Two Campuses, Two Problems, Two Solutions

In some ways, Salish Kootenai College (SKC)  based in Pablo, MT, and Penn State Erie, The Behrend College in Erie, PA, couldn’t be more different

SKC, whose main campus is on the Flathead Reservation, is open to all students but primarily serves Native Americans of the Bitterroot Salish, Kootenai, and Pend d’Orellies tribes. It has an enrollment of approximately 1,400. Penn State Erie has roughly 4,300.

But one thing the schools have in common is enterprising employees and students who recognized a problem on their campuses and came up with technical solutions. Al Anderson, IT director at the SKC, and Chris Coulston, head of the Computer Science and Software Engineering department at Penn State Erie, and his team have written articles about their “campus solutions” to be published in upcoming issues of Circuit Cellar.

In the summer of 2012, Anderson and the IT department he supervises direct-wired the SKC dorms and student housing units with fiber and outdoor CAT-5 cable to provide students better  Ethernet service.

The system is designed around the Raspberry Pi device. The Raspberry Pi queries the TMP102 temperature sensor. The Raspberry Pi is queried via the SNMP protocol.

The system is designed around the Raspberry Pi device. The Raspberry Pi queries the TMP102 temperature sensor. The Raspberry Pi is queried via the SNMP protocol.

“Prior to this, students accessed the Internet via a wireless network that provided very poor service.” Anderson says. “We wired 25 housing units, each with a small unmanaged Ethernet switch. These switches are daisy chained in several different paths back to a central switch.”

To maintain the best service, the IT department needed to monitor the system’s links from Intermapper, a simple network management protocol (SNMP) software. Also, the department had to monitor the temperature inside the utility boxes, because their exposure to the sun could cause the switches to get too hot.

This is the final installation of the Raspberry Pi. The clear acrylic case can be seen along with the TMP102 glued below the air hole drilled into the case. A ribbon cable was modified to connect the various pins of the TMP102 to the Raspberry Pi.

This is the final installation of the Raspberry Pi in the SKC system. The clear acrylic case can be seen along with the TMP102 glued below the air hole drilled into the case. A ribbon cable was modified to connect the various pins of the TMP102 to the Raspberry Pi.

“We decided to build our own monitoring system using a Raspberry Pi to gather temperature data and monitor the network,” Anderson says. “We installed a Debian Linux distro on the Raspberry Pi, added an I2C Texas Instruments TMP102 temperature sensor…, wrote a small Python program to get the temperature via I2C and convert it to Fahrenheit, installed SNMP server software on the Raspberry Pi, added a custom SNMP rule to display the temperature from the script, and finally wrote a custom SNMP MIB to access the temperature information as a string and integer.”

Anderson, 49, who has a BS in Computer Science, did all this even as he earned his MS in Computer Science, Networking, and Telecommunications through the Johns Hopkins University Engineering Professionals program.

Anderson’s article covers the SNMP server installation; I2C TMP102 temperature integration; Python temperature monitoring script; SNMP extension rule; and accessing the SNMP Extension via a custom MIB.

“It has worked flawlessly, and made it through the hot summer fine,” Anderson said recently. “We designed it with robustness in mind.”

Meanwhile, Chris Coulston, head of the Computer Science and Software Engineering department at Penn State Erie, and his team noticed that the shuttle bus

The mobile unit to be installed in the bus. bus

The mobile unit to be installed in the bus.

introduced as his school expanded had low ridership. Part of cause was the unpredictable timing of the bus, which has seven regular stops but also picks up students who flag it down.

“In order to address the issues of low ridership, a team of engineering students and faculty constructed an automated vehicle locator (AVL), an application to track the campus shuttle and to provide accurate estimates when the shuttle will arrive at each stop,” Coulston says.

The system’s three main hardware components are a user’s smartphone; a base station on campus; and a mobile tracker that stays on the traveling bus.

The base station consists of an XTend 900 MHz wireless modem connected to a Raspberry Pi, Coulston says. The Pi runs a web server to handle requests from the user’s smart phones. The mobile tracker consists of a GPS receiver, a Microchip Technology PIC 18F26K22 and an XTend 900 MHz wireless modem.

Coulston and his team completed a functional prototype by the time classes started in August. As a result, a student can call up a bus locater web page on his smartphone. The browser can load a map of the campus via the Google Maps JavaScript API, and JavaScript code overlays the bus and bus stops. You can see the bus locater page between 7:40 a.m. to 7 p.m. EST Monday through Friday.

“The system works remarkably well, providing reliable, accurate information about our campus bus,” Coulston says. “Best of all, it does this autonomously, with very little supervision on our part.  It has worked so well, we have received additional funding to add another base station to campus to cover an extended route coming next year.”

The base station for the mobile tracker is a sandwich of Raspberry Pi, interface board, and wireless modem.

The base station for the mobile tracker is a sandwich of Raspberry Pi, interface board, and wireless modem.

And while the system has helped Penn State Erie students make it to class on time, what does Coulston and his team’s article about it offer Circuit Cellar readers?

“This article should appeal to readers because it’s a web-enabled embedded application,” Coulston says. “We plan on providing users with enough information so that they can create their own embedded web applications.”

Look for the article in an upcoming issue. In the meantime, if you have a DIY wireless project you’d like to share with Circuit Cellar, please e-mail editor@circuitcellar.com.

 

 

 

 

Natural Human-Computer Interaction

Recent innovations in both hardware and software have brought on a new wave of interaction techniques that depart from mice and keyboards. The widespread adoption of smartphones and tablets with capacitive touchscreens shows people’s preference to directly manipulate virtual objects with their hands.

Going beyond touch-only interaction, the Microsoft Kinect sensor enables users to play

This shows the hand tracking result from Kinect data. The red regions are our tracking results and the green lines are the skeleton tracking results from the Kinect SDK (based on data from the ChAirGest corpus: https://project.eia-fr.ch/chairgest/Pages/Overview.aspx).

This shows the hand tracking result from Kinect data. The red regions are our tracking results and the green lines are the skeleton tracking results from the Kinect SDK (based on data from the ChAirGest corpus: https://project.eia-fr.ch/chairgest/Pages/Overview.aspx).

games with their entire body. More recently, Leap Motion’s new compact sensor, consisting of two cameras and three infrared LEDs, has opened up the possibility of accurate fingertip tracking. With Project Glass, Google is pioneering new technology in the wearable human-computer interface. Other new additions to wearable technology include Samsung’s Galaxy Gear Smartwatch and Apple’s rumored iWatch.

A natural interface reduces the learning curve, or the amount of time and energy a person requires to complete a particular task. Instead of a user learning to communicate with a machine through a programming language, the machine is now learning to understand the user.

Hardware advancements have led to our clunky computer boxes becoming miniaturized, stylish sci-fi-like phones and watches. Along with these shrinking computers come ever-smaller sensors that enable a once keyboard-constrained computer to listen, see, and feel. These developments pave the way to natural human-computer interfaces.
If sensors are like eyes and ears, software would be analogous to our brains.

Understanding human speech and gestures in real time is a challenging task for natural human-computer interaction. At a higher level, both speech and gesture recognition require similar processing pipelines that include data streaming from sensors, feature extraction, and pattern recognition of a time series of feature vectors. One of the main differences between the two is feature representation because speech involves audio data while gestures involve video data.

For gesture recognition, the first main step is locating the user’s hand. Popular libraries for doing this include Microsoft’s Kinect SDK or PrimeSense’s NITE library. However, these libraries only give the coordinates of the hands as points, so the actual hand shapes cannot be evaluated.

Fingertip tracking using a Kinect sensor. The green dots are the tracked fingertips.

Our team at the Massachusetts Institute of Technology (MIT) Computer Science and Artificial Intelligence Laboratory has developed methods that use a combination of skin-color and motion detection to compute a probability map of gesture salience location. The gesture salience computation takes into consideration the amount of movement and the closeness of movement to the observer (i.e., the sensor).

We can use the probability map to find the most likely area of the gesturing hands. For each time frame, after extracting the depth data for the entire hand, we compute a histogram of oriented gradients to represent the hand shape as a more compact feature descriptor. The final feature vector for a time frame includes 3-D position, velocity, and hand acceleration as well as the hand shape descriptor. We also apply principal component analysis to reduce the feature vector’s final dimension.

A 3-D model of pointing gestures using a Kinect sensor. The top left video shows background subtraction, arm segmentation, and fingertip tracking. The top right video shows the raw depth-mapped data. The bottom left video shows the 3D model with the white plane as the tabletop, the green line as the arm, and the small red dot as the fingertip.

The next step in the gesture-recognition pipeline is to classify the feature vector sequence into different gestures. Many machine-learning methods have been used to solve this problem. A popular one is called the hidden Markov model (HMM), which is commonly used to model sequence data. It was earlier used in speech recognition with great success.

There are two steps in gesture classification. First, we need to obtain training data to learn the models for different gestures. Then, during recognition, we find the most likely model that can produce the given observed feature vectors. New developments in the area involve some variations in the HMM, such as using hierarchical HMM for real-time inference or using discriminative training to increase the recognition accuracy.

Ying Yin

Ying Yin is a PhD candidate and a Research Assistant at the Massachusetts Institute of Technology (MIT) Computer Science and Artificial Intelligence Laboratory. Originally from Suzhou, China, Ying received her BASc in Computer Engineering from the University of British Columbia in Vancouver, Canada, in 2008 and an MS in Computer Science from MIT in 2010. Her research focuses on applying machine learning and computer vision methods to multimodal human-computer interaction. Ying is also interested in web and mobile application development. She has won awards in web and mobile programming competitions at MIT.

Currently, the newest development in speech recognition at the industry scale is a method called deep learning. Earlier machine-learning methods require careful selection of feature vectors. The goal of deep learning is automatic discovery of powerful features from raw input data. So far, it has shown promising results in speech recognition. It can possibly be applied to gesture recognition to see whether it can further improve accuracy.

As component form factors shrink, sensor resolutions grow, and recognition algorithms become more accurate, natural human-computer interaction will become more and more ubiquitous in our everyday life.

Small Plug-In Embedded Cellular Modem

Skywire plug-in modem

Skywire plug-in modem

The Skywire is a small plug-in embedded cellular modem. It uses a standard XBee form factor and 1xRTT CDMA operating mode to help developers minimize hardware and network costs. Its U.FL port ensures antenna flexibility.

The Skywire modem features a Telit CE910-DUAL wireless module and is available with bundled CDMA 1xRTT data plans from leading carriers, enabling developers to add fully compliant cellular connectivity without applying for certification. Future versions of the Skywire will support GSM and LTE. Skywire is smaller than many other embedded solutions and simple to deploy due to its bundled carrier service plans.

Skywire is available with a complete development kit that includes the cellular modem, a baseboard, an antenna, a power supply, debug cables, and a cellular service plan. The Skywire baseboard is an Arduino shield, which enables direct connection to an Arduino microcontroller.

Skywire modems cost $129 individually and $99 for 1,000-unit quantities. A complete development kit including the modem costs $262.

NimbeLink, LLC
www.nimbelink.com

Member Profile: Tom Freund

Tom Freund

Tom Freund

LOCATION:
West Hartford, CT, USA

MEMBER STATUS:
Tom has been a member for four years.

TECH INTERESTS:
Tom says he enjoys machine learning; algorithm design; embedded, prognostic, and diagnostic systems; and eLua and C programming.

RECENT EMBEDDED TECH ACQUISITION:
Tom recently bought a Femtoduino board and a Texas Instruments TMP102 sensor breakout board.

PREFERRED MICROCONTROLLER:
His current microcontrollers of choice are the STMicroelectronics STM32 32-bit ARM Cortex and Atmel’s ATmega328.

CURRENT PROJECTS:
Tom is working on PicoDB, an open-source, NoSQL database tool for 32-bit microcontrollers written in Lua. (To learn more, visit www.lua.org/wshop12/Freund.pdf.)

THOUGHTS ON THE FUTURE OF EMBEDDED TECH:
Tom says when he thinks about embedded technology’s future, just one phrase comes to mind: “the Internet of things.”

“In 10 to 15 years time, we will look back and think of Facebook, Twitter, and (yes) even Google as the ’Model T’ days of global networking,” he says. “That is because everything will be connected to everything at various levels of security. We and our infrastructure will be ’minded’ by unseen digital butlers that help us cope with life and its unpredictability, as well as protect that which should be kept private.”

Q&A: Jeremy Blum, Electrical Engineer, Entrepreneur, Author

Jeremy Blum

Jeremy Blum

Jeremy Blum, 23, has always been a self-proclaimed tinkerer. From Legos to 3-D printers, he has enjoyed learning about engineering both in and out of the classroom. A recent Cornell University College of Engineering graduate, Jeremy has written a book, started his own company, and traveled far to teach children about engineering and sustainable design. Jeremy, who lives in San Francisco, CA, is now working on Google’s Project Glass.—Nan Price, Associate Editor

NAN: When did you start working with electronics?

JEREMY: I’ve been tinkering, in some form or another, ever since I figured out how to use my opposable thumbs. Admittedly, it wasn’t electronics from the offset. As with most engineers, I started with Legos. I quickly progressed to woodworking and I constructed several pieces of furniture over the course of a few years. It was only around the start of my high school career that I realized the extent to which I could express my creativity with electronics and software. I thrust myself into the (expensive) hobby of computer building and even built an online community around it. I financed my hobby through my two companies, which offered computer repair services and video production services. After working exclusively with computer hardware for a few years, I began to dive deeper into analog circuits, robotics, microcontrollers, and more.

NAN: Tell us about some of your early, pre-college projects.

JEREMY: My most complex early project was the novel prosthetic hand I developed in high school. The project was a finalist in the prestigious Intel Science Talent Search. I also did a variety of robotics and custom-computer builds. The summer before starting college, my friends and I built a robot capable of playing “Guitar Hero” with nearly 100% accuracy. That was my first foray into circuit board design and parallel programming. My most ridiculous computer project was a mineral oil-cooled computer. We submerged an entire computer in a fish tank filled with mineral oil (it was actually a lot of baby oil, but they are basically the same thing).

DeepNote Guitar Hero Robot

DeepNote Guitar Hero Robot

Mineral Oil-Cooled Computer

Mineral Oil-Cooled Computer

NAN: You’re a recent Cornell University College of Engineering graduate. While you were there, you co-founded Cornell’s PopShop. Tell us about the workspace. Can you describe some PopShop projects?

Cornell University's PopShop

Cornell University’s PopShop

JEREMY: I recently received my Master’s degree in Electrical and Computer Engineering from Cornell University, where I previously received my BS in the same field. During my time at Cornell, my peers and I took it upon ourselves to completely retool the entrepreneurial climate at Cornell. The PopShop, a co-working space that we formed a few steps off Cornell’s main campus, was our primary means of doing this. We wanted to create a collaborative space where students could come to explore their own ideas, learn what other entrepreneurial students were working on, and get involved themselves.

The PopShop is open to all Cornell students. I frequently hosted events there designed to get more students inspired about pursuing their own ideas. Common occurrences included peer office hours, hack-a-thons, speed networking sessions, 3-D printing workshops, and guest talks from seasoned venture capitalists.

Student startups that work (or have worked) out of the PopShop co-working space include clothing companies, financing companies, hardware startups, and more. Some specific companies include Rosie, SPLAT, LibeTech (mine), SUNN (also mine), Bora Wear, Yorango, Party Headphones, and CoVenture.

NAN: Give us a little background information about Cornell University Sustainable Design (CUSD). Why did you start the group? What types of CUSD projects were you involved with?

CUSD11JEREMY: When I first arrived at Cornell my freshman year, I knew right away that I wanted to join a research lab, and that I wanted to join a project team (knowing that I learn best in hands-on environments instead of in the classroom). I joined the Cornell Solar Decathlon Team, a very large group of mostly engineers and architects who were building a solar-powered home to enter in the biannual solar decathlon competition orchestrated by the Department of Energy.

By the end of my freshman year, I was the youngest team leader in the organization.  After competing in the 2009 decathlon, I took over as chief director of the team and worked with my peers to re-form the organization into Cornell University Sustainable Design (CUSD), with the goal of building a more interdisciplinary team, with far-reaching impacts.

CUSD3

Under my leadership, CUSD built a passive schoolhouse in South Africa (which has received numerous international awards), constructed a sustainable community in Nicaragua, has been the only student group tasked with consulting on sustainable design constraints for Cornell’s new Tech Campus in New York City, partnered with nonprofits to build affordable homes in upstate New York, has taught workshops in museums and school, contributed to the design of new sustainable buildings on Cornell’s Ithaca campus, and led a cross-country bus tour to teach engineering and sustainability concepts at K–12 schools across America. The group is now comprised of students from more than 25 different majors with dozens of advisors and several simultaneous projects. The new team leaders are making it better every day. My current startup, SUNN, spun out of an EPA grant that CUSD won.

CUSD7NAN: You spent two years working at MakerBot Industries, where you designed electronics for a 3-D printer and a 3-D scanner. Any highlights from working on those projects?

JEREMY: I had a tremendous opportunity to learn and grow while at MakerBot. When I joined, I was one of about two dozen total employees. Though I switched back and forth between consulting and full-time/part-time roles while class was in session, by the time I stopped working with MakerBot (in January 2013), the company had grown to more than 200 people. It was very exciting to be a part of that.

I designed all of the electronics for the original MakerBot Replicator. This constituted a complete redesign from the previous electronics that had been used on the second generation MakerBot 3-D printer. The knowledge I gained from doing this (e.g., PCB design, part sourcing, DFM, etc.) drastically outweighed much of what I had learned in school up to that point. I can’t say much about the 3-D scanner (the MakerBot Digitizer), as it has been announced, but not released (yet).

The last project I worked on before leaving MakerBot was designing the first working prototype of the Digitizer electronics and firmware. These components comprised the demo that was unveiled at SXSW this past April. This was a great opportunity to apply lessons learned from working on the Replicator electronics and find ways in which my personal design process and testing techniques could be improved. I frequently use my MakerBot printers to produce custom mechanical enclosures that complement the open-source electronics projects I’ve released.

NAN: Tell us about your company, Blum Idea Labs. What types of projects are you working on?

JEREMY: Blum Idea Labs is the entity I use to brand all my content and consulting services. I primarily use it as an outlet to facilitate working with educational organizations. For example, the St. Louis Hacker Scouts, the African TAHMO Sensor Workshop, and several other international organizations use a “Blum Idea Labs Arduino curriculum.” Most of my open-source projects, including my tutorials, are licensed via Blum Idea Labs. You can find all of them on my blog (www.jeremyblum.com/blog). I occasionally offer private design consulting through Blum Idea Labs, though I obviously can’t discuss work I do for clients.

NAN: Tell us about the blog you write for element14.

JEREMY: I generally use my personal blog to write about projects that I’ve personally been working on.  However, when I want to talk about more general engineering topics (e.g., sustainability, engineering education, etc.), I post them on my element14 blog. I have a great working relationship with element14. It has sponsored the production of all my Arduino Tutorials and also provided complete parts kits for my book. We cross-promote each-other’s content in a mutually beneficial fashion that also ensures that the community gets better access to useful engineering content.

NAN: You recently wrote Exploring Arduino: Tools and Techniques for Engineering Wizardry. Do you consider this book introductory or is it written for the more experienced engineer?

JEREMY: As with all the video and written content that I produce on my website and on YouTube, I tried really hard to make this book useful and accessible to both engineering veterans and newbies. The book builds on itself and provides tons of optional excerpts that dive into greater technical detail for those who truly want to grasp the physics and programming concepts behind what I teach in the book. I’ve already had readers ranging from teenagers to senior citizens comment on the applicability of the book to their varying degrees of expertise. The Amazon reviews tell a similar story. I supplemented the book with a lot of free digital content including videos, part descriptions, and open-source code on the book website.

NAN: What can readers expect to learn from the book?

JEREMY: I wrote the book to serve as an engineering introduction and as an idea toolbox for those wanting to dive into concepts in electrical engineering, computer science, and human-computer interaction design. Though Exploring Arduino uses the Arduino as a platform to experiment with these concepts, readers can expect to come away from the book with new skills that can be applied to a variety of platforms, projects, and ideas. This is not a recipe book. The projects readers will undertake throughout the book are designed to teach important concepts in addition to traditional programming syntax and engineering theories.

NAN: I see you’ve spent some time introducing engineering concepts to children and teaching them about sustainable engineering and renewable energy. Tell us about those experiences. Any highlights?

JEREMY: The way I see it, there are two ways in which engineers can make the world a better place: they can design new products and technologies that solve global problems or they can teach others the skills they need to assist in the development of solutions to global problems. I try hard to do both, though the latter enables me to have a greater impact, because I am able to multiply my impact by the number of students I teach. I’ve taught workshops, written curriculums, produced videos, written books, and corresponded directly with thousands of students all around the world with the goal of transferring sufficient knowledge for these students to go out and make a difference.

Here are some highlights from my teaching work:

bluestamp

I taught BlueStamp Engineering, a summer program for high school students in NYC in the summer of 2012. I also guest-lectured at the program in 2011 and 2013.

I co-organized a cross-country bus tour where we taught sustainability concepts to school children across the country.

indiaI was invited to speak at Techkriti 2013 in Kanpur, India. I had the opportunity to meet many students from IIT Kanpur who already followed my videos and used my tutorials to build their own projects.

Blum Idea Labs partnered with the St. Louis Hacker Scouts to construct a curriculum for teaching electronics to the students. Though I wasn’t there in person, I did welcome them all to the program with a personalized video.

brooklyn_childrens_zoneThrough CUSD, I organized multiple visits to the Brooklyn Children’s Zone, where my team and I taught students about sustainable architecture and engineering.

Again with CUSD, we visited the Intrepid museum to teach sustainable energy concepts using potato batteries.

intrepid

NAN: Speaking of promoting engineering to children, what types of technologies do you think will be important in the near future?

JEREMY: I think technologies that make invention more widely accessible are going to be extremely important in the coming years. Cheaper tools, prototyping platforms such as the Arduino and the Raspberry Pi, 3-D printers, laser cutters, and open developer platforms (e.g., Android) are making it easier than ever for any person to become an inventor or an engineer.  Every year, I see younger and younger students learning to use these technologies, which makes me very optimistic about the things we’ll be able to do as a society.