Managed Linux and Zephyr Distros for IoT offer OTA and Container Tech

By Eric Brown

A Cambridge, UK based startup called Foundries.io, which is funded by Linaro, has launched a microPlatforms service with managed, subscription-based Linux and Zephyr distributions. The microPlatforms offering will target IoT, edge, and automotive applications, and provide continuous over-the-air (OTA) updates to improve security. Linaro CEO George Grey also serves as CEO of Foundries.io.

The distributions are designed to work with any private or public cloud platform, with the microPlatform cloud service acting as an intermediary. The microPlatforms packages include firmware, kernel, services, and applications, “delivered continuously from initial product design to end-of-life,” says Foundries.io.


Linux microPlatform architecture
(click image to enlarge)
Benefits from microPlatforms include improved security, lower development costs, and “faster time-to-market for products across a wide range of IoT connected devices,” says the company. There’s also a combined Linux/Zephyr offering that bridges both sides of the IoT architectural divide designed for projects that include both a Linux gateway/edge device and Zephyr controlled sensor devices.

Subscriptions range from $10 per month for evaluation and non-commercial use to $10,000 or $25,000 per year for professional Zephyr and Linux packages, respectfully. There are no per unit fees, and Foundries.io notes: “We regularly upstream our open source work; you can end your subscription any time and keep using the software.” There’s also a community website with forums and support services.

Linux microPlatforms

The Linux microPlatform (LmP) supports support Arm, Intel, and RISC-V based devices. The initial targets include the Raspberry Pi and several 96Boards (see farther below). LmP starts with a minimal Linux distro built with OpenEmbedded/Yocto and “a recent stable kernel.” The distribution is designed to be compact and resource efficient, with minimal attack surfaces.


Linux microPlatforms with containers
(click image to enlarge)
The Linux stack includes secure updatable firmware and a Docker container-based application runtime with reference container Dockerfiles and images. Source code is available, and you can also download binaries for supported target boards. The use of containers is optional, as you can also run LmP natively.

LmP also includes a cloud management service, which offers a “continuously tested and stabilized stream of updates,” says Foundries.io. The platform lets you “securely and remotely manage your product’s software” using standard tools such as Ansible and Kubernetes.

DragonBoard 820C

The initial LmP targets include:

Zephyr microPlatforms

The Zephyr microPlatform is the first downstream distribution for the Linux Foundation hosted, open source Zephyr RTOS. ZmP
builds on the Zephyr RTOS foundation with “MCUboot software, services, and reference applications to provide a continuously tested, secure, updatable, cross-architecture solution for microcontroller-based products,” says the startup.

 
Zephyr microPlatform architecture (left) and combined Linux and Zephyr microPlatform 
(click images to enlarge)
The Zephyr stack supports all the hardware listed by the Zephyr Project, including products from Nordic Semiconductor, NXP, and STMicroelectronics. This week, the Zephyr Project announced an expansion of support to 100 boards, including Arduino-compatible HiFive1 and Arduino Cinque boards, and the BBC Microbit and 96Boards Carbon. Supported SBCs that primarily run Linux but can also run Zephyr on their MCU companion chips include the MinnowBoard Max, Udoo Neo, and UP Squared.

Toradex and Linaro partnerships

Foundries.io’s launch partners are Toradex and Linaro — the open source code development organization backed by Arm and several of its major licensees. Linaro will offer microPlatforms support for its 96Boards SBCs. Toradex, whose Colibri iMX7 is a target platform, is “using the Linux microPlatform as a secure and updateable base for its upcoming software offering,” says Foundries.io. Toradex CTO Roman Schnarwiler adds: “Toradex will be announcing exciting news about our upcoming software offerings for our SoMs, based on the Foundries.io Linux microPlatform soon.”

Colibri iMX7

Also today, Toradex announced a software development partnership with The Qt Company. Toradex will provide the Qt development platform on its modules including Qt Device Creation. It will also Boot2Qt with Toradex Easy Installer.

OTA and containers in IoT

Continuous OTA updates are widely seen as one the best ways to improve IoT security. OTA is central to several recent IoT frameworks, including Google’s recently announced Cloud IoT Edge for devices equipped with its new Edge TPU machine learning co-processor chips. OTA is also central to Microsoft’s secure, Linux-based Azure Sphere IoT platform, which was further detailed today at the Hot Chips 2018conference.

Container technology, meanwhile, is seen as a way to ease embedded Linux remote management and automated updates. For example, Resin.io provides an embedded Linux container technology with its OTA-enabled ResinOS. Canonical’s Ubuntu Corealso uses a container-like scheme to provide transactional updates.

Further information

The Foundries.io microPlatforms subscriptions are now available, ranging from $10 per month for evaluation and non-commercial use to $10,000 or $25,000 per year for professional Zephyr and Linux packages, respectfully. Downloads of microPlatforms source code, binaries, and documentation are available at the Foundries.io website.

This article originally appeared on LinuxGizmos.com on August 21.

Foundries.io | foundries.io

Variscite’s Latest DART Module Taps Headless i.MX6 ULZ

By Eric Brown

Variscite is spinning out yet another pin-compatible version of its 50 mm x 25 mm DART-6UL computer-on-module, this time loaded with NXP’s headless new i.MX6 ULZ variant of the single Cortex-A7 core i.MX6 UL. Due for a Q4 launch, the unnamed module lacks display or LAN support. It’s billed as “a native solution for headless Linux-based embedded products such as IoT devices and smart home sensors requiring low power, low size and rich connectivity options.”


DART-6UL with iMX6 ULZ 
(click image to enlarge)
The lack of display and LAN features mirrors the limitations of the i.MX6 ULZ, which NXP refers to as a “cost-effective Linux processor.” The headless, up to 900  MHz Cortex-A7 ULZ SoC offers most of the I/O of the of the i.MX6 UL/ULL, including ESAI, S/PDIF, and 3x I2S audio interfaces, but it lacks features such as the 2D Pixel acceleration engine and Ethernet controllers.


NXP i.MX6 ULZ block diagram
(click image to enlarge)
Last year, Variscite spun the Linux-ready DART-6UL into a faster, 696MHz v1.2 upgrade, which added the option of NXP’s power-efficient i.MX6 ULL SoC in addition to the i.MX6 UL. A few months later, it followed up with a DART-6UL-5G model that boasts an on-board, “certified” WiFi/Bluetooth module with dual-band, 2.4 GHz/ 5 GHz 802.11ac/a/b/g/n.


DART-6UL-5G (left) and DART-6UL v1.2
(click images to enlarge)
The upcoming i.MX6 ULZ based version, which we imagine Variscite will dub the DART-6ULZ, has the same Wi-Fi-ac module with Bluetooth 4.2 BLE. Like the latest versions of the other DART-6UL modules, the module can be clocked to 900 MHz.

The “cost effective” ULZ version differs in that it lacks the other models’ touch-enabled, 24-bit parallel RGB interface and dual 10/100 Ethernet controllers. Other subtracted features compared to earlier models include dual CAN, parallel camera, and “extra security features.”

The new module is also limited to a 0 to 85°C range instead of being available in 0 to 70°C or -40 to 85°C versions. The i.MX6 ULZ SoC itself has a slightly wider range of 0 to 95°C.

The pin compatible DART-6UL with iMX6 ULZ will offer the i.MX6 ULZ SoC with “optional security features,” which include TRNG, AES crypto engine, and secure boot. The 50 mm x 25mm module will ship with 512MB DDR3L, which was the previous maximum of the now up to 1 GB RAM DART-6UL. The storage range is similar, with a choice 512 MB NAND and up to 64 GB eMMC.

The DART-6UL with i.MX6 ULZ will support 2x USB 2.0 OTG host/device ports, audio in and out, and UART, I2C, SPI, PWM, and ADC interfaces. OS support is listed as “Linux Yocto, Linux Debian, Boot2QT.”

The ULZ version of the DART-6UL will support existing development kits, which are based on the VAR-6ULCustomBoard. This 100 mm x 70 mm x 20 mm carrier board offers a microSD slot, a USB host port, and micro-USB OTG and debug ports, as well as features that are inaccessible to the ULZ, including dual GbE, RGB, LVDS, CAN and camera interfaces.

This week Variscite announced another DART module based on another new NXP SoC. The DART-MX8M-Mini module taps a 14nm-fabricated i.MX8M Mini SoC variant of the i.MX8M with one to four 2GHz Cortex-A53 cores and a 400 MHz Cortex-M4, plus scaled down 1080p video via MIPI-DSI.

Further information

The DART-6UL with iMX6 ULZ will be available in the fourth quarter. The DART-6UL/ULL/ULZ product page notes that the lowest, volume-discounted price is $24, which likely pertains to the ULZ part. More information may be found in Variscite’s announcement.

This article originally appeared on LinuxGizmos.com on September 19.

Variscite | www.variscite.com

Tuesday’s Newsletter: IoT Tech Focus

Coming to your inbox tomorrow: Circuit Cellar’s IoT Technology Focus newsletter. Tomorrow’s newsletter covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your IoT Technology Focus newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Embedded Boards.(10/23) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

October has a 5th Tuesday, so we’re bringing you a bonus newsletter:
Digital Signage (10/30)  Digital signage ranks among the most dynamic areas of today’s embedded computing space. Makers of digital signage players, board-level products and other technologies continue to roll out new solutions for implementing powerful digital signage systems. This newsletter looks at the latest technology trends and product developments in digital signage.

Analog & Power. (11/6) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Microcontroller Watch (11/13) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

November Circuit Cellar: Sneak Preview

The November issue of Circuit Cellar magazine is coming soon. Clear your decks for a new stack of in-depth embedded electronics articles prepared for you to enjoy.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of November 2018 Circuit Cellar:

SOLUTIONS FOR SYSTEM DESIGNS

3D Printing for Embedded Systems
Although 3D printing for prototyping has existed for decades, it’s only in recent years that it’s become a mainstream tool for embedded systems development. Today the ease of use of these systems has reached new levels and the types of materials that can be used continues to expand. This article by Circuit Cellar’s Editor-in-Chief, Jeff Child looks at the technology and products available today that enable 3D printing for embedded systems.

Add GPS to Your Embedded System
We certainly depend on GPS technology a lot these days, and technology advances have brought fairly powerful GPS functionally into our pockets. Today’s miniaturization of GPS receivers enables you to purchase an inexpensive but capable GPS module that you can add to your embedded system designs. In this article, Stuart Ball shows how to do this and take advantage of the GPS functionality.

FCL for Servo Drives
Servo drives are a key part of many factory automation systems. Improving their precision and speed requires attention to fast-current loops and related functions. In his article, Texas Instruments’ Ramesh Ramamoorthy gives an overview of the functional behavior of the servo loops using fast current loop algorithms in terms of bandwidth and phase margin.

FOCUS ON ANALOG AND POWER

Analog and Mixed-Signal ICs
Analog and mixed-signal ICs play important roles in a variety of applications. These applications depend heavily on all kinds of interfacing between real-world analog signals and the digital realm of processing and control. Circuit Cellar’s Editor-in-Chief, Jeff Child, dives into the latest technology trends and product developments in analog and mixed-signal chips.

Sleeping Electronics
Many of today’s electronic devices are never truly “off.” Even when a device is in sleep mode, it draws some amount of power—and drains batteries. Could this power drain be reduced? In this project article, Jeff Bachiochi addresses this question by looking at more efficient ways to for a system to “play dead” and regulate power.

BUILDING CONNECTED SYSTEMS FOR THE IoT EDGE

Easing into the IoT Cloud (Part 1)
There’s a lot of advantages for the control/monitoring of devices to communicate indirectly with the user interface for those devices—using some form of “always-on” server. When this server is something beyond one in your home, it’s called the “cloud.” Today it’s not that difficult to use an external cloud service to act as the “middleman” in your system design. In this article, Brian Millier looks at the technologies and services available today enabling you to ease in to the IoT cloud.

Sensors at the Intelligent IoT Edge
A new breed of intelligent sensors has emerged aimed squarely at IoT edge subsystems. In this article, Mentor Graphics’ Greg Lebsack explores what defines a sensor as intelligent and steps through the unique design flow issues that surround these kinds of devices.

FUN AND INTERESTING PROJECT ARTICLES

MCU-Based Project Enhances Dance Game
Microcontrollers are perfect for systems that need to process analog signals such as audio and do real-time digital control in conjunction with those signals. Along just those lines, learn how two Cornell students Michael Solomentsev and Drew Dunne recreated the classic arcade game “Dance Dance Revolution” using a Microchip Technology PIC32 MCU. Their version performs wavelet transforms to detect beats from an audio signal to synthesize dance move instructions in real-time without preprocessing.

Building an Autopilot Robot (Part 2)
In part 1 of this two-part article series, Pedro Bertoleti laid the groundwork for his autopiloted four-wheeled robot project by exploring the concept of speed estimation and speed control. In part 2, he dives into the actual building of the robot. The project provides insight to the control and sensing functions of autonomous electrical vehicles.

… AND MORE FROM OUR EXPERT COLUMNISTS

Embedded System Security: Live from Las Vegas
This month Colin O’Flynn summarizes a few interesting presentations from the Black Hat conference in Las Vegas. He walks you through some attacks on bitcoin wallets, x86 backdoors and side channel analysis work—these and other interesting presentations from Black Hat.

Highly Accelerated Product Testing
It’s a fact of life that every electronic system eventually fails. Manufacturers use various methods to weed out most of the initial failures before shipping their product. In this article, George Novacek discusses engineering attempts to bring some predictability into the reliability and life expectancy of electronic systems. In particular, he focuses on Highly Accelerated Lifetime Testing (HALT) and Highly Accelerated Stress Screening (HASS).

Tuesday’s Newsletter: Microcontroller Watch

Coming to your inbox tomorrow: Circuit Cellar’s Microcontroller Watch newsletter. Tomorrow’s newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your Microcontroller Watch newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

IoT Technology Focus. (10/16) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Embedded Boards.(10/23) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

October has a 5th Tuesday, so we’re bringing you a bonus newsletter:
Digital Signage (10/30)  Digital signage ranks among the most dynamic areas of today’s embedded computing space. Makers of digital signage players, board-level products and other technologies continue to roll out new solutions for implementing powerful digital signage systems. This newsletter looks at the latest technology trends and product developments in digital signage.

Analog & Power. (11/6) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Rugged, Sandwich-Style SBC is Based on Sitara AM5718 MCU

By Eric Brown

Forlinx Embedded Technology, the Chinese company behind Linux-friendly SBCs such as the Texas Instruments (TI) Sitara AM3354 based OK335xS-II and the Forlinx i.MX6 SBC, has posted details on a new OK5718-C SBC. Like the OK335xS-II, it’s a Sitara based board, in this case tapping TI’s single-core, Cortex-A15 based Sitara AM5718. Like the i.MX6 SBC, it’s a sandwich-style offering, with the separately available FET5718-C module hosting the up to 1.5GHz AM5718.


OK5718-C
The OK5718-C was announced (translated) in China back in May, and the product page was recently spotted by CNXSoft. The FET5718-C module and OK5718-C SBC both support -40 to 85℃ temperatures and feature an optimized Linux distro with Linux 4.9.41, Qt 5.6, and Wayland. The BSP includes PCIe host and slave mode optimizations, a simplified file system for faster boot and flashing, and an image system to allow Weston virtual keyboards and easy Qt image stacking, says Forlinx.

FET5718-C module

The FET5718-C module’s Sitara AM5718 SoC may have a somewhat old-school CPU, but it provides plenty of extras. You get both a PowerVR SGX544 3D GPU and Vivante GC320 2D GPU, as well as a 750MHz TI DSP-C66X digital signal processor and video accelerator. There’s also the same, 200MHz programmable PRU subsystem found on the BeagleBone, as well as dual, 213MHz Cortex-M4 microcontrollers.



FET5718-C 

The combination of the DSP with the real-time MCUs enables robotics, machine vision, medical imaging, automotive, and facial recognition applications. Industrial automation and building automation applications are also supported.

The FET5718-C module adds 1GB DDR3L, 8GB eMMC, a TPS659162RGZR power management unit, and a 3-port Gigabit Ethernet switch subsystem. The 12-layer, 70 x 50mm COM runs on 5V power and has a 320-pin board-to-board connector.

OK5718-C board

The 4-layer, 190 x 130mm OK5718-C baseboard expands upon the FET5718-C features with ports popping out on all sides. The board provides 2x GbE ports, onboard WiFi and Bluetooth, and a mini-PCIe slot with optional 3G/4G. There are single USB 3.0 host and micro-USB 2.0 device ports and a pair of USB 2.0 host ports.

The OK5718-C is further equipped with an HDMI port, an SD slot, a CAN port, and dual audio jacks. Onboard I/O includes SATA 2.0 with power, DVP and 2x MIPI-CSI camera interfaces, and other I/O as detailed below.



OK5718-C detail view
(click image to enlarge)

Specifications listed for the OK5718-C SBC include:

  • Processor (via FET5718-C module) — TI Sitara AM5718 (1x Cortex-A15 core @ up to 1.5GHz; PowerVR SGX544 3D GPU; Vivante GC320 2D GPU; 750MHz TI DSP-C66X; IVA-HD image/video accelerator; 200MHz PRU-ICSS; 2x 213MHz Cortex-M4
  • Memory/storage:
    • 1GB DDR3L (via FET5718-C)
    • 8GB eMMC (via FET5718-C)
    • QSPI flash (via FET5718-C)
    • SD slot (SD, SDHC, SDXC support)
    • SDIO interface
    • SATA 2.0 interface with SATA power
  • Wireless — 802.11b/g/n with Bluetooth
  • Networking — 2x GbE ports
  • Media I/O:
    • HDMI 1.4a port for up to 1080P@60Hz
    • RGB 888 LCD interface
    • Dual display support
    • 2x MIPI-CSI
    • DVP 8-bit 5MP camera interface
    • Mic and headphone jacks; speaker headers
  • Other I/O:
    • USB 3.0 host port
    • 2x USB 2.0 host ports
    • Micro-USB 2.0 device port
    • 3x UART
    • 2x I2C
    • Serial debug port
    • CAN 2.0, SPI, GPMC, HDQ, JTAG
  • Expansion — Mini-PCIe slot with optional Huawei 3G/4G card
  • Other features — 2x LED; 3x user keys; RTC with coin-cell battery; boot config switch
  • Power — 12V DC input; power and reset switches
  • Operating temperature — -40 to 85°C
  • Dimensions — 190 x 130mm
  • Operating system — Custom Linux with Kernel 4.9.41, Qt 5.6, and Wayland

Further information

No pricing or availability information was provided for the OK5718-C SBC or FET5718-C module. More information may be found on the Forlinx OK5718-C and FET5718-C product pages. There’s also a product page at Faststream Technologies.

This article originally appeared on LinuxGizmos.com on August 20.

Texas Instruments | www.ti.com

Tuesday’s Newsletter: Analog & Power

Coming to your inbox tomorrow: Circuit Cellar’s Analog & Power newsletter. Tomorrow’s newsletter content zeros in on the latest developments in analog and power technologies including ADCs, DACs, DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your Analog & Power newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Microcontroller Watch. (10/9) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

IoT Technology Focus. (10/16) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Embedded Boards.(10/23) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

October has a 5th Tuesday, so we’re bringing you a bonus newsletter:
Digital Signage (10/30)  Digital signage ranks among the most dynamic areas of today’s embedded computing space. Makers of digital signage players, board-level products and other technologies continue to roll out new solutions for implementing powerful digital signage systems. This newsletter looks at the latest technology trends and product developments in digital signage.

Rugged COM Express Type 10 Module Sports Intel Apollo Lake-I

MEN Micro has announced the CM50C, a low-power, compact, Rugged COM Express module that was developed around the Intel Atom E3900 series of processors. Due to the low power consumption, the virtualization support of the processor and the safe board management controller, the module is a multifaceted solution for individual designs in harsh environments and safety-critical applications.

The CM50C is a COM Express Mini module for rolling stock, public transportation and industry applications. It is compatible to COM Express Type 10 Pin-Out and conforms to the VITA 59 standard which specifies the mechanics to ensure reliable operation in harsh environmental conditions. In accordance with the Rugged COM Express standard, the CM50C is embedded in a solid aluminum frame that protects the electronics from environmental influences such as humidity, dust, vibrations or EMC radiation and also enables operation in the extended temperature range from -40 to +85°C via conduction cooling.

Based on the Intel E3900 CPU series with a low power dissipation of 7 W to 16 W, the CM50C provides a scalable performance up to 4 cores and integrated quality graphics. It also offers Intel VT-x virtualization support. This allows to run multiple applications on a single hardware platform, saving physical hardware and costs.

The board management controller provides enhanced reliability, reduced downtime and is certifiable up to SIL 2. With the Trusted Platform Module and the secure/ measured booting features fast cryptographic execution is supported. The CM50C comes with a large variety of interfaces, including, for example, Digital Display Interfaces, HD Audio, PCI Express and Gigabit Ethernet. This enables implementing many functions on a very small form factor.

The processor’s 15 years long-term availability ensures an extended product life and future-safety for a wide range of applications. For less demanding applications, a standard COM Express variant without frame is also available.

Features:

  • Intel Atom E3900 series
  • Up to 8 GB DDR3 RAM with ECC
  • Intel VT-x virtualization support
  • Rugged COM Express Mini (VITA 59 RCE) type 10
  • Trusted Platform Module
  • Board Management Controller (SIL 2 certifiable)
  • Conduction cooling
  • -40°C to +85°C

MEN Micro | www.menmicro.com

Next Newsletter: Embedded Boards

Coming to your inbox tomorrow: Circuit Cellar’s Embedded Boards newsletter. Tomorrow’s newsletter content focuses on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your
Embedded Boards newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Analog & Power. (10/2) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Microcontroller Watch (10/9) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

IoT Technology Focus. (10/16) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Apollo Lake Pico-ITX SBC Sports Dual GbE Ports

AAEON has released the PICO-APL4, a compact SBC that features onboard memory and storage along with dual Gbit Ethernet support. The board is well suited for factory automation and IoT gateway systems. AAEON’s latest PICO form factor board is powered by an Intel Atom, Pentium N4200 or Celeron N3350 processor. By fitting the controller with up to 4 GB of onboard DDR3L memory and up to 64 GB of onboard eMMC storage, AAEON has made the board more resistant to the shocks and vibrations regularly experienced in industrial settings. This also cuts application development times because system developers don’t need to test the compatibility of external memory and storage.

The flexible PICO-APL4 houses USB ports and connectors, COM ports, a HDMI port and optional eDP. There’s also a 4-bit DIO to manage peripherals and an optional four-lane MIPI-CSI. Expansion is easily achieved with M.2 B and E keys enabling the connection of additional storage and WiFi/Bluetooth modules. Through an optional board-to-board interface, customers can also extend the IO interface and add a larger DIO.

Features:

  • Intel Atom/ Pentium N4200/ Celeron N3350 Processor SoC
  • Onboard DDR3L 2 GB (Optional to 4 GB)
  • Onboard Storage eMMC 16 GB (Optional to 32 GB / 64 GB)
  • Dual Gigabit Ethernet Support
  • HDMI 1.4b, eDP (Optional) for Display
  • BIO Reserved (Optional)
  • USB 3.0 x 2, USB 2.0 x 2, SATA 6.0 Gb/s x 1
  • 2 B Key (2280) x 1, M.2 E Key (2230) x 1

AAEON | www.aaeon.com

Tuesday’s Newsletter: IoT Tech Focus

Coming to your inbox tomorrow: Circuit Cellar’s IoT Technology Focus newsletter. Tomorrow’s newsletter covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your IoT Technology Focus newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Embedded Boards.(9/25) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Analog & Power. (10/2) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Microcontroller Watch (10/9) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

Industrial Mini-ITX Board Pumps up with Coffee Lake

By Eric Brown

Commell’s “LV-67X” Mini-ITX board runs on 8th Gen “Coffee Lake” processors, with up to 32GB DDR4, 3x SATA, triple 4K displays, USB 3.1, and PCIe x16 and mini-PCIe expansion. The LV-67X, which shares some of the layout and feature set of its Intel Apollo Lake based LV-67U board, is the first industrial Mini-ITX board we’ve seen with Intel’s 8th Gen Coffee Lake CPUs. (Going forward, we’ll likely use the caffeinated nickname rather than “8th Gen” because Intel also applies the 8th Gen tag to the transitional and similarly 14nm Kaby Lake-G chips as well as the new, 10nm Cannon Lake processors.)


LV-67X
(click image to enlarge)
The LV-67X is called an industrial board, and it provides a relatively wide 0 to 60°C range and a smattering of industrial I/O. However, it has a full-height profile and bridges the gap to consumer applications. The board supports video gaming, virtual reality, medical devices, imaging, machine vision, and digital signage. The product page lists only Windows drivers, but the manual notes that the board also supports Linux.

The 170 x 170mm SBC supports Coffee Lake Core, Celeron, and Pentium CPUs that work with the FCLGA1151 socket (the full name for LGA1151). The board ships with Intel Q370 chipset, one of Intel’s 300-series I/O chips announced with Coffee Lake that supports USB 3.1 Gen2 and extensive PCIe lanes.

No specific models were mentioned, but the SBC is said to support Coffee Lake chips with up to six cores running at up to 4.7GHz Turbo, with Intel 9th-gen graphics and up to 12MB cache. That would be the profile for the top-of-the-line Core i7-8700K, a hexa-core chip with 12 threads and a 95W TDP.

The LV-67X can load up to 32GB of speedy, 2666MHz DDR4 RAM via dual sockets. It provides 2x GbE ports, 3x SATA III interfaces, a full-size mini-PCIe slot with mSATA support, and another half-size mini-PCIe slot accompanied by a SIM card slot. There’s also a PCIe x16 interface.


 
LV-67X block diagram (left) and detail view
(click images to enlarge)

The description of the USB feature set varies depending on the citation, but Commell has clarified matters for us in an email. There are 6x USB 3.1 interfaces, 4x of which are coastline ports. There are also 4x USB 2.0 internal interfaces.

One key difference between earlier Core-based boards is that the LV-67X taps Coffee Lake’s ability to power three independent 4K displays. The board accomplishes this hat trick with coastline HDMI and DVI-I ports and an optional DisplayPort, as well as onboard VGA and 18/24-bit, dual-channel LVDS interfaces. If you don’t want the DisplayPort, you can instead get additional VGA and LVDS connections.

The LV-67X is further equipped with 4x RS232/422/485 or RS-232 interfaces, depending on conflicting citations, with an option to add two RS232/422/485 DB9 ports. Other features include 3x audio jacks (Realtek ALC262), 8-bit DIO, and LPC, SMBus, and PS/2 interfaces. You also get a watchdog, RTC with battery, and 24-pin ATX and 4-pin, 12V inputs.

Further information

No pricing or availability information was provided for the LV-67X. More information may be found on Commell’s announcement and product pages.

This article originally appeared on LinuxGizmos.com on August 17..

Commell | www.commell.com.tw

Tuesday’s Newsletter: Microcontroller Watch

Coming to your inbox tomorrow: Circuit Cellar’s Microcontroller Watch newsletter. Tomorrow’s newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your Microcontroller Watch newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

IoT Technology Focus. (9/18) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Embedded Boards.(9/25) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Analog & Power. (10/2) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Tuesday’s Newsletter: Analog & Power

Coming to your inbox tomorrow: Circuit Cellar’s Analog & Power newsletter. Tomorrow’s newsletter content zeros in on the latest developments in analog and power technologies including ADCs, DACs, DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your Analog & Power newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Microcontroller Watch. (9/11) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

IoT Technology Focus. (9/18) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Embedded Boards.(9/25) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Raspberry Pi’s PoE HAT Ships for $20, Tosses in a Free Fan

By Eric Brown

Raspberry Pi Trading has launched a $20 Power-over-Ethernet HAT board for the Raspberry Pi 3 Model B+ that delivers up to 15W and ships with a small fan. The Power-over-Ethernet HAT that was promised with the release of the Raspberry Pi 3 Model B+ SBC has arrived. The $20, 802.3af-compliant “Raspberry Pi PoE HAT” allows delivery of up to 15W over the RPi 3 B+’s USB-based GbE port without reducing the port’s up to 300Mbps bandwidth.


 
Raspberry Pi PoE HAT alone (left) and fitted on Raspberry Pi 3 Model B+
(click images to enlarge)

We’ve seen an increase in the use of PoE in embedded equipment over the last year, perhaps due to the growth in IoT applications in which embedded gear must be placed in remote locations. It’s cheaper and easier to run Ethernet cable to a remote device than to extend electrical lines.

With the help of the RPi 3 B+’s improved PXE boot function, which enables network booting, “you can now dispense with not only the power supply but also the SD Card, making deployment even cheaper for a Raspberry Pi based system in your factory or workplace,” writes Roger Thornton in the Raspberry Pi blog announcement.

The Raspberry Pi PoE HAT features a fully isolated switched-mode power supply with 37-57V DC, Class 2 input and 5V/2.5A DC output. The HAT connects to both the 40-pin header and a new PoE-specific 4-pin header introduced with the B+ located near the USB ports. To enable PoE, you need power sourcing equipment, which is either “provided by your network switch or with power injectors on an Ethernet cable,” writes Thornton.


 
Raspberry Pi PoE HAT with RPi 3 B+ (left) and close-up of 4-pin header on B+ between the USB ports and the 40-pin GPIO header
(click images to enlarge)

The PoE HAT ships with a 25 x 25mm brushless fan for cooling the Broadcom SoC. This does not appear to be due to any additional heat generated by PoE. Instead: “We see the product as a useful component for people building systems that may be in tougher environments,” writes Thornton.

The fan is connected via I2C and controlled with an Atmel MCU chip. This setup turns on the fan automatically when the SBC hits a certain temperature threshold, a trick that requires the latest sudo rpi-update firmware.

You can add another HAT board on top of the fan with the help of some pass-through headers for the 40-pin GPIO and the 4-way header to expose the pins on the other side of the PoE HAT. Raspberry Pi Trading recommends the 2×20 pin header from Pimoroni and 4-way risers from RS and element14.

The Raspberry Pi 3 Model B+ won LinuxGizmos’ reader survey of 116 Linux/Android hacker boards. The community-backed SBC builds upon the RPi 3 Model B design with a faster, up to 1.4GHz quad-core Broadcom SoC, as well as faster Ethernet (GbE). You also get various power management improvements and faster dual-band 802.11ac and Bluetooth 4.2, which comes in a pre-certified, shielded module.

Further information

The Raspberry Pi PoE HAT is available now for $20 at a variety of resellers. The blog announcement may be found here. The product page with links to resellers is here.

This article originally appeared on LinuxGizmos.com on August 25.

Raspberry Pi Foundation | www.raspberrypi.org