Electrical Engineering Crossword (Issue 284)

The answers to Circuit Cellar’s March electronics engineering crossword puzzle are now available.

284-crossword-key

Across

1.    CROSSEDFIELDAMPLIFIER—This vacuum tube is capable of high output power [three words]
3.    HYPERVISOR—Produces and runs virtual machines
5.    DYNATRON—Uses negative resistance to keep a tuned circuit oscillating
8.    ULTRAVIOLETLIGHT—Gives some substances “a healthy glow” [two words]
13.    ZEROMOMENTPOINT—A moment of respite for robots [three words]
14.    THERMOSONIC—Connects to silicon ICs
17.    CATSWHISKER—An outdated electronic component mainly used in antique radios [two words]
18.    FLEMINGVALVE—Invented in the early 1900s, this was known as the first vacuum tube [two words]
19.    BACKBONE—Makes LANs connect

Down

2.    DEMODULATOR—Recovers information from a regulated waveform
4.    SQUEGGING—This type of circuit oscillates erratically
5.    DOWNMIXING—Audio manipulation process
6.    REYNOLDSNUMBER—Used for flow pattern predictions [two words]
7.    LATENCY—Used with bandwidth to ascertain network connection speed
9.    THICKFILM—This type of chip resistor is commonly used in electronic and electrical devices [two words]
10.    DYNAMIC—Its memory is volatile
11.    CRYOTRON—Operates via superconductivity
12.    NETMASK—Creates neighborhoods of IP addresses
15.    HOROLOGY—E.g., clepsydras, chronometers, and sundials
16.    SEEBECK—An effect that creates electricity

 

 

3-D Integration Impact and Challenges

People want transistors—lots of them. It pretty much doesn’t matter what shape they’re in, how small they are, or how fast they operate. Simply said, the more the merrier. Diversity is also good. The more different the transistors, the more useful and interesting the product. And without any question, the cheaper the transistors, the better. So the issue is, how best to achieve as many diverse transistors at the lowest cost possible.

One approach is more chips. Placing a lot of chips close together on a small board will produce a system with many transistors. Another way is more transistors per chip. Keep on scaling the technology to provide more transistors in one or a few chips.

silicon chipThe third option combines these two approaches. Let’s have many chips with many transistors and end up with a huge number of transistors. However, there is a limit to this approach. It’s well understood that scaling is coming to an end. And placing multiple chips on a board can have a terrible effect on a system’s overall speed and power dissipation.

But there is an elegant and intellectually simple solution. Rather than connecting these chips horizontally across a board, connect them vertically, providing N times more transistors, where N is the number of chips stacked one above another. Such vertical, 3-D integration was first broached by William Shockley, co-inventor of the transistor at Bell Labs in 1947. Shockley described the 3-D integration concept in a 1958 patent, which was followed by Merlin Smith and Emanuel Stern’s 1967 patent outlining how best to produce the holes between layers. We now call these inter-layer holes through silicon vias (TSVs). Technology is still catching up to these 3-D concepts.

Three-dimensional integration offers exciting advantages. For example, the vertical distance between layers is much shorter than the horizontal dimensions across a chip. Three-dimensional circuits, therefore, operate faster and dissipate less power than their 2-D equivalent. A 3-D system is shockingly small, permitting it to fit much more conveniently into a tiny space. Think small portable electronics (e.g., credit cards).

But the most exciting advantage of 3-D integration isn’t the small form factor, higher speed, or lower power; it’s the natural ability to support many disparate technologies and functions as one integrated, heterogeneous system. Even better, each chip layer can be optimized for a particular function and technology, since the individual chips can each be developed in isolation. No more trading off different capabilities to combine disparate technologies on the same chip. Now we can use the absolute best technology for each layer and a completely different and optimized technology for a different layer. This approach enables all kinds of novel applications that until now couldn’t have been conceived or would have been cost-prohibitive.

Imagine placing a microprocessor plane below a MEMS-accelerometer plane below an analog plane (with ADCs) below a temperature sensor, all below a video imager (which has to be at the top to “see”). All of these planes fit together into a tiny (smaller than a fingernail) silicon cube while operating at higher speeds and dissipating lower power.

There are technical issues, including: how to best make the TSVs, how to construct the system architecture to fully exploit the system’s 3-D nature, how to deliver power across these multiple planes, how to synchronize this system to best move data around the cube, how to manage system design complexity, and much more.

Two issues rise to the top. The first is power dissipation (specifically, power density). When many transistors switch at a high rate within a tiny volume, the temperature rises, which can impair performance and reliability. I believe this issue, albeit difficult, is technically solvable and simply will require a lot of good engineering.

The real problem is cost. How do we mature this technology quickly enough to drive the costs down to a point where volume commercial applications are possible? Many companies are close to producing tangible 3-D-based products. Cubes of highly dense memory will likely be the first serious and cost-effective product. Early versions are already available. Three-dimensional integration will soon be here in a serious way with what will be a fascinating assortment of all kinds of exciting new products. You won’t have to wait too long.

Issue 282: EQ Answers

PROBLEM 1
Construct an electrical circuit to find the values of Xa, Xb, and Xc in this system of equations:

21Xa – 10Xb – 10Xc = 1
–10Xa + 22Xb – 10Xc = –2
–10Xa – 10Xb + 20Xc = 10

Your circuit should include only the following elements:

one 1-Ω resistor
one 2-Ω resistor
three 10-Ω resistors
three ideal constant voltage sources
three ideal ammeters

The circuit should be designed so that each ammeter displays one of the values Xa, Xb, or Xc. Given that the Xa, Xb, and Xc values represent currents, what kind of circuit analysis yields equations in this form?

ANSWER 1
You get equations in this form when you do mesh analysis of a circuit. Each equation represents the sum of the voltages around one loop in the mesh.

PROBLEM 2
What do the coefficients on the left side of the equations represent? What about the constants on the right side?

ANSWER 2
The coefficients on the left side of each equation represent resistances. Resistance multiplied by current (the unknown Xa, Xb, and Xc values) yields voltage.
The “bare” numbers on the right side of each equation represent voltages directly (i.e., independent voltage sources).

PROBLEM 3
What is the numerical solution for the equations?

ANSWER 3
To solve the equations directly, start by solving the third equation for Xc and substituting it into the other two equations:

Xc = 1/2 Xa + 1/2 Xb + 1/2

21Xa – 10Xb – 5Xa – 5Xb – 5 = 1
–10Xa + 22Xb – 5Xa – 5Xb – 5 = –2

16Xa – 15Xb = 6
–15Xa + 17Xb = 3

Solve for Xa by multiplying the first equation by 17 and the second equation by 15 and then adding them:

272Xa – 255Xb = 102
–225Xa + 255Xb = 45

47Xa = 147 → Xa = 147/47

Solve for Xb by multiplying the first equation by 15 and the second equation by 16 and then adding them:

240Xa – 225Xb = 90
–240Xa + 272Xb = 48

47Xb = 138 → Xb = 138/47

Finally, substitute those two results into the equation for Xc:

Xc = 147/94 + 138/94 + 47/94 = 332/94 = 166/47

PROBLEM 4
Finally, what is the actual circuit? Draw a diagram of the circuit and indicate the required value of each voltage source.

ANSWER 4
The circuit is a mesh comprising three loops, each with a voltage source. The common elements of the three loops are the three 10-Ω resistors, connected in a Y configuration (see the figure below).

cc281_eq_fig1The values of the voltage sources in each loop are given directly by the equations, as shown. To verify the numeric solution calculated previously, you can calculate all of the node voltages around the outer loop, plus the voltage at the center of the Y, and ensure they’re self-consistent.

We’ll start by naming Va as ground, or 0 V:

Vb = Va + 2 V = 2 V

Vc = Vb + 2 Ω × Xb = 2V + 2 Ω × 138/47 A = 370/47 V = 7.87234 V

Vd = Vc + 1 Ω × Xa = 370/47 V + 1 Ω × 147/47A = 517/47 V = 11.000 V

Ve = Vd – 1 V = 11.000 V – 1.000 V = 10.000 V

Va = Ve – 10 V = 0 V

which is where we started.

The center node, Vf, should be at the average of the three voltages Va, Vc, and Ve:

0 V + 370/47 V + 10 V/3 = 840/141 V = 5.95745 V

We should also be able to get this value by calculating the voltage drops across each of the three 10-Ω resistors:

Va + (Xc – Xb) × 10 Ω = 0 V + (166 – 138)/47A × 10 Ω = 280/47 V = 5.95745 V

Vc + (Xb – Xa) × 10 Ω = 370/47V + (138-147)/47A × 10 Ω = 280/47 V = 5.95745 V

Ve + (Xa – Xc) × 10 Ω = 10 V + (147-166)/47 A × 10 Ω = 280/47 V = 5.95745 V

Electrical Engineering Crossword (Issue 283)

The answers to Circuit Cellar’s February electronics engineering crossword puzzle are now available.

283-crossword-key

Across

2. LITZWIRE—Separately insulated strands woven together [two words]
4. LINKFIELD—First in a message buffer’s line [two words]
6. PETAFLOPS—Measures a processor’s floating point unit performance
8. ANION—negatively charged atom
9. LISP—Used to manipulate mathematical logic
11. STATCOULOMB—i.e., franklin (Fr)
12. AMBISONICS—Typically requires a soundfield microphone
15. BROUTER—This device can send data between networks and it can forward data to individual systems in a network
16. TRINITRON—This CRT technology was originally introduced the 1960s
17. OXIDE—The “O” in CMOS
18. DETENT—Used to prevent or stop something from spinning

Down

1. ELECTRICSUSCEPTIBILITY—XE [two words]
3. RADECHON—A barrier-grid storage tube
5. COLPITTS—This oscillator uses two-terminal electrical components to create a specific oscillation frequency
7. BEAGLEBOARD—TI’s open-source SBC
10. PICONET—A network that is created using a wireless Bluetooth connection
13. BETATRON—Designed to accelerate electrons
14. TEBIBYTE—More than 1,000,000,000,000 bytes

System Safety Assessment

System safety assessment provides a standard, generic method to identify, classify, and mitigate hazards. It is an extension of failure mode effects and criticality analysis and fault-tree analysis that is necessary for embedded controller specification.

System safety assessment was originally called ”system hazard analysis.” The name change was probably due to the system safety assessment’s positive-sounding connotation.

George Novacek (gnovacek@nexicom.net) is a professional engineer with a degree in Cybernetics and Closed-Loop Control. Now retired, he was most recently president of a multinational manufacturer of embedded control systems for aerospace applications. George wrote 26 feature articles for Circuit Cellar between 1999 and 2004.

Columnist George Novacek (gnovacek@nexicom.net), who wrote this article published in Circuit Cellar’s January 2014 issue, is a professional engineer with a degree in Cybernetics and Closed-Loop Control. Now retired, he was most recently president of a multinational manufacturer of embedded control systems for aerospace applications. George wrote 26 feature articles for Circuit Cellar between 1999 and 2004.

I participated in design reviews where failure effect classification (e.g., hazardous, catastrophic, etc.) had to be expunged from our engineering presentations and replaced with something more positive (e.g., “issues“ instead of “problems”), lest we wanted to risk the wrath of buyers and program managers.

System safety assessment is in many ways similar to a failure mode effects and criticality analysis (FMECA) and fault-tree analysis (FTA), which I described in “Failure Mode and Criticality Analysis” (Circuit Cellar 270, 2013). However, with safety assessment, all possible system faults—including human error, electrical and mechanical subsystems’ faults, materials, and even manuals—should be analyzed. The impact of their faults and errors on the system safety must also be considered. The system hazard analysis then becomes a basis for subsystems’ specifications.

Fault Identification

Performing FMECA and FTA on your subsystem ensures all its potential faults become detected and identified. The faults’ signatures can be stored in a nonvolatile memory or communicated to a display console, but you cannot choose how the controller should respond to any one of those faults. You need the system hazard analysis to tell you what corrective action to take. The subsystem may have to revert to manual control, switch to another control channel, or enter a degraded performance mode. If you are not the system designer, you have little or no visibility of the faults’ potential impact on the system safety.
For example, an automobile consists of many subsystems (e.g., propulsion, steering, braking, entertainment, etc.). The propulsion subsystem comprises engine, transmission, fuel delivery, and possibly other subsystems. A part of the engine subsystem may include a full-authority digital engine controller (FADEC).

Do you have an electrical engineering tip you’d like to share? Send it to us here and we may publish it as part of our ongoing EE Tips series.

Engine controllers were originally mainly mechanical devices, but with the arrival of the microprocessor, they have become highly sophisticated electronic controllers. Currently, most engines—including aircraft, marine, automotive, or utility (e.g., portable electrical generator turbines)—are controlled by some sort of a FADEC to achieve best performance and safety. A FADEC monitors the engine performance and controls the fuel flow via servomotor valves or stepper motors in response to the commanded thrust plus numerous operating conditions (e.g., atmospheric and internal pressures, external and internal engine temperatures in several locations, speed, load, etc.).

The safety assessment mostly depends on where and how essentially identical systems are being used. A car’s engine failure, for example, may be nothing more than a nuisance with little safety impact, while an aircraft engine failure could be catastrophic. Conversely, an aircraft nosewheel steer-by-wire can be automatically disconnected upon a fault. And, with a little increase of the pilots’ workload, it may be substituted by differential braking or thrust to control the plane on the ground. A similar failure of an automotive steer-by-wire system could be catastrophic for a car barreling down the freeway at 70 mph.

Analysis

System safety analysis comprises the following steps: identify and classify potential hazards and associated avoidance requirements, translate safety requirements into engineering requirements, design assessment and trade-off support to the ongoing design, assess the design’s relative compliance to requirements and document findings, direct and monitor specialized safety testing, and monitor and review test and field issues for safety trends.

The first step in hazard analysis is to identify and classify all the potential system failures. FMECA and FTA provide the necessary data. Table 1 shows an example and explains how the failure class is determined.

TABLE 1
This table shows the identification and severity classification of all potential system-level failures.
Eliminated Negligible Marginal Critical Catastrophic
No safety impact. Does not significantly reduce system safety. Required actions are within the operator’s capabilities. Reduces the capability of the system or operators to cope with adverse operating conditions. Can cause major illness, injury, or property damage. Significantly reduces the capability of the system or the operator’s ability to cope with adverse conditions to the extent of causing serious or fatal injury to several people. Total loss of system control resulting in equipment loss and/or multiple fatalities.

The next step determines each system-level failure’s frequency occurrence (see Table 2). This data comes from the failure rates calculated in the course of the reliability prediction, which I covered in my two-part article “Product Reliability” (Circuit Cellar 268–269, 2012) and in “Quality and Reliability in Design” (Circuit Cellar 272, 2013).

TABLE 2
Use this information to determine the likelihood of each individual system-level failure.
Frequent Probability of occurrence per operation is equal or greater than 1 × 10–3
Probable Probability of occurrence per operation is less than 1 × 10–3 or greater than 1 × 10–5
Occasional Probability of occurrence per operation is less than 1 × 10–5 or greater than 1 × 10–7
Remote Probability of occurrence per operation is less than 1 × 10–7 or greater than 1 × 10–9
Improbable Probability of occurrence per operation is less than 1 × 10–9

Based on the two tables, the predictive risk assessment matrix for every hazardous situation is created (see Table 3). The matrix is a composite of severity and likelihood and can be subsequently classified as low, medium, serious, or high. It is the system designer’s responsibility to evaluate the potential risk—usually with regard to some regulatory requirements—to specify the maximum hazard levels acceptable for every subsystem. The subsystems’ developers must comply with and satisfy their respective specifications. Electronic controllers in safety-critical applications must present low risk due to their subsystem fault.

TABLE 3
The risk assessment matrix is based on information from Table 1 and Table 2.
Probability / Severity Catastrophic (1) Critical (2) Marginal (3) Negligible (4)
Frequent (A) High High Serious Medium
Probable (B) High High Serious Medium
Occasional (C) High Serious Medium Low
Remote (D) Serious Medium Medium Low
Improbable (E) Medium Medium Medium Low
Eliminated (F) Eliminated

The system safety assessment includes both software and hardware. For aircraft systems, the required risk level determines the development and quality assurance processes as anchored in DO-178 Software Considerations in Airborne Systems and Equipment Certification and DO-254 Design Assurance Guidance for Airborne Electronic Hardware.

Some non-aerospace industries also use these two standards; others may have their own. Figure 1 shows a typical system development process to achieve system safety.
The common automobile power steering is, by design, inherently low risk, as it continues to steer even if the hydraulics fail. Similarly, some aircraft controls continue to be the old-fashioned cables but, like the car steering, with power augmentation. If the power fails, you just need more muscle. This is not the case with the more prevalent drive- or fly-by-wire systems.

FIGURE 1: The actions in this system-development process help ensure system safety.

FIGURE 1: The actions in this system-development process help ensure system safety.

Redundancy

How can the risk be mitigated to at least 109 probability for catastrophic events? The answer is redundancy. A well-designed electronic control channel can achieve about 105 probability of a single fault. That’s it. However, the FTA shows that by ANDing two such processing channels, the resulting failure probability will decrease to 1010, thus mitigating the risk to an acceptable level. An event with 109 probability of occurring is, for many systems, acceptable as just about “never happening,” but there are requirements for 1014 or even lower probability. Increasing redundancy will enable you to satisfy the specification.
Once I saw a controller comprising three independent redundant computers, with each computer also being triple redundant. Increasing safety by redundancy is why there are at least two engines on every commercial passenger carrying aircraft, two pilots, two independent hydraulic systems, two or more redundant controllers, power supplies, and so forth.

Human Engineering

Human engineering, to use military terminology, is not the least important for safety and sometimes not given sufficient attention. MIL-STD-1472F, the US Department of Defense’s Design Criteria Standard: Human Engineering, spells out many requirements and design constraints to make equipment operation and handling safe. This applies to everything, not just electrical devices.

For example, it defines the minimum size of controls if they may be operated with gloves, the maximum weight of equipment to be located above a certain height, the connectors’ location, and so forth. In my view, every engineer should look at this interesting standard.
Non-military equipment that requires some type of certification (e.g., most electrical appliances) is usually fine in terms of human engineering. Although there may not be a specific standard guiding its design in this respect, experienced certificating examiners will point out many shortcomings. But there are more than enough fancy and expensive products on the market, which makes you wonder if the designer ever tried to use the product himself.

By putting a little thought beyond just the functional design, you can make your product attractive, easy to operate, and safe. It may be as simple as asking a few people who are not involved with your design to use the product before you release it to production.

Test Pixel 1