Next Newsletter: Embedded Boards

Coming to your inbox tomorrow: Circuit Cellar’s Embedded Boards newsletter. Tomorrow’s newsletter content focuses on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your
Embedded Boards newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

May has a 5th Tuesday, so we’re bringing you a bonus newsletter:
Sensors and Measurement
. (5/29) While sensors have always played a key role in embedded systems, the exploding IoT phenomenon has pushed sensor technology to the forefront. This newsletter looks at the latest technology trends and product developments in sensors and measurement.

Analog & Power. (6/5) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Microcontroller Watch (6/12) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

June Circuit Cellar: Sneak Preview

The June issue of Circuit Cellar magazine is coming soon. And we’ve planted a lovely crop of embedded electronics articles for you to enjoy.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of June 2018 Circuit Cellar:

PCB DESIGN AND POWER: MAKING SMART CHOICES

PCB Design and Verification
PCB design tools and methods continue to evolve as they race to keep pace with faster, highly integrated electronics. Automated, rules-based chip placement is getting more sophisticated and leveraging AI in interesting ways. And supply chains are linking tighter with PCB design processes. Circuit Cellar Chief Editor Jeff Child looks at the latest PCB design and verification tools and technologies.

PCB Ground Planes
Tricky design decisions crop up when you’re faced with crafting a printed circuit board (PCB) for any complex system—and many of them involve the ground plane. There is dealing with noisy components and deciding between a common ground plane or separate ones—and that’s just the tip of the iceberg. Robert Lacoste shares his insights on the topic, examining the physics, simulation tools and design examples of ground plane implementations.

Product Focus: AC-DC Converters
To their peril, embedded system developers often treat their choice of power supply as an afterthought. But choosing the right AC-DC converter is critical to the ensuring your system delivers power efficiently to all parts of your system. This Product Focus section updates readers on these trends and provides a product album of representative AC-DC converter products.

SENSORS TAKE MANY FORMS AND FUNCTIONS

Sensors and Measurement
While sensors have always played a key role in embedded systems, the exploding Internet of Things (IoT) phenomenon has pushed sensor technology to the forefront. Any IoT implementation depends on an array of sensors that relay input back to the cloud. Circuit Cellar Chief Editor Jeff Child dives into the latest technology trends and product developments in sensors and measurement.

Passive Infrared Sensors
One way to make sure that lights get turned off when you leave a room is to use Passive Infrared (PIR) sensors. Jeff Bachiochi examines the science and technology behind PIR sensors. He then details how to craft effective program code and control electronics to use PIR sensors is a useful way.

Gesture-Recognition in Boxing Glove
Learn how two Boston University graduate students built a gesture-detection wearable that acts as a building block for a larger fitness telemetry system. Using a Linux-based Gumstix Verdex, the wearable couples an inertial measurement unit with a pressure sensor embedded in a boxing glove to recognize the user’s hits and classify them according to predefined, user-recorded gestures.

SECURITY, RELIABILITY AND MORE

Internet of Things Security (Part 3)
In this next part of his article series on IoT security, Bob Japenga looks at the security features of a specific series of microprocessors: Microchip’s SAMA5D2. He examines these security features and discusses what protection they provide.

Aeronautical Communication Protocols
Unlike ground networks, where data throughout is the priority, avionics networks are all about reliability. As a result, the communications protocols used in for aircraft networking seem pretty obscure to the average engineer. In this article, George Novacek reviews some of the most common aircraft comms protocols including ARINC 429, ARINC 629 and MIL-STD-1553B

DEEP DIVES ON PROCESSOR DESIGN AND DIGITAL SIGNAL PROCESSING

Murphy’s Laws in the DSP World (Part 1)
A Pandora’s box of unexpected issues gets opened the moment you move from the real world of analog signals and enter the world of digital signal processing (DSP). In Part 1 of this new article series, Mike Smith defines six “Murphy’s Laws of DSP” and provides you with methods and techniques to navigate around them.

Processor Design Techniques and Optimizations
As electronics get smaller and more complex day by day, knowing the basic building blocks of processors is more important than ever. In this article, Nishant Mittal explores processor design from various perspectives—including architecture types, pipelining and ALU varieties.

Tuesday’s Newsletter: IoT Tech Focus

Coming to your inbox tomorrow: Circuit Cellar’s IoT Technology Focus newsletter. Tomorrow’s newsletter covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your IoT Technology Focus newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Embedded Boards.(5/22) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

May has a 5th Tuesday, so we’re bringing you a bonus newsletter:
Sensors and Measurement
. (5/29) While sensors have always played a key role in embedded systems, the exploding IoT phenomenon has pushed sensor technology to the forefront. This newsletter looks at the latest technology trends and product developments in sensors and measurement.

Analog & Power. (6/5) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Microcontroller Watch (6/12) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

Tuesday’s Newsletter: Microcontroller Watch

Coming to your inbox tomorrow: Circuit Cellar’s Microcontroller Watch newsletter. Tomorrow’s newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your Microcontroller Watch newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

IoT Technology Focus. (5/15) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Embedded Boards.(5/22) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

May has a 5th Tuesday, so we’re bringing you a bonus newsletter:
Sensors and Measurement
. (5/29) While sensors have always played a key role in embedded systems, the exploding IoT phenomenon has pushed sensor technology to the forefront. This newsletter looks at the latest technology trends and product developments in sensors and measurement.

Analog & Power. (6/5) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Tuesday’s Newsletter: Analog & Power

Coming to your inbox tomorrow: Circuit Cellar’s Analog & Power newsletter. Tomorrow’s newsletter content zeros in on the latest developments in analog and power technologies including ADCs, DACs, DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your Analog & Power newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Microcontroller Watch. (5/8) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

IoT Technology Focus. (5/15) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Embedded Boards.(5/22) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

May has a 5th Tuesday, so we’re bringing you a bonus newsletter:
Sensors and Measurement
. (5/29) While sensors have always played a key role in embedded systems, the exploding IoT phenomenon has pushed sensor technology to the forefront. This newsletter looks at the latest technology trends and product developments in sensors and measurement.

 

Intel Coffee Lake H-Series Debut Processors Debut in Congatec and Seco Modules

By Eric Brown

Intel has rolled out new H-, M-, U- and T-series Intel Core and Xeon chips, expanding its line of 14 nm fabricated, 8th Gen Core Kaby Lake Refresh processors, code-named “Coffee Lake.” Of special interest are four new dual- and quad-core U-series chips with up to 2.7 GHz clock rates and 28 W TDPs, as well as four quad- and hexa-core H-series Core i5 and i7 processors and a pair of hexa-core M-series Xeon chips, all with 45 W TDP (total dissipated power).

Congatec Conga-TS370 (top) and Seco COMe-C08-BT6 (bottom) (click images to enlarge)

The hexa-core Core i7-8850H, quad-core Core i5-8400H, and hexa-core Xeon E-2176M are appearing in a pair of 125 mm x 95 mm COM Express Basic Type 6 announced by Congatec and Seco. Both the Conga-TS370 and Seco’s COMe-C08-BT6 are available with Linux or Windows 10, and support 0 to 60°C temperatures (see farther below).

Intel’s 8th Gen M- and H-series processors (click image to enlarge)

Intel launched its first round of 8th-Gen Kaby Lake Refresh “Coffee Lake” chips back in September. This fourth generation of its 14 nm fabricated Core chips — following Broadwell, Skylake, and Kaby Lake — offers relatively modest performance and power efficiency improvements.Like most of AMD’s new Ryzen Embedded V1000 SoCs, most of the Coffee Lake processors are double threaded, so four cores give you eight threads and six cores give you 12. The exception is a line of standard, desktop-oriented T-series chips with 35 W TDPs. The T-series models are all single-threaded except the top-of-the-line, hexa-core Core i7-8700T, clocked to 2.4 GHz /4.0 GHz.

Intel’s latest batch of U-series (top) and new T-series CPUs (bottom)
(click images to enlarge)

The latest batch of U-series processors give you more speed, but higher 28 W TDPs than the original batch. The initial U-series chips, which were used in recent Linux-based laptops from System76 and ZaReason, provide slightly faster quad- instead of dual-core designs with the same price and 15 W TDP as 7th-Gen “Kaby Lake” models. The first round of Coffee Lake chips also included some high-end models tuned to gaming, as well as the first hexa-core Core i5 and first quad-core Core i3 models.

Also today, Intel unveiled a new line of 300-series I/O chipsets that are based on the upcoming Cannon Lake PCH. The lineup includes a Q370 model that supports up to 6x USB 3.1 Gen2 ports, up to 24x PCIe 3.0 lanes, and Intel Wireless-AC for faster 802.11ac.

Intel’s original line of 8th Gen CPUs (top) and new 300-series I/O chipsets (bottom) (click images to enlarge)Intel added to the Coffee Lake parade with some gaming focused G-series chips that use a Radeon Vega GPU from rival AMD. The Core i7-8809G, which can be overclocked, as well as the fixed rate Core i7-8705G, are available in Intel NUC mini-PCs.Today’s media coverage emphasized Intel’s first mobile version of its gaming-oriented Core i9 design. The hexa-core Core i9-8950HK CPU uses thermal velocity boost” technology to jump from 2.9 GHz to 4.8 GHz.

The related H- and M-series processors used by Seco and Congatec include the Core i7-8850H, the fastest of the two hexa-core Core i7 models with 2. 6GHz /4.3 GHz performance. The i7-8850H offers a 9MB Intel Smart Cache and supports “partial” overclocking. The Core i5-8400H is the fastest of the two quad-core i5 models, with 2.5 GHz /4.2 GHz performance and an 8MB cache. The hexa-core, 2.7 GH z/4.4 GHz Xeon E-2176M with 12 MB cache is the slower of the two Xeon M-series chips. (The turbo speeds can only be achieved by one core at a time.)

All the models used by Congatec and Seco offer 45W TDPs and support Intel Optane memory and Intel VPro technology. As with other Coffee Lake processors, there are software patches to protect against Meltdown and Spectre vulnerabilities. However, a hardware fix will await the 10nm Cannon Lake generation.

The three models used by the Conga-TS370 and COMe-C08-BT6 modules are the:

  • Intel Core i7-8850H (6x 12-thread 14nm Coffee Lake cores at 2.6 GHz /4.3 GHz); 9 MB Cache, 45W TDP (35W cTDP)
  • Intel Core i5-8400H 4x 8-thread 14 nm Coffee Lake cores at 2.5 GHz /4.2 GHz); 8 MB Cache, 45W TDP (35W cTDP)
  • Intel Xeon E-2176M, 8850H (6x 12-thread 14 nm Coffee Lake cores at 2.7 GHz /4.4 GHz); 9 MB Cache, 45 W TDP (35W cTDP)

Intel claims that the six-core H-series and M-series modules offer between 45 to 50 percent more multi-thread and 15 to 25 percent more single-thread performance compared to 7th Gen “Kaby Lake” Core processors. The built-in Intel Gen9 LP graphics can manage up to 3x independent displays at once, with a resolution up to 4096 x 2304 at 60 Hz, 24 bpp. There’s support for DirectX 12 and OpenGL 4.5, as well as an H.265 / HEVC hardware transcoder.

Conga-TS370

Like Congatec’s 6th Gen Skylake based Conga-TS170 and 7th Gen Kaby Lake powered Conga-TS175, the Conga-TS370 uses the COM Express Type 6 Basic form factor. All common Linux operating systems, as well as the 64-bit versions of Microsoft Windows 10 and Windows 10 IoT are supported.

 

Conga-TS370 block diagram
(click image to enlarge)

The module offers up to 10-year availability, and targets applications including “high performance embedded and mobile systems, industrial and medical workstations, storage servers and cloud workstations, as well as media transcoding and edge computing cores,” says Congatec.Thanks to the Coffee Lake-H chips, the module supports Intel Optane memory, as well as Intel Software Guard extensions, Trusted Execution Engine, and Intel Platform Trust Technology. The Core processors use the new Intel PCH-H QM370 Series I/O chipset while the Xeon is paired with a CM246 Series controller.

You can load up to 32GB of  DDR4-2666 memory via dual sockets with optional ECC. There are 4x SATA III interfaces, as well as an Intel i219-LM GbE controller with AMT 12.0 support. Expansion features include a PEG x16 Gen3 interface and 8x PCIe Gen 3.0 lanes.

The integrated Intel UHD630 graphics supports up to three independent 4K displays via HDMI 1.4a, eDP 1.4, and DisplayPort 1.2. Dual-channel LVDS is also available as an alternative to eDP, and for the first time, you can switch between eDP to LVDS by software alone, says Congatec.

The highlighted feature enabled by Coffee Lake-H is its support for up to 4x USB 3.1 Gen 2 ports, which operate at up to 10 Gbps. The module also includes 8x USB 2.0 interfaces.

The Conga-TS370 is further equipped with LPC, I2C, SMBus, GPIO, SDIO, and dual UARTs. There’s also an HD Audio interface, TPM 2.0, and ACPI 4.0 with battery support. The Congatec Board Controller provides features including watchdog, non-volatile user storage, and backlight control.

Support services are available, along with a range of accessories and standardized or customized carrier boards and systems. A Conga-Teva2 carrier is in the works but is not yet documented.

COMe-C08-BT6

Seco’s COMe-C08-BT6 module, which follows it similarly Type 6, 6th Gen Skylake based COMe-B09-BT6, is designed for applications including gaming, signage, infotainment, HMI, biomedical devices, Industry 4.0, automation, and telco. There’s support for 64-bit Linux and Windows 10.

 

COMe-C08-BT6
(click image to enlarge)

Not surprisingly, the feature set is very similar to that of the Conga-TS370. You get up to 3 2GB of DDR4-2666 with ECC, 4x SATA 3.0 channels, and an Intel i219-LM GbE controller.The COMe-C08-BT6 has the same triple display and 4K support as the Congatec model. In this case you get DP, HDMI, and DVI DDI interfaces, as well as a choice of eDP, LVDS, or LVDS + VGA interfaces. HD Audio is also available.

Like the Conga-TS370, there are 4x USB 3.1 Gen 2 interfaces, 8x USB 2.0 links, a PEG x16 Gen3 interface, and 8x PCIe Gen 3.0 lanes. Other features include 2x UARTs, as well as SPI, I2C, SMBus, LPC, and GPIO. You also get a watchdog, optional TPM 2.0, thermal and fan management signals, and 12 V or optional 5 V DC input.

CCOMe-965 carrier (top) and block diagram (bottom)
(click images to enlarge)The COMe-C08-BT6 is available with Seco’s CCOMe-965 Mini-ITX carrier board, which also supports other Seco Type 6 modules such as the COMe-B09-BT6 and Ryzen V1000 based COMe-B75-CT6. There’s also a Cross Platform Development Kit that includes the CCOMe-965, along with HDMI and DisplayPort cables, and is said to support ARM-based Type 6 COMs in addition to x86.

CCOMe-C30 carrier (top) and block diagram (bottom)
(click images to enlarge)One final development option is an upcoming, 3.5-inch form factor CCOMe-C30 board that features a DP++ port, 2x mini-DP++ ports, and LVDS and eDP connections. The 146 mm x 102 mm board has dual M.2 sockets, dual GbE ports, and SATA and microSD slots. You also get 2x USB 3.0 and 2x USB 2.0 ports, plus 4x serial headers, among other features.Further information

No pricing or availability information was provided for the Congatec Conga-TS370 or Seco COMe-C08-BT6 Type 6 modules. More on Congatec’s Conga-TS370 module may be found in the Conga-TS370 announcement and product pages.

More on Seco’s COMe-C08-BT6 may be found on the COMe-C08-BT6 product page.

Intel’s latest Intel Coffee Lake processors should start shipping in volume by the end of the month. More information may be found on Intel’s 8th Gen Intel Core announcement page.

This article originally appeared on LinuxGizmos.com on April 3.

Congatec | www.congtatec.com

Seco | www.seco.com

Next Newsletter: Embedded Boards

Coming to your inbox tomorrow: Circuit Cellar’s Embedded Boards newsletter. Tomorrow’s newsletter content focuses on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your Embedded Boards newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Analog & Power. (5/1) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Microcontroller Watch. (5/8) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

IoT Technology Focus. (5/15) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Tuesday’s Newsletter: IoT Tech Focus

Coming to your inbox tomorrow: Circuit Cellar’s IoT Technology Focus newsletter. Tomorrow’s newsletter covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your IoT Technology Focus newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Embedded Boards.(4/24) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Analog & Power. (5/1) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Microcontroller Watch (5/8) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

Tuesday’s Newsletter: Microcontroller Watch

Coming to your inbox tomorrow: Circuit Cellar’s Microcontroller Watch newsletter. Tomorrow’s newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your Microcontroller Watch newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

IoT Technology Focus. (4/17) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Embedded Boards.(4/24) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Analog & Power. (4/1) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Tuesday’s Newsletter: Analog & Power

Coming to your inbox tomorrow: Circuit Cellar’s Analog & Power newsletter. Tomorrow’s newsletter content zeros in on the latest developments in analog and power technologies including ADCs, DACs, DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your Analog & Power newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Microcontroller Watch. (4/10) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

IoT Technology Focus. (4/17) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Embedded Boards.(4/24) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

 

Rugged COM Express Module Sports AMD V1000

MEN Micro has announced the CB71C, a rugged COM Express module for rail, public transportation and industry applications like data acquisition, infotainment, transcoding and live 3D. It is 100% compatible with COM Express Type 6 pin-out and conforms to the VITA 59 standard, which specifies robust mechanics to ensure reliable operation even under the harshest environmental conditions.

The CB71C is based on AMD’s V1000 APU family. It is equipped with a Radeon Vega next-generation 3D graphics engine with up to 11 compute units, and supports up to 4 displays with a resolution of up to 4k without the need for additional graphics hardware. With up to four high-performance processor cores, the CB71C is also suitable for virtualization. Based on the Rugged COM Express standard, the CB71C is embedded in a closed aluminum frame, which ensures optimum EMC protection and efficient conduction cooling supporting a temperature range of -40°C to +85°C. To withstand serious shock and vibration, only soldered components are used.

The CB71C can be equipped with a wide range of long-term available processors with scalable performance, all supporting ECC. Passive cooling is possible with low-power versions. The CB71C can also be equipped with up to 32 GB of directly soldered DDR4 main memory and a 16 GB eMMC. Available high-speed interfaces include PCI Express 3.0 links, DDI (DP, eDP, HDMI), SATA 3.0, Gbit Ethernet and USB 3.0.

The board features an advanced board management controller with monitoring functions for safety-relevant applications. In addition, the CB71C has a Trusted Platform Module and supports hardware memory encryption, providing protection against both physical and inter-VM storage attacks. This is essential for security-critical applications such as payment and ticketing terminals, fleet management or monitoring.

MEN Micro | www.menmicro.com

Linux and Coming Full Circle

Input Voltage

–Jeff Child, Editor-in-Chief

JeffHeadShot

In terms of technology, the line between embedded computing and IT/desktop computing has always been a moving target. Certainty the computing power in small embedded devices today have vastly more compute muscle than even a server of 15 years ago. While there’s many ways to look at that phenomena, it’s interesting to look at it through the lens of Linux. The quick rise in the popularity of Linux in the 90s happened on the server/IT side pretty much simultaneously with the embrace of Linux in the embedded market.

I’ve talked before in this column about the embedded Linux start-up bubble of the late 90s. That’s when a number of start-ups emerged as “embedded Linux” companies. It was a new business model for our industry, because Linux is a free, open-source OS. As a result, these companies didn’t sell Linux, but rather provided services to help customers create and support implementations of open-source Linux. This market disruption spurred the established embedded RTOS vendors to push back. Like most embedded technology journalists back then, I loved having a conflict to cover. There were spirited debates on the “Linux vs. RTOS topic” on conference panels and in articles of time—and I enjoyed participating in both.

It’s amusing to me to remember that Wind River at the time was the most vocal anti-Linux voice of the day. Fast forward to today and there’s a double irony. Most of those embedded Linux startups are long gone. And yet, most major OS vendors offer full-blown embedded Linux support alongside their RTOS offerings. In fact, in a research report released in January by VDC Research, Wind River was named as the market leader in the global embedded software market for both its RTOS and commercial Linux segments.

According the VDC report, global unit shipments of IoT and embedded OSs, including free/non-commercial OSs, will grow to reach 11.1 billion units by 2021, driven primarily by ECU-targeted RTOS shipments in the automotive market, and free Linux installs on higher-resource systems. After accounting for systems with no OS, bare-metal OS, or an in-house developed OS, the total yearly units shipped will grow beyond 17 billion units in 2021 according to the report. VDC research findings also predict that unit growth will be driven primarily by free and low-cost operating systems such as Amazon FreeRTOS, Express Logic ThreadX and Mentor Graphics Nucleus on constrained devices, along with free, open source Linux distributions for resource-rich embedded systems.

Shifting gears, let me indulge myself by talking about some recent Circuit Cellar news—though still on the Linux theme. Circuit Cellar has formed a strategic partnership with LinuxGizmos.com. LinuxGizmos is a well-establish, trusted website that provides up-to-the-minute, detailed and insightful coverage of the latest developer- and maker-friendly, embedded oriented chips, modules, boards, small systems and IoT devices—and the software technologies that make them tick. As its name in implies, LinuxGizmos features coverage of open source, high-level operating systems including Linux and its derivatives (such as Android), as well as lower-level software platforms such as OpenWRT and FreeRTOS.

LinuxGizmos.com was founded by Rick Lehrbaum—but that’s only the latest of his accolades. I know Rick from way back when I first started writing about embedded computing in 1990. Most people in the embedded computing industry remember him as the “Father of PC/104.” Rick co-founded Ampro Computers in 1983 (now part of ADLINK), authored the PC/104 standard and founded the PC/104 Consortium in 1991, created LinuxDevices.com in 1999 and guided the formation of the Embedded Linux Consortium in 2000. In 2003, he launched LinuxGizmos.com to fill the void created when LinuxDevices was retired by Quinstreet Media.

Bringing things full circle, Rick says he’s long been a fan of Circuit Cellar, and even wrote a series of articles about PC/104 technology for it in the late 90s. I’m thrilled to be teaming up with LinuxGizmos.com and am looking forward to combing our strengths to better serve you.

This appears in the April (333) issue of Circuit Cellar magazine

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

Next Newsletter: Embedded Boards

Coming to your inbox tomorrow: Circuit Cellar’s Embedded Boards newsletter. Tomorrow’s newsletter content focuses on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your Embedded Boards newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Analog & Power. (4/3) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Microcontroller Watch. (4/10) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

IoT Technology Focus. (4/17) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Tuesday’s Newsletter: IoT Tech Focus

Coming to your inbox tomorrow: Circuit Cellar’s IoT Technology Focus newsletter. Tomorrow’s newsletter covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your IoT Technology Focus newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Embedded Boards.(3/27 Wednesday) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Analog & Power. (4/3) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Microcontroller Watch (4/10) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

April Circuit Cellar: Sneak Preview

The April issue of Circuit Cellar magazine is coming soon. And we’ve got a healthy serving of embedded electronics articles for you. Here’s a sneak peak.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of April 2018 Circuit Cellar:

NAVIGATING THE INTERNET-OF-THINGS

IoT: From Gateway to Cloud
In this follow on to our March “IoT: Device to Gateway” feature, this time we look at technologies and solutions for the gateway to cloud side of IoT.  Circuit Cellar Chief Editor Jeff Child examines the tools and services available to get a cloud-connected IoT implementation up and running.

Texting and IoT Embedded Devices (Part 2)
In Part 1, Jeff Bachiochi laid the groundwork for describing a project involving texting. He puts that into action this, showing how to create messages on his Espressif System’s ESP8266EX-based device to be sent to an email account and end up with those messages going as texts to a cell phone.

Internet of Things Security (Part 2)
In this next part of his article series on IoT security, Bob Japenga takes a look at side-channel attacks. What are they? How much of a threat are they? And how can we prevent them?

Product Focus: 32-Bit Microcontrollers
As the workhorse of today’s embedded systems, 32-bit microcontrollers serve a wide variety of embedded applications—including the IoT. This Product Focus section updates readers on these trends and provides a product album of representative 32-bit MCU products.

GRAPHICS, VISION AND DISPLAYS

Graphics, Video and Displays
Thanks to advances in displays and innovations in graphics ICs, embedded systems can now routinely feature sophisticated graphical user interfaces. Circuit Cellar Chief Editor Jeff Child dives into the latest technology trends and product developments in graphics, video and displays.

Color Recognition and Segmentation in Real-time
Vision systems used to require big, multi-board systems—but not anymore. Learn how two Cornell undergraduates designed a hardware/software system that accelerates vision-based object recognition and tracking using an FPGA SoC. They made a min manufacturing line to demonstrate how their system can accurately track and categorize manufactured candies carried along a conveyor belt.

SPECIFICATIONS, QUALIFICATIONS AND MORE

Component tolerance
We perhaps take for granted sometimes that the tolerances of our electronic components fit the needs of our designs. In this article, Robert Lacoste takes a deep look into the subject of tolerances, using the simple resistor as an example. He goes through the math to help you better understand accuracy and drift along with other factors.

Understanding the Temperature Coefficient of Resistance
Temperature coefficient of resistance (TCR) is the calculation of a relative change of resistance per degree of temperature change. Even though it’s an important spec, different resistor manufacturers use different methods for defining TCR. In this article, Molly Bakewell Chamberlin examines TCR and its “best practice” interpretations using Vishay Precision Group’s vast experience in high-precision resistors.

Designing of Complex Systems
While some commercial software gets away without much qualification during development, the situation is very different when safety in involved. For aircraft, vehicles or any complex system where failure unacceptable, this means adhering to established standards throughout the development life cycle. In this article, George Novacek tackles these issues and examines some of these standards namely ARP4754.

AND MORE IN-DEPTH PROJECT ARTICLES

Build a Marginal Oscillator Proximity Switch
A damped or marginal oscillator will switch off when energy is siphoned from its resonant LC tank circuit. In his article, Dev Gualtieri presents a simple marginal oscillator that detects proximity to a small steel screw or steel plate. It lights an LED, and the LED can be part of an optically-isolated solid-state relay.

Obsolescence-Proof Your UI (Part 1)
After years of frustration dealing with graphical interface technologies that go obsolete, Steve Hendrix decided there must be a better way. Knowing that web browser technology is likely to be with us for a long while, he chose to build a web server that could perform common operations that he needed on the IEEE-488 bus. He then built it as a product available for sale to others—and it is basically obsolescence-proof.