Q&A: Jack Ganssle, Electronics Entrepreneur

Jack Ganssle is a well-known engineer, author, lecturer, and consultant. After learning about oscilloscopes, transistors, and capacitors in his father’s engineering lab, Jack went on to write hundreds of articles and several books about embedded development-related topics. He also started and sold three electronics companies, worked on classified government projects, and founded The Ganssle Group, based in Reisterstown, MD. I recently spoke with Jack about some of his career highlights, his current work, and what’s next in the embedded design industry.—Nan Price, Associate Editor

NAN: You’ve been interested in electronics since the age of 9. Give us a little background information. What was your first project?

Jack Ganssle

Jack Ganssle

JACK: My first project was a crystal radio with the inductor wound on the quintessential Quaker oatmeal box! It was really exciting to get AM reception over that. Back then, pretty much no one had FM. AM was it.

Later I learned to repair TVs and made pocket money doing that. Those sets were all vacuum tubes. Usually there was just a bad tube or dried out capacitor. But from there, my friends and I learned to design amplifiers (the Beatles were very hot and everyone was starting a band). For graduation from eighth grade, my dad gave me an old oscilloscope he had built from a kit years earlier.

He was part of a startup when I was in my early teens. We kids were coerced into being the (unpaid) janitors for the place. That was annoying at first. But, we were allowed to keep anything we swept up. The engineering lab’s floor was always covered in resistors, capacitors, transistors, and the like, so my parts collection grew. (ICs existed then, but were rare.)

When I was 16 I got a ham license, built  various transmitters, and used WWII surplus receivers. One day an angry letter arrived from the Federal Communications Commission (FCC). They had picked me up on my second harmonic clear across the country. I was really proud of that contact.

But it wasn’t long before some resistor-transistor logic (RTL) digital ICs came my way. Projects included controls for tube transmitters, Estes model rocket telemetry, and even a crude TV camera that used a photomultiplier tube to scan a spiral set of holes in a spinning disk. A couple of us worked on a ham radio moon bounce, but I accidentally shorted out a resistor and my only hydrogen thyratron (sort of a tube version of an SCR) blew up. There was no money for a replacement, so that project died. The transmitter used a little lighthouse tube that had a maximum rating of a couple of watts, but it worked OK when pulsing it for a few microseconds at 1 kW.

Senior year of high school a friend and I hitchhiked from Maryland to Boston to go to a surplus store. I bought a core memory plane that was 13,000 bits in a 6 in2 cube. Long hair didn’t help. We were picked up on the New Jersey Turnpike and strip searched. The cops never believed my explanation that the thing was computer memory.

A few years later, I had a 6501 microprocessor in the glove compartment of my Volkswagen bus (which I lived in for a year while saving for a sailboat). Coming into a sleepy Maine town from Canada that event was repeated when the border cops searched the bus and found the chip. They didn’t believe in computers on a chip. But the PC was years away and computers were mostly seen in science fiction films.

Freshman year of college, I designed and built a 12-bit computer using hundreds of TTL chips soldered together using phone company wire on vectorboards. For I/O there was an old Model 15 teletype using 5-bit Baudot codes that my software drove via bit banging. The OS, such as it was, lived in a pair of 1702 EPROMs, which each held 256 bytes. The computer worked great! And then the 8008, the first 8-bit microcontroller, came out and the thing was obsolete. I junked it, and now I wish I had saved at least the schematics.

But by then I had been working part-time as an electronics technician for a few years and the company needed to update its analog products to digital. No one knew anything about computers, so they promoted me to engineer. Eventually I ran the digital group there. We designed one of the first floppy disk controllers, insanely high-resolution graphics controllers, and a lot of other products. We also integrated minicomputers (Data General Novas and DEC PDP-11s) into systems with microprocessors. We bought a 5-MB disk drive for a Nova. It cost $5,000 (back when that was a lot of money) and weighed 500 lb. How things have changed.

NAN: Tell us about The Ganssle Group (www.ganssle.com). When and why did you start the company? What types of services do you provide?

JACK:  I formed The Ganssle Group in 1997 after 15 years of running an in-circuit emulator company. Working 70 h a week was getting old and I wanted more time with my kids. So my objective was to reverse the usual model. Instead of fitting life around a job, I wanted to fit the job into life.

Goal 1: Four months of vacation a year. It turns out that is elusive, in no small part due to the cool stuff going on around here, but most years we do manage two to three months off. My wife, Marybeth, works with me. She takes care of all of the administrative/travel and the like.

Goal 2: No commute. So we work out of the house (for the first few years, we worked out of the houseboat where we raised two kids).

Now the kids are grown, so there’s a Goal 3: Have as much fun as possible with Marybeth, so when I travel to new or interesting places she often accompanies me. There’s a lot more to life than work. Some of my side projects are available at www.ganssle.com/jack.

I’m not really sure what I do. I write—a lot. Readers are incredibly smart and vocal. The dialogue with them is a highlight of my day. I also give one- and two-day seminars on pretty much every continent (except Antarctica—so far!) about ways to get better firmware done faster. Sometimes I do an expert witness gig. Those are always fascinating as one gets to dig deeply into products and learn about the law. On rare occasions, I’ll do a day or three of consulting if the problem is particularly interesting. And there’s always some experiment I’m working on, which sometimes gets written up as an article.

NAN: Speaking of articles, you’ve written hundreds—including nine for Circuit Cellar magazine—on topics ranging from the history of the embedded systems programming industry, to memory management, to using programmable logic devices (PLDs). You also write a column for Embedded (www.embedded.com) and you are editor of the biweekly newsletter The Embedded Muse. Tell us about the types of projects you enjoy constructing and writing about.

The breadboard is discharging batteries. To the left, a battery is soldered to some coax. Using the waveform generator in the oscilloscope I’m measuring the battery's reactance (which, it turns out, is entirely capacitive). The IAR tool is profiling current consumption of an evaluation board.

The breadboard is discharging batteries. To the left, a battery is soldered to some coax. Using the waveform generator in the oscilloscope I’m measuring the battery’s reactance (which, it turns out, is entirely capacitive). The IAR tool is profiling current consumption of an evaluation board.

JACK: I have one experiment that’s running right now. For the last four months I’ve been discharging coin cells. It sounds dull, but some microcontroller vendors are making outrageous claims about battery life that are on the surface true but irrelevant in real circuits. This circuit runs a complex profile on the batteries, tossing different loads on for a few milliseconds, and an ARM microcontroller samples the batteries’ voltage (as well as the transistors, VCE drop) into a log file. That data goes into a spreadsheet for further analysis. I’m making a much bigger version of this now, which will handle far more batteries at a time. I recently gave some preliminary results at a talk in Asilomar, CA, which garnered a lot of interest. More results will be forthcoming soon…I promise!

Another aspect of this is leakage. Does handling a battery leave finger oils that can affect the decades-long life claimed by the vendors? To test this, I built a femtoammeter. A polypropylene capacitor is charged and feeds a super-low bias current op-amp. Another ARM board monitors the op-amp voltage to watch the capacitor discharge as various contaminants are electrically connected to the capacitor. With no contaminants connected, even after 48 h, the cap discharged less than 1 mV. The thing resolves to better than 10 fA. (One fA is a millionth of a nanoamp, or about 6,000 electrons/second).

In fact, the ADC’s transfer function is a proxy for temperature. We heat the house with wood and you could see a perfect correlation of op-amp output and temperature throughout the day. (It’s lowest in the morning as the fire burns out overnight.)

NAN: You wrote the two-part Circuit Cellar article series, “Writing a Real-Time Operating System” (Issue 7 and 8, 1989) about the Hitachi HD64180 Z80-based embedded microprocessor nearly 15 years ago. Circuit Cellar also featured another HD64180-based article, “Huge Arrays on the HD64180: Taking Advantage of Memory Management” (Issue 16, 1990). What was your fascination with the HD64180? Also, is either of these projects still current? Have you changed any of the design components?

JACK: Gee, I have no idea. I wrote those using Microsoft Works, but the file format has changed and Works can no longer open those articles. Alas, the HD64180 is quite obsolete. It was a grown-up version of the Z80 and very popular in its day.

In 1974, Intel introduced the 8080, which was the first really decent 8-bit microprocessor. But it needed two clocks and three power supplies. The folks at Zilog came out with the Z80 a year later. It could run 8080 code, but had one clock, a single 5-V supply, and it offered additional instructions that massively improved code density. Intel responded with the 8085, but it was really an 8080 in drag. The couple of new instructions added just couldn’t give the Z80 a run for its money. Eventually Zilog came out with the Z180, and Hitachi the 64180 clone, which included on-board peripherals and a memory management unit to address 1 MB using standard Z80 instructions. It was a great idea, but since there was no on-board memory, it couldn’t compete with microcontrollers such as the ancient, and still-going-strong, 8051.

NAN: In addition to writing, you lecture and teach at conferences and symposiums worldwide. Tell us about your one-day “Better Firmware Faster” seminar. How did it begin? What can attendees expect to gain from it?

JACK: I’m completely frustrated with the state of firmware. It’s inevitably late and buggy. While there’s no doubt that crafting firmware is extremely difficult—after all, software is the most complex engineered product ever invented—we can and must do better. It’s astonishing that so few groups keep even the simplest metrics, yet engineering is all about numbers.

The seminar is a fast-paced event that shows developers better ways to get their code to market. It covers process issues, as well as a lot of technology areas unique to embedded systems, such as managing memory and dealing with tough real-time problems.

What can attendees get from it? It varies from very little to a lot. Some groups refuse to change anything, so will always maintain the status quo. Others do better. Some report 40% improvements to the schedule and up to an order of magnitude of reduction in shipped bugs.

NAN: You started three high-tech companies prior to The Ganssle Group. Tell us about your work experience. Any highlights?

JACK: Well, there was one instrument that used infrared light to measure protein in cow poop. Though it was interesting technology, it’s hard to call that a highlight. The design I’m most proud of was my first emulator, which had only 17 ICs and used insanely complex code. Eventually we offered emulators that required hundreds of chips, but those cost $7,000, while the first one sold for $600.

Some of the government work I’ve done was very interesting and used extremely sophisticated electronics. But I can’t talk about those projects. A buddy and I did the White House security system during the Reagan administration. It was fun to work in the basement there, but the bureaucracy was stifling. We lost our White House passes the same day Oliver North did, but he got more press.

NAN: What do you consider to be the “next big thing” in the embedded design industry? Is there a particular technology that you’ve used or seen that will change the way engineers design in the coming months and years?

JACK: Everything is going to change for us over the next five to 10 years. We will have tools that automatically find lots of bugs. Everyone is familiar (and has a love/hate relationship) with lint. But static analyzers can today find lots of runtime bugs. These are currently expensive and frustrating, but they demonstrate that such products can, and will, exist. When the issues are resolved, I expect they’ll be as common as IDEs. Debugging manually is hugely expensive.

Another tool is slowly gaining acceptance: so-called virtualization products (e.g., from Wind River and others). These are not the hypervisors people think about when using the word “virtualization.” Rather, they are complete software models of a target system. You can run all—and I mean all—of your code on the model. The hardware is always late. These tools will permit debugging to start at the beginning of the project. The tools are also expensive and somewhat clumsy, but will get better over time.

A modern smartphone has more than 10 million lines of code. Automobiles often have more. One thing is certain: Firmware will continue to grow in size and complexity. The current techniques we use to develop code will change as well.

 

Embedded Sensor Innovation at MIT

During his June 5 keynote address at they 2013 Sensors Expo in Chicago, Joseph Paradiso presented details about some of the innovative embedded sensor-related projects at the MIT Media Lab, where he is the  Director of the Responsive Environments Group. The projects he described ranged from innovative ubiquitous computing installations for monitoring building utilities to a small sensor network that transmits real-time data from a peat bog in rural Massachusetts. Below I detail a few of the projects Paradiso covered in his speech.

DoppleLab

Managed by the Responsive Enviroments group, the DoppelLab is a virtual environment that uses Unity 3D to present real-time data from numerous sensors in MIT Media Lab complex.

The MIT Responsive Environments Group’s DoppleLab

Paradiso explained that the system gathers real-time information and presents it via an interactive browser. Users can monitor room temperature, humidity data, RFID badge movement, and even someone’s Tweets has he moves throughout the complex.

Living Observatory

Paradiso demoed the Living Observatory project, which comprises numerous sensor nodes installed in a peat bog near Plymouth, MA. In addition to transmitting audio from the bog, the installation also logs data such as temperature, humidity, light, barometric pressure, and radio signal strength. The data logs are posted on the project site, where you can also listen to the audio transmission.

The Living Observatory (Source: http://tidmarsh.media.mit.edu/)

GesturesEverywhere

The GesturesEverywhere project provides a real-time data stream about human activity levels within the MIT Media Lab. It provides the following data and more:

  • Activity Level: you can see the Media Labs activity level over a seven-day period.
  • Presence Data: you can see the location of ID tags as people move in the building

The following video is a tracking demo posted on the project site.

The aforementioned projects are just a few of the many cutting-edge developments at the MIT Media Lab. Paradiso said the projects show how far ubiquitous computing technology has come. And they provide a glimpse into the future. For instance, these technologies lend themselves to a variety of building-, environment-, and comfort-related applications.

“In the early days of ubiquitous computing, it was all healthcare,” Paradiso said. “The next frontier is obviously energy.”

Microcontroller-Based Heating System Monitor

Checking a heating system’s consumption is simple enough.

Heating system monitor

Determining a heating system’s output can be much more difficult, unless you have this nifty design. This Atmel ATmega microcontroller-based project enables you to measure heat output as well as control a circulation pump.

Heating bills often present unpleasant surprises. Despite your best efforts to economise on heating, they list tidy sums for electricity or gas consumption. In this article we describe a relatively easy way to check these values and monitor your consumption almost continuously. All you need in order to determine how much heat your system delivers is four temperature sensors, a bit of wiring, and a microcontroller. There’s no need to delve into the electrical or hydraulic components of your system or modify any of them.

A bit of theory
As many readers probably remember from their physics lessons, it’s easy to calculate the amount of heat transferred to a medium such as water. It is given by the product of the temperature change ΔT, the volume V of the medium, and the specific heat capacity CV of the medium. The power P, which is amount of energy transferred per unit time, is:

P= ΔT × CV × V // Δt

With a fluid medium, the term V // Δt can be interpreted as a volumetric flow Vt. This value can be calculated directly from the flow velocity v of the medium and the inner diameter r of the pipe. In a central heating system, the temperature difference ΔT is simply the difference between the supply (S) and return (R) temperatures. This yields the formula:

P = (TS – TR) × CV × v × pr2

The temperatures can easily be measured with suitable sensors. Flow transducers are available for measuring the flow velocity, but installing a flow transducer always requires drilling a hole in a pipe or opening up the piping to insert a fitting.

Measuring principle
Here we used a different method to determine the flow velocity. We make use of the fact that the supply and return temperatures always vary by at least one to two degrees due to the operation of the control system. If pairs of temperature sensors separated by a few metres are mounted on the supply and return lines, the flow velocity can be determined from the time offset of the variations measured by the two sensors…

As the water flows through the pipe with a speed of only a few metres per second, the temperature at sensor position S2 rises somewhat later than the temperature at sensor position S, which is closer to the boiler.

An ATmega microcontroller constantly acquires temperature data from the two sensors. The time delay between the signals from a pair of sensors is determined by a correlation algorithm in the signal processing software, which shifts the signal waveforms from the two supply line sensors relative to each other until they virtually overlap.The temperature signals from the sensors on the return line are correlated in the same manner, and ideally the time offsets obtained for the supply and return lines should be the same.

To increase the sensitivity of the system, the return line sensor signals are applied to the inputs of a differential amplifier, and the resulting difference signal is amplified. This difference signal is also logged as a function of time. The area under the curve of the difference signal is a measure of the time offset of the temperature variations…

Hot water please
If the heating system is also used to supply hot water for domestic use, additional pipes are used for this purpose. For this reason, the PCB designed by the author includes inputs for additional temperature sensors. It also has a switched output for driving a relay that can control a circulation pump.

Under certain conditions, controlling the circulation pump can save you a lot of money and significantly reduce CO2 emissions. This is because some systems have constant hot water circulation so users can draw hot water from the tap immediately. This costs electricity to power the pump, and energy is also lost through the pipe walls. This can be remedied by the author’s circuit, which switches on the circulation pump for only a short time after the hot water tap is opened. This is detected by the temperature difference between the hot water and cold water supply lines…

Circuit description
The easiest way to understand the schematic diagram is to follow the signal path. It starts at the temperature sensors connected to the circuit board, which are NTC silicon devices.

Heating system monitor schematic

Their resistance varies by around 0.7–0.8% per degree K change in temperature. For example, the resistance of a KT110 sensor is approximately 1.7 kΩ at 5 °C and approximately 2.8 kΩ at 70 °C.

The sensor for supply temperature S forms a voltage divider with resistor R37. This is followed by a simple low-pass filter formed by R36 and C20, which filters out induced AC hum. U4a amplifies the sensor signal by a factor of approximately 8. The TL2264 used here is a rail-to-rail opamp, so the output voltage can assume almost any value within the supply voltage range. This increases the absolute measurement accuracy, since the full output signal amplitude is used. U4a naturally needs a reference voltage on its inverting input. This is provided by the combination of R20, R26 and R27. U5b acts as an impedance converter to minimise the load on the voltage divider…

Thermal power

PC connection
The circuit does not have its own display unit, but instead delivers its readings to a PC via an RS485 bus. Its functions can also be controlled from the PC. IC U8 looks after signal level conversion between the TTL transmit and receive lines of the ATmega microcontroller’s integrated UART and the differential RS485 bus. As the bus protocol allows several connected (peer) devices to transmit data on the bus, transmit mode must be selected actively via pin 3. Jumper JP3 must be fitted if the circuit is connected to the end of the RS485 bus. This causes the bus to be terminated in 120 Ω, which matches the characteristic impedance of a twisted-pair line…

[Via Elektor-Projects.com]

Electrostatic Cleaning Robot Project

How do you clean a clean-energy generating system? With a microcontroller (and a few other parts, of course). An excellent example is US designer Scott Potter’s award-winning, Renesas RL78 microcontroller-based Electrostatic Cleaning Robot system that cleans heliostats (i.e., solar-tracking mirrors) used in solar energy-harvesting systems. Renesas and Circuit Cellar magazine announced this week at DevCon 2012 in Garden Grove, CA, that Potter’s design won First Prize in the RL78 Green Energy Challenge.

This image depicts two Electrostatic Cleaning Robots set up on two heliostats. (Source: S. Potter)

The nearby image depicts two Electrostatic Cleaning Robots set up vertically in order to clean the two heliostats in a horizontal left-to-right (and vice versa) fashion.

The Electrostatic Cleaning Robot in place to clean

Potter’s design can quickly clean heliostats in Concentrating Solar Power (CSP) plants. The heliostats must be clean in order to maximize steam production, which generates power.

The robot cleaner prototype

Built around an RL78 microcontroller, the Electrostatic Cleaning Robot provides a reliable cleaning solution that’s powered entirely by photovoltaic cells. The robot traverses the surface of the mirror and uses a high-voltage AC electric field to sweep away dust and debris.

Parts and circuitry inside the robot cleaner

Object oriented C++ software, developed with the IAR Embedded Workbench and the RL78 Demonstration Kit, controls the device.

IAR Embedded Workbench IDE

The RL78 microcontroller uses the following for system control:

• 20 Digital I/Os used as system control lines

• 1 ADC monitors solar cell voltage

• 1 Interval timer provides controller time tick

• Timer array unit: 4 timers capture the width of sensor pulses

• Watchdog timer for system reliability

• Low voltage detection for reliable operation in intermittent solar conditions

• RTC used in diagnostic logs

• 1 UART used for diagnostics

• Flash memory for storing diagnostic logs

The complete project (description, schematics, diagrams, and code) is now available on the Challenge website.

 

Electrical Engineering Tools & Preparation (CC 25th Anniversary Issue Preview)

Electrical engineering is frequently about solving problems. Success requires a smart plan of action and the proper tools. But as all designers know, getting started can be difficult. We’re here to help.

You don’t have to procrastinate or spend a fortune on tools to start building your own electronic circuits. As engineer/columnist Jeff Bachiochi has proved countless times during the past 25 years,  there are hardware and software tools that fit any budget. In Circuit Cellar‘s 25th Anniversary issue, he offers some handy tips on building a tool set for successful electrical engineering. Bachiochi writes:

In this essay, I’ll cover the “build” portion of the design process. For instance, I’ll detail various tips for prototyping, circuit wiring, enclosure preparation, and more. I’ll also describe several of the most useful parts and tools (e.g., protoboards, scopes, and design software) for working on successful electronic design projects. When you’re finished with this essay, you’ll be well on your way to completing a successful electronic design project.

The Prototyping Process

Prototyping is an essential part of engineering. Whether you’re working on a complicated embedded system or a simple blinking LED project, building a prototype can save you a lot of time, money, and hassle in the long run. You can choose one of three basic styles of prototyping: solderless breadboard, perfboard, and manufactured PCB. Your project goals, your schedule, and your circuit’s complexity are variables that will influence your choice. (I am not including styles like flying leads and wire-wrapping.)

Prototyping Tools

The building phase of a design might include wiring up your circuit design and altering an enclosure to provide access to any I/O on the PCB. Let’s begin with some tools that you will need for circuit prototyping.

The nearby photo shows a variety of small tools that I use when wiring a perfboard or assembling a manufactured PCB. The needle-nose pliers/cutter is the most useful.

These are my smallest hand tools. With them I can poke, pinch, bend, cut, smooth, clean, and trim parts, boards, and enclosures. I can use the set of special driver tips to open almost any product that uses security screws.

Don’t skimp on this; a good pair will last many years. …

Once everything seems to be in order, you can fill up the sockets. You might need to provide some stimulus if you are building something like a filter. A small waveform generator is great for this. There are even a few hand probes that will provide outputs that can stimulate your circuitry. An oscilloscope might be the first “big ticket” item in which you invest. There are some inexpensive digital scope front ends that use an app running on a PC for display and control, but I suggest a basic analog scope (20 MHz) if you can swing it (starting at less than $500).

If the circuit doesn’t perform the expected task, you should give the wiring job a quick once over. Look to see if something is missing, such as an unconnected or misconnected wire. If you don’t find something obvious, perform a complete continuity check of all the components and their connections using an ohmmeter.

I use a few different meters. One has a transistor checker. Another has a high-current probe. For years I used a small battery-powered hand drill before purchasing the Dremel and drill press. The tweezers are actually an SMT parts measurer. Many are unmarked and impossible to identify without using this device (and the magnifier).

It usually will be a stupid mistake. To do a complete troubleshooting job, you’ll need to know how the circuit is supposed to work. Without that knowledge, you can’t be expected to know where to look and what to look for.

Make a Label

You’ll likely want to label your design… Once printed, you can protect a label by carefully covering it with a single strip of packing tape.

The label for this project came straight off a printer. Using circuit-mount parts made assembling the design a breeze.

A more expensive alternative is to use a laminating machine that puts your label between two thin plastic sheets. There are a number of ways to attach your label to an enclosure. Double-sided tape and spray adhesive (available at craft stores) are viable options.”

Ready to start innovating? There’s no time like now to begin your adventure.

Check out the upcoming anniversary issue for Bachiochi’s complete essay.