PIC32MX1/2/5 Microcontrollers for Embedded Control & More

Microchip Technology’s new PIC32MX1/2/5 series enables a wide variety of applications, ranging from digital audio to general-purpose embedded control. The microcontroller series offers a robust peripheral set for a wide range of cost-sensitive applications that require complex code and higher feature integration.MicrochipPIC32MX125-starterkit

The microcontrollers feature:

  • Up to 83 DMIPS performance
  • Scalable memory options from 64/8-KB to 512/64-KB flash memory/RAM
  • Integrated CAN2.0B controllers with DeviceNet addressing support and programmable bit rates up to 1 Mbps, along with system RAM for storing up to 1024 messages in 32 buffers.
  •  Four SPI/I2S interfaces
  • A Parallel Master Port (PMP) and capacitive touch sensing hardware
  • A 10-bit, 1-Msps, 48-channel ADC
  • Full-speed USB 2.0 Device/Host/OTG peripheral
  • Four general-purpose direct memory access controllers (DMAs) and two dedicated DMAs on each CAN and USB module

 

Microchip’s MPLAB Harmony software development framework supports the MCUs. You can take advantage of Microchip’s software packages, such as Bluetooth audio development suites, Bluetooth Serial Port Profile library, audio equalizer filter libraries, various Decoders (including AAC, MP3, WMA and SBC), sample-rate conversion libraries, CAN2.0B PLIBs, USB stacks, and graphics libraries.

Microchip’s free MPLAB X IDE, the MPLAB XC32 compiler for PIC32, the MPLAB ICD3 in-circuit debugger, and the MPLAB REAL ICE in-circuit emulation system also support the series.

The PIC32MX1/2/5 Starter Kit costs $69. The new PIC32MX1/2/5 microcontrollers with the 40-MHz/66 DMIPS speed option are available in 64-pin TQFP and QFN packages and 100-pin TQFP packages. The 50-MHz/83 DMIPS speed option for this PIC32MX1/2/5 series is expected to be available starting in late January 2015. Pricing starts at $2.75 each, in 10,000-unit quantities.

 

Source: Microchip Technology

Embedded Chip = Subdermal Chip?

Forget stashing your cash under your mattress. Now you can stash it under your skin. Sort of.

The Telegraph reported Tuesday that Martijn Wismeijer, a Dutch innovator, recently implanted a 12-mm xNTi NFC chip in his body to store Bitcoin. The small glass chip stores 888 bytes and comes with a syringe for installation.

According the Dangerous Things site, the kit includes:

  • Glass chip preloaded in EO gas sterilized injector
  • A skin antiseptic
  • Gauze pads, a bandage, and non-latex surgical gloves

 

Source: Telegraph

Freescale High-Sensitivity Accelerometer Family

Freescale recently introduced a new range of three-axis accelerometers offering high sensitivity at low power consumption. According to Freescale, the FXLN83xxQ family is capable of detecting acceleration information often missed by less accurate sensors commonly used in consumer products such as smartphones and exercise activity monitors. In conjunction with appropriate software algorithms, its improved sensitivity allows the new sensor to be used for equipment fault prognostication (for predictive maintenance), condition monitoring, and medical tamper detection applications.

Source: Freescale

Source: Freescale

The 3 mm × 3 mm chip has a bandwidth of 2.7 kHz and uses analog output signals for direct connection to a microcontroller’s ADC input. Each chip has two levels of sensitivity that can be changed on the fly. The complete family covers acceleration ranges of ±2, ±4, ±8, and ±16 g, with gains of, 229.0, 114.5, 57.25, and 28.62 mV/g, respectively. Zero g is indicated by an output level of 0.75 V.

The FXLN83xxQ family:

  • FXLN83x1Q ±2 or ±8 g range
  • FXLN83x2Q ±4 or ±16 g
  • FXLN836xQ 1.1 kHz x- and y-axis bandwidth (Z = 600 Hz)
  • FXLN837xQ 2.7 kHz x- and y-axis bandwidth (Z = 600 Hz)

The sensors operate from 1.71 to 3.6 V (at 180 µA typically, 30 nA shutdown). The company has also made available the DEMOFXLN83xxQ evaluation break-out board with a ready-mounted sensor to simplify device integration into a test and development environment.

Embedded Programming: Rummage Around In This Toolbox

Circuit Cellar’s April issue is nothing less than an embedded programming toolbox. Inside you’ll find tips, tools, and online resources to help you do everything from building a simple tracing system that can debug a small embedded system to designing with a complex system-on-a-chip (SoC) that combines programmable logic and high-speed processors.

Article contributor Thiadmer Riemersma describes the three parts of his tracing system: a set of macros to include in the source files of a device under test (DUT), a PC workstation viewer that displays retrieved trace data, and a USB dongle that interfaces the DUT with the workstation (p. 26).

Thaidmer Riemersma's trace dongle is connected to a laptop and device. The dongle decodes the signal and forwards it as serial data from a virtual RS-232 port to the workstation.

Thaidmer Riemersma’s trace dongle is connected to a laptop and DUT. The dongle decodes the signal and forwards it as serial data from a virtual RS-232 port to the workstation.

Riemersma’s special serial protocol overcomes common challenges of tracing small embedded devices, which typically have limited-performance microcontrollers and scarce interfaces. His system uses a single I/O and keeps it from bottlenecking by sending DUT-to-workstation trace transmissions as compact binary messages. “The trace viewer (or trace “listener”) can translate these message IDs back to the human-readable strings,” he says.

But let’s move on from discussing a single I/0 to a tool that offers hundreds of I/0s. They’re part of the all-programmable Xilinx Zynq SoC, an example of a device that blends a large FPGA fabric with a powerful processing core. Columnist Colin O’Flynn explores using the Zynq SoC as part of the Avnet ZedBoard development board (p. 46). “Xilinx’s Zynq device has many interesting applications,” O’Flynn concludes. “This is made highly accessible by the ZedBoard and MicroZed boards.”

An Avnet ZedBoard is connected to the OpenADC. The OpenADC provides a moderate-speed ADC (105 msps), which interfaces to the programmable logic (PL) fabric in Xilinx’s Zynq device via a parallel data bus. The PL fabric then maps itself as a peripheral on the hard-core processing system (PS) in the Zynq device to stream this data into the system DDR memory.

An Avnet ZedBoard is connected to the OpenADC. (Source: C. O’Flynn, Circuit Cellar 285)

Our embedded programming issue also includes George Novacek’s article on design-level software safety analysis, which helps avert hazards that can damage an embedded controller (p. 39). Bob Japenga discusses specialized file systems essential to Linux and a helpful networking protocol (p. 52).

One of the final steps is mounting the servomotor for rudder control. Thin cords connect the servomotor horn and the rudder. Two metal springs balance mechanical tolerances.

Jens Altenburg’s project

Other issue highlights include projects that are fun as well as instructive. For example, Jens Altenburg added an MCU, GPS, flight simulation, sensors, and more to a compass-controlled glider design he found in a 1930s paperback (p. 32). Columnist Jeff Bachiochi introduces the possibilities of programmable RGB LED strips (p. 66).

An Engineer Who Retires to the Garage

Jerry Brown, of Camarillo, CA, retired from the aerospace industry five years ago but continues to consult and work on numerous projects at home. For example, he plans to submit an article to Circuit Cellar about a Microchip Technology PIC-based computer display component (CDC) he designed and built for a traffic-monitoring system developed by a colleague.

Jerry Brown sits at his workbench. The black box atop the workbench is an embedded controller and is part of a traffic monitoring system he has been working on.

Jerry Brown sits at his workbench. The black box atop the workbench is an embedded controller and part of  his traffic monitoring system project.

“The traffic monitoring system is composed of a beam emitter component (BEC), a beam sensor component (BSC), and the CDC, and is intended for unmanned use on city streets, boulevards, and roadways to monitor and record the accumulative count, direction of travel, speed, and time of day for vehicles that pass by a specific location during a set time period,” he says.

Brown particularly enjoys working with PWM LED controllers. Circuit Cellar editors look forward to seeing his project article. In the meantime, he sent us the following description and pictures of the space where he conceives and executes his creative engineering ideas.

Jerry's garage-based lab.

Brown’s garage-based lab.

My workspace, which I call my “lab,” is on one side of my two-car garage and is fairly well equipped. (If you think it looks a bit messy, you should have seen it before I straightened it up for the “photo shoot.”)  

I have a good supply of passive and active electronic components, which are catalogued and, along with other parts and supplies, are stored in the cabinets and shelves alongside and above the workbench. I use the computer to write and compile software programs and to program PIC flash microcontrollers.  

The photos show the workbench and some of the instrumentation I have in the lab, including a waveform generator, a digital storage oscilloscope, a digital multimeter, a couple of power supplies, and a soldering station.  

The black box visible on top of the workbench is an embedded controller and is part of the traffic monitoring system that I have been working on.

Instruments in Jerry's lab include a waveform generator, a digital storage oscilloscope, a digital multimeter, a couple of power supplies, and a soldering station.

Instruments in Brown’s lab include a waveform generator, a digital storage oscilloscope, a digital multimeter, a couple of power supplies, and a soldering station. 

Brown has a BS in Electrical Engineering and a BS in Business Administration from California Polytechnic State University in San Luis Obispo, CA. He worked in the aerospace industry for 30 years and retired as the Principal Engineer/Manager of a Los Angeles-area aerospace company’s electrical and software design group.