Programmable Logic Controller Board

SmartTILE illustration 6.psdThe SmartTILE (Smart TRi Integrated Logic Engine) is a programmable logic controller CPU board that plugs onto a carrier I/O board. The board integrates a 32-bit CPU, ferroelectric RAM (FRAM) and flash memory, a battery-backed real-time clock, and an Ethernet port on board. Its digital, analog, and serial I/O signals are brought to a user’s carrier board via three sets of header pins.

All critical components are already built-in on board. A user just needs to design a simple carrier PCB that contains a D/A circuit that interfaces the SmartTILE’s low-voltage signals to real-world voltages and currents (e.g., 24, 120, or 240 V).

The SmartTILE-Fx provides 16 digital inputs, 16 digital outputs (5-V CMOS logic level), eight analog inputs, and four analog outputs (12-bit, 0-5V) and can be expanded to 128 digital inputs and 128 digital outputs. The controller board -Fx provides three channels of serial ports (3.3 V, TX, RX, and /RTS) that can interface to RS-232, RS-485, or even wireless radio. An I2C port (3.3 V) is also available, allowing OEM to interface to specialty ICs that support I2Cbus.

Contact Triangle Research International for pricing.

Triangle Research International, Inc.
www.triplc.com

Places for the IoT Inside Your Home

It’s estimated that by the year 2020, more than 30 billion devices worldwide will be wirelessly connected to the IoT. While the IoT has massive implications for government and industry, individual electronics DIYers have long recognized how projects that enable wireless communication between everyday devices can solve or avert big problems for homeowners.

February CoverOur February issue focusing on Wireless Communications features two such projects, including  Raul Alvarez Torrico’s Home Energy Gateway, which enables users to remotely monitor energy consumption and control household devices (e.g., lights and appliances).

A Digilent chipKIT Max32-based embedded gateway/web server communicates with a single smart power meter and several smart plugs in a home area wireless network. ”The user sees a web interface containing the controls to turn on/off the smart plugs and sees the monitored power consumption data that comes from the smart meter in real time,” Torrico says.

While energy use is one common priority for homeowners, another is protecting property from hidden dangers such as undetected water leaks. Devlin Gualtieri wanted a water alarm system that could integrate several wireless units signaling a single receiver. But he didn’t want to buy one designed to work with expensive home alarm systems charging monthly fees.

In this issue, Gualtieri writes about his wireless water alarm network, which has simple hardware including a Microchip Technology PIC12F675 microcontroller and water conductance sensors (i.e., interdigital electrodes) made out of copper wire wrapped around perforated board.

It’s an inexpensive and efficient approach that can be expanded. “Multiple interdigital sensors can be wired in parallel at a single alarm,” Gualtieri says. A single alarm unit can monitor multiple water sources (e.g., a hot water tank, a clothes washer, and a home heating system boiler).

Also in this issue, columnist George Novacek begins a series on wireless data links. His first article addresses the basic principles of radio communications that can be used in control systems.

Other issue highlights include advice on extending flash memory life; using C language in FPGA design; detecting capacitor dielectric absorption; a Georgia Tech researcher’s essay on the future of inkjet-printed circuitry; and an overview of the hackerspaces and enterprising designs represented at the World Maker Faire in New York.

Editor’s Note: Circuit Cellar‘s February issue will be available online in mid-to-late January for download by members or single-issue purchase by web shop visitors.