Elektor & element14 Partner for Embedded Linux Webinar at Electronica 2012

Want to learn more about Embedded Linux? You’re in luck. On Wednesday, November 14, Elektor and Farnell/element14 will partner to run an informative webinar on the topic at Electronica 2012 in Munich, Germany. If you’re at the show, you can attend the recordings for free. Register before October 31 to get free Electronica entry tickets from Farnell/element14.

Attendees should go to the Farnell/element14 stand (Hall 5, Stand 558) for the Elektor Academy seminar, which will focus on the latest developments on the innovative Embedded Linux board. You can watch the presentation and ask the experts questions. The webinar will be recorded and webcast a bit later.

  • Presenter: Embedded Linux expert Benedict Sauter, the board’s designer
  • Description: Benedict Sauter will take you through the design and update us on the latest applications.
  • When: Wed, November 14, 2012
  • Time: 11:30 CET
  • Where: Farnell element14 stand (Messe München, Hall 5, Booth 558)
  • Language: English

Visit the element14 page about the Elektor Academy event for more information and to register for a free entry ticket.

CircuitCellar.com is an Elektor International Media publication.

2012 ESC Boston: Tech from Microchip, Fujitsu, & More

The 2012 Embedded Systems Conference in Boston started September 17 and ends today. Here’s a wrap-up of the most interesting news and products.


Microchip Technology announced Monday morning the addition of 15 new USB PIC microcontrollers to its line of full-speed USB 2.0 Device PIC MCUs. In a short presentation, Microchip product marketing manager Wayne Freeman introduced the three new 8-bit, crystal-free USB PIC families.

The PIC16F145x family (three devices) features the Microchip’s lowest-cost MCUs. The devices are available in 14- and 20-pin packages, support full-speed USB communication, don’t require external crystals, include PWM with complement generation, and more. They’re suitable for applications requiring USB connectivity and cap sense capabilities.

Microchip’s three PIC18F2x/4xK50 devices (available in 28- and 40/44-pins) enable “easy migration” from legacy PIC18 USB devices. In addition to 1.8- to 5-V operation, they feature a Charge Time Measurement Unit (CTMU) for cap-touch sensing, which makes them handy for data logging systems for tasks such as temperature and humidity measurement.

The nine devices in the PIC18F97J94 family are available in 64-, 80-, and 100-pin packages. Each device includes a 60 × 8 LCD controller and also integrates a real-time clock/calendar (RTCC) with battery back-up. Systems such as hand-held scanners and home automation panels are excellent candidates for these devices.

Several interesting designs were on display at the Microchip booth.

  • The M2M PICtail module was used in an SMS texting system.

This SMS text messaging system was featured at Microchip’s Machine-to-Machine (M2M) station. The M2M PICtail module (located on the bottom left) costs around $200.

  • Microchip featured its PIC MCU iPod Accessory Kit in glucose meter design. It was one of several healthcare-related systems that exhibitors displayed at the conference.

The interface can be an iPhone, iPad, or iPod Touch.

Visit www.microchip.com for more information.


As most of you know, the entry period for the Renesas RL78 Green Energy Challenge ended on August 31 and the judges are now reviewing the entries. Two particular demos on display at the Renesas booth caught my attention.

  • A lemon powering an RL78 L12 MCU:

Lemon power and the RL78

  • An R8C capacitive touch system:

Cap touch technology is on the minds of countless electrical engineers.

Go to www.am.renesas.com.


I was pleased to see a reprint of Mark Pedley’s recent Circuit Cellar article, “eCompass” (August 2012), on display at Freescale’s booth. The article covers the topics of building and calibrating a tilt‐compensating electronic compass.

A Circuit Cellar reprint for attendees

Two of the more interesting projects were:

  • An Xtrinsic sensor demo:

Xtrinsic and e-compass

  • A Tower-based medical suitcase, which included a variety of boards: MED-BPM (a dev board for blood pressure monitor applications), MED-EKG (an aux board for EKG and heart rate monitoring applications), and more.

Tower System-based medical suitcase


I stopped by the STMicro booth for a look at the STM32F3DISCOVERY kit, but I quickly became interested in the Dual Interface EEPROM station. It was the smartphone that caught my attention (again). Like other exhibitors, STMicro had a smartphone-related application on hand.

  • The Dual EEPROMs enable you to access memory via either  wired or RF interfaces. Energy harvesting is the new function STMicro is promoting. According to the documentation, “It also features an energy harvesting and RF status function.”

The Dual Interface EEPROM family has an RF and I2C interface

  • According to STMicro’s website, the DATALOG-M24LR-A PCB (the green board, top left) “features an M24LR64-R Dual Interface EEPROM IC connected to an STM8L101K3 8-bit microcontroller through an I2C bus on one side, and to a 20 mm x 40 mm 13.56 MHz etched RF antenna on the other one side. The STM8L101K3 is also interfaced with an STTS75 temperature sensor and a CR2330 coin cell battery.”


I’m glad I spend a few moments at the Fujitsu booth. We rarely see Circuit Cellar authors using Fujitsu parts, so I wanted to see if there was something you’d find intriguing. Perhaps the following images will pique your interest in Fujitsu technologies.

The FM3 family, which features the ARM Cortext-M3 core, is worth checking out. FM3 connectivity demonstration

Connectivity demo

Check out Fujitsu’s System Memory site and document ion to see if its memory products and solutions suit your needs. Access speed comparison: FRAM vs. SRAM vs. EEPROM

Access speed comparison

The ESC conference site has details about the other exhibitors that had booths in the exhibition hall.







Great Plains Super Launch

Contributed by Mark Conner

The Great Plains Super Launch (GPSL) is an annual gathering of Amateur Radio high-altitude ballooning enthusiasts from the United States and Canada. The 2012 event was held in Omaha, Nebraska from June 7th to the 9th and was sponsored by Circuit Cellar and Elektor. Around 40 people from nine states and the Canadian province of Saskatchewan attended Friday’s conference and around 60 attended the balloon launches on Saturday.

Amateur Radio high-altitude ballooning (ARHAB) involves the launching, tracking, and recovery of balloon-borne scientific and electronic equipment. The Amateur Radio portion of ARHAB is used for transmitting and receiving location and other data from the balloon to chase teams on the ground. The balloon is usually a large latex weather balloon, though other types such as polyethylene can also be used. A GPS unit in the balloon payload calculates the location, course, speed, and altitude in real time, while other electronics, usually custom-built, handle conversion of the digital data into radio signals. These signals are then converted back to data by the chase teams’ receivers and computers. The balloon rises at about 1000 feet per minute until the balloon pops (if it’s latex) or a device releases the lifting gas (if it’s PE). Maximum altitudes are around 100,000 feet and the flight typically takes two to three hours.

Prepping for the launch – Photo courtesy of Mark Conner

On Thursday the 7th, the GPSL attendees visited the Strategic Air and Space Museum near Ashland, about 20 minutes southwest of Omaha. The museum features a large number of Cold War aircraft housed in two huge hangars, along with artifacts, interactive exhibits, and special events. The premiere aircraft exhibit is the Lockheed SR-71 Blackbird suspended from the ceiling in the museum’s atrium. A guided tour was provided by one of the museum’s volunteers and greatly enjoyed by all.

Friday featured the conference portion of the Super Launch. Presentations were given on stabilization techniques for in-flight video recordings, use of ballooning projects in education research, lightweight transmitters for tracking the balloon’s flight, and compressed gas safety. Bill Brown showed highlights from his years of involvement in ARHAB dating back to his first flights in 1987. The Edge of Space Sciences team presented on a May launch from Coors Field in Denver for “Weather and Science Day” prior to an afternoon Colorado Rockies game. Several thousand students witnessed the launch, which required meticulous planning and preparation.

EOSS ready for launch – Photo courtesy of Mark Conner

Saturday featured the launch of five balloons from a nearby high school early that morning. While the winds became gusty for the last two launches, all of the flights were successfully released into a brilliant sunny June sky. All five of the flights were recovered without damage in the corn and soybean fields of western Iowa between 10 and 25 miles from launch. The SABRE team from Saskatoon, Saskatchewan took the high flight award, reaching over 111,000 ft during their three-hour flight.

The view from one of the balloons. Image credit: “Project Traveler / Zack Clobes”.

The 2013 GPSL will be held in Pella, Iowa, on June 13-15. Watch the website superlaunch.org for additional information as the date approaches.

Free Webinar: Bridge Android & Your Electronics Projects

Do you want to add a powerful wireless Android device to your own projects? Now you can, and doing so is easier than you think.

With their high-resolution touchscreens, ample computing power, WLAN support, and telephone functions, Android smartphones and tablets are ideal for use as control centers in your projects. But until now, it has been difficult to connect them to external circuitry. Elektor’s AndroPod interface board, which adds a serial TTL port and an RS-485 port to the picture, changes this situation.

The Elektor AndroPod module

In a free webinar on June 21, 2012, Bernhard Wörndl-Aichriedler (codesigner of the AndroPod Interface) will explain how easy it is to connect your own circuitry to an Android smartphone using the AndroPod interface. Click here to register.

Elektor Academy and element14 have teamed up to bring you a series of exclusive webinars covering blockbuster projects from recent editions of Elektor magazine. Participation in these webinars is completely free!

Webinar: AndroPod – Bridging Android and Your Electronics Projects
Date: Thursday June 21, 2012
Time: 16:00 CET
Presenter: Bernhard Wörndl-Aichriedler (Codesigner of the Andropod Interface)
Language: English

CircuitCellar.com is an Elektor International Media publication.

EAGLE Design Challenge: Design the Next Innovation for Microchip in EAGLE V6

CadSoft and Premier Farnell announced recently the start of the EAGLE Design Challenge, which will run until August 31, 2012. Design engineers can submit design projects for a shot at winning prizes with an overall value of around $7,000.

The competition is powered by Microchip and hosted on element14. Elektor and Circuit Cellar are acting as media partners.


To participate, applicants must ensure that all designs use EAGLE Version 6 and that a Microchip MCU or DSC will be integrated in the design.

After registering at element14, you can submit a screenshot of your layout and add a project description on the competition page.

If you don’t have an EAGLE license and want to participate in the contest, you can download a free 30-days trial version at www.element14.com/eagle-freemium.


The competition will feature peer voting from the element14 community. Community members “like” entries and submit comments.

A panel of judges—consisting of CadSoft, Premier Farnell and Microchip representatives along with independent EAGLE expert Prof. Dr. Francesco Volpe from the University of Applied Sciences in Aschaffenburg—will pick the winners based on the “likes” and comments from community members. According to the rules, “judging criteria include clarity in description of the submission, its electronic concept, design complexity, design quality, and functionality.”


1. DELL Alienware M17x r3 + EAGLE version 6 Professional incl. all three modules.

2. MICROCHIP DV164037 Kit, Eval, ICD3 w/ Explorer-16 & DM163022-1 8-Bit development board + EAGLE Version 6 Professional incl. all three modules.

3. EAGLE Version 6 Standard incl. all three modules.

Visit www.element14.com/eagle-competition for more details as well as the terms and conditions.



“Robocup” Soccer: Robot Designs Compete in Soccer Matches

Roboticists and soccer fans from around the world converged on Eindhoven, The Netherlands, from April 25–29 for the Roboup Dutch Open. The event was an interesting combination of sports and electronics engineering.

Soccer action at the Robocup Dutch Open

Since I have dozens of colleagues based in The Netherlands, I decided to see if someone would provide event coverage for our readers and members. Fortunately, TechtheFuture.com’s Tessel Rensenbrink was available and willing to cover the event. She reports:

Attending the Robocup Dutch Open is like taking a peek into the future. Teams of fully autonomous robots compete with each other in a soccer game. The matches are as engaging as watching humans compete in sports and the teams even display particular characteristics. The German bots suck at penalties and the Iranian bots are a rough bunch frequently body checking their opponents.

The Dutch Open was held in Eindhoven, The Netherlands from the 25th to the 29th of April. It is part of Robocup, a worldwide educational initiative aiming to promote robotics and artificial intelligence research. The soccer tournaments serve as a test bed for developments in robotics and help raise the interest of the general public. All new discoveries and techniques are shared across the teams to support rapid development.
The ultimate goal is to have a fully autonomous humanoid robot soccer team defeat the winner of the World Cup of Human Soccer in 2050.

In Eindhoven the competition was between teams from the Middle Size Robot League. The bots are 80 cm (2.6 ft) high, 50 cm (1.6 ft) in diameter and move around on wheels. They have an arm with little wheels to control the ball and a kicker to shoot. Because the hardware is mostly standardized the development teams have to make the difference with the software.

Once the game starts the developers aren’t allowed to aid or moderate the robots. Therefore the bots are equipped with all the hardware they need to play soccer autonomously. They’re mounted with a camera and a laser scanner to locate the ball and determine the distance. A Wi-Fi network allows the team members to communicate with each other and determine the strategy.

The game is played on a field similar to a scaled human soccer field. Playing time is limited to two halves of 15 minutes each. The teams consist of five players. If a robot does not function properly it may be taken of the field for a reset while the game continues. There is a human referee who’s decisions are communicated to the bots over the Wi-Fi network.

The Dutch Open finals were between home team TechUnited and MRL from Iran. The Dutch bots scored their first goal within minutes of the start of the game to the excitement of the predominantly orange-clad audience. Shortly thereafter a TechUnited bot went renegade and had to be taken out of the field for a reset. But even with a bot less the Dutchies scored again. When the team increased their lead to 3 – 0 the match seemed all but won. But in the second half MRL came back strong and had everyone on the edge of their seats by scoring two goals.

When the referee signaled the end of the game, the score was 3-2 for TechUnited. By winning the tournament the Dutch have established themselves as a favorite for the World Cup held in Mexico in June. Maybe, just maybe, the Dutch will finally bring home a Soccer World Cup trophy.

The following video shows a match between The Netherlands and Iran. The Netherlands won 2-1.

TechTheFuture.com is part of the Elektor group. 


Design West Update: Intel’s Computer-Controlled Orchestra

It wasn’t the Blue Man Group making music by shooting small rubber balls at pipes, xylophones, vibraphones, cymbals, and various other sound-making instruments at Design West in San Jose, CA, this week. It was Intel and its collaborator Sisu Devices.

Intel's "Industrial Controller in Concert" at Design West, San Jose

The innovative Industrial Controller in Concert system on display featured seven Atom processors, four operating systems, 36 paint ball hoppers, and 2300 rubber balls, a video camera for motion sensing, a digital synthesizer, a multi-touch display, and more. PVC tubes connect the various instruments.

Intel's "Industrial Controller in Concert" features seven Atom processors 2300

Once running, the $160,000 system played a 2,372-note song and captivated the Design West audience. The nearby photo shows the system on the conference floor.

Click here learn more and watch a video of the computer-controlled orchestra in action.

Design West Update: Compilers Unveiled

IAR Systems announced Tuesday at Design West in San Jose, CA, that GainSpan selected IAR Embedded Workbench as its primary development tool chain for MCU drivers and next-generation chip. “By standardizing on IAR Systems’ embedded software development tool chain, GainSpan will more easily support a wide range of MCUs to communicate with their modules,” IAR publicized a in a release.

It’s an important aspect of a larger plan, IAR’s ARM Strategic Accounts Manager Mike Skrtic said. IAR has overall tool chain standardization goals aimed at giving designers’ more flexibility when choosing MCUs for product development.

Remember: IAR Systems is teamed with Renesas for the RL78 Green Energy Challenge, which is administered by Circuit Cellar and Elektor. Designers are challenged to transform how the world experiences energy efficiency by developing a unique, low-power application using the RL78 MCU and IAR toolchain.

In other compiler-related news, Microchip Technology announced Monday at Design West its new MPLAB XC C compiler line, which supports its approximately 900 microcontrollers. Microchip’s Joe Drzewiecki said the compilers reduce code size by about 35% and improve code execution speed by about 30%. But you can judge for yourself because Microchip offers 8-, 16-, and 32-bit free editions of MPLAB XC compilers. According to Microchip reps, they are” fully functional and have no license restrictions for commercial use.”

So, if you give MPLAB XC a try, let us know what you think!

Read CircuitCellar.com for Updates/News from Design West, San Jose

Circuit Cellar and Elektor editors and staffers will attend Design West in San Jose, CA, from March 27 to 29. If you can’t make it to the conference, check www.CircuitCellar.com daily for conference updates, news, and more!

Feed the latest posts from CircuitCellar.com to your RSS reader! Doing so will keep you up-to-date on everything we post! Setting up the feed is simple.Add www.circuitcellar.com/feed/rss to your RSS reader and enjoy!

The Circuit Cellar/Elektor booth at ESC 2011 (San Jose, CA)

This year’s conference comprises seven summits at once: ESC, Android, Black Hat, DesignMED, LED, Sensors, and Multicore.

Members and clients are encouraged to stop by booth #2332 to chat with staff, subscribe to our magazines, grab free copies of the magazines, and check out our books. Readers should feel free to bring and pitch article proposals, book proposals, and project ideas!


Improved Radiation Meter Webinar

Want to learn about Elektor’s improved radiation meter? On February 16, Elektor technical editor Thijs Beckers will host a webinar at element14 about the radiation meter, which is a DIY system that can measure alpha, beta, and gamma radiation.

(Improved Radiation Meter – Source: Elektor.com)

According to Elektor, all that’s required to measure radiation is “a simple PIN photodiode and a suitable preamplifier circuit.” The system features “an optimized preamplifier and a microcontroller-based counter. The microcontroller takes care of measuring time and pulse rate, displaying the result in coun

ts per minute.The device we describe can be used with different sensors to measure gamma and alpha radiation. It is particularly suitable for long-term measurements and for examining weakly radioactive samples.”

Its FREE to register at www.element14.com/community/events/3185.

Start Time: 2/16/12 9:00 AM CST (America/Chicago)
End Time: 2/16/12 10:00 AM CST (America/Chicago)
Location: Online event

Elektor International Media is the parent company of Circuit Cellar.