erasure code.

Xilinx | www.xilinx.com

Cypress MCUs Selected for Toyota Camry Instrument Cluster

Cypress Semiconductor has announced that global automotive supplier DENSO has selected Cypress’ Traveo automotive microcontroller (MCU) family and FL-S Serial NOR Flash memory family to drive the advanced graphics in its instrument cluster for the 2017 Toyota Camry. The DENSO instrument cluster uses Traveo devices that Cypress says were the industry’s first 3D-capable ARM Cortex-R5 cluster MCUs.

Denso Instrument Cluster

The FL-S memory in the cluster is based on Cypress’ proprietary MirrorBit NOR Flash process technology, which enables high density serial NOR Flash memory by storing two bits per cell. The DENSO instrument cluster has 4.2- and 7.0-inch screens capable of audio, video and navigation in the center display of the 2017 Toyota Camry.

Cypress works with the world’s top automotive companies to support automotive systems including Advanced Driver Assistance Systems (ADAS), 3-D graphics displays, wireless connectivity, full-featured touchscreens and superior body electronics. Cypress’ automotive portfolio includes the Traveo MCU family, power-management ICs (PMICs), PSoC programmable system-on-chip solutions, CapSense capacitive-sensing solutions, TrueTouch touchscreens, NOR flash, F-RAM and SRAM memories, and USB, Wi-Fi and Bluetooth connectivity solutions. The portfolio is backed by Cypress’ commitment to zero defects, excellent service and adherence to the most stringent industry standards, such as the ISO/TS 16949 quality management system, the Automotive Electronics Council (AEC) guidelines for ICs and the Production Part Approval Process (PPAP).

Cypress Semiconductor | www.cypress.com

New SLC NAND Flash Memory Family for High-Security Apps

Cypress Semiconductor Corp. recently announced a high-endurance, 1-to-4-Gb Single-Level Cell (SLC) SecureNAND family that reduces system costs and improves system security. It does this by providing a single nonvolatile memory with integrated block protection features for a variety of high-security applications, such as point-of-sale systems and wearables.Cypress SecureNAND

The SecureNAND family includes 1-Gb S34SL01G2, 2-Gb S34SL02G2, and 4-Gb S34SL04G2 devices. You can configure each device with nonvolatile block protection to store protected boot code, system firmware, and applications. They provide 100,000 program/erase cycles to ensure more than five years of system life. Their operating voltage range is 2.7  to 3.6 V and they support the industrial temperature range of –40° to 85°C.

The currently sampling 1-Gb S34SL01G2, 2-Gb S34SL02G2, and 4-Gb S34SL04G2 SecureNAND devices are available in a 63-BGA package.

Source: Cypress Semiconductor

Dynamic Efficiency Microcontrollers

STMicroThe STM32F401 Dynamic Efficiency microcontrollers extend battery life and support innovative new features in mobile phones, tablets, and smart watches. They help manage MEMS sensors in smart-connected devices and are well suited for Internet-of-Things (IoT) applications and fieldbus-powered industrial equipment.

The STM32F401 microcontrollers include an ART accelerator, a prefetch queue, and a branch cache. This enables zero-wait-state execution from flash, which boosts performance to 105 DMIPS (285 CoreMark) at 84 MHz. The microcontrollers’ 90-nm process technology boosts performance and reduces dynamic power. Its dynamic voltage scaling optimizes the operating voltage to meet performance demands and minimize leakage.

The STM32F401 microcontrollers integrate up to 512 KB of flash and 96 KB SRAM in a 3.06-mm × 3.06-mm chip-scale package and feature a 9-µA at 1.8 V Stop mode current. The devices’ peripherals include three 1-Mbps I2C ports, three USARTs, four SPI ports, two full-duplex I2S audio interfaces, a USB 2.0 OTG full-speed interface, an SDIO interface, 12-bit 2.4-MSPS 16-channel ADC, and up to 10 timers.

Pricing for the STM32F401 microcontrollers starts at $2.88 in 10,000-unit quantities.

STMicroelectronics
www.st.com

TRACE32 Now Supports Xilinx MicroBlaze 8.50.C

LauterbachThe TRACE32 modular hardware and software supports up to 350 different CPUs. The microprocessor development tools now support the latest version of Xilinx’s MicroBlaze 8.50.c, which is a soft processor core designed for Xilinx FPGAs. The MicroBlaze core is included with Xilinx’s Vivado Design Edition and IDS Embedded Edition.

The TRACE32 tools have supported MicroBlaze for many years by providing efficient and user-friendly debugging at the C or C++ level using the on-chip JTAG interface. This interface also provides code download, flash programming, and quick access to all internal chip peripherals and registers.
Contact Lauterbach for pricing.

Lauterbach GmbH
www.lauterbach.com

Xilinx, Inc.
www.xilinx.com