Deadline Extended to June 22 — Vote Now!

UPDATE: We’ve extended our 2018 reader survey on open-spec Linux/Android hacker boards through this Friday, June 22.   Vote now!

Circuit Cellar’s sister website LinuxGizmos.com has launched its fourth annual reader survey of open-spec, Linux- or Android-ready single board computers priced under $200. In coordination with Linux.com, LinuxGizmos has identified 116 SBCs that fit its requirements, up from 98 boards in its June 2017 survey.

Vote for your favorites from LG’s freshly updated catalog of 116 sub-$200, hacker-friendly SBCs that run Linux or Android, and you could win one of 15 prizes.

Check out LinuxGizmos’ freshly updated summaries of 116 SBCs, as well as its spreadsheet that compares key features of all the boards.

Explore this great collection of Linux SBC information. To find out how to participate in the survey–and be entered to win a free board–click here:

GO HERE TO TAKE THE SURVEY AND VOTE

 

 

Tuesday’s Newsletter: IoT Tech Focus

Coming to your inbox tomorrow: Circuit Cellar’s IoT Technology Focus newsletter. Tomorrow’s newsletter covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your IoT Technology Focus newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Embedded Boards.(6/26) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Analog & Power. (7/3) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Microcontroller Watch (7/10) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

July Circuit Cellar: Sneak Preview

The July issue of Circuit Cellar magazine is coming soon. And we’ve rustled up a great herd of embedded electronics articles for you to enjoy.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of July 2018 Circuit Cellar:

TECHNOLOGIES FOR THE INTERNET-OF-THINGS

Wireless Standards and Solutions for IoT  
One of the critical enabling technologies making the Internet-of-Things possible is the set of well-established wireless standards that allow movement of data to and from low-power edge devices. Here, Circuit Cellar’s Editor-in-Chief, Jeff Child, looks at key wireless standards and solutions playing a role in IoT.

Product Focus: IoT Device Modules
The rapidly growing IoT phenomenon is driving demand for highly integrated modules designed to interface with IoT devices. This Product Focus section updates readers on this technology trend and provides a product album of representative IoT interface modules.

TOOLS AND TECHNIQUES AT THE DESIGN PHASE

EMC Analysis During PCB Layout
If your electronic product design fails EMC compliance testing for its target market, that product can’t be sold. That’s why EMC analysis is such an important step. In his article, Mentor Graphics’ Craig Armenti shows how implementing EMC analysis during the design phase provides an opportunity to avoid failing EMC compliance testing after fabrication.

Extreme Low-Power Design
Wearable consumer devices, IoT sensors and handheld systems are just a few of the applications that strive for extreme low-power consumption. Beyond just battery-driven designs, today’s system developers want no-battery solutions and even energy harvesting. Circuit Cellar’s Editor-in-Chief, Jeff Child, dives into the latest technology trends and product developments in extreme low power.

Op Amp Design Techniques
Op amps can play useful roles in circuit designs linking the real analog world to microcontrollers. Stuart Ball shares techniques for using op amps and related devices like comparators to optimize your designs and improve precision.

Wire Wrapping Revisited
Wire wrapping may seem old fashioned, but this tried and true technology can solve some tricky problems that arise when you try to interconnect different kinds of modules like Arduino, Raspberry Pi and so on. Wolfgang Matthes steps through how to best employ wire wrapping for this purpose and provides application examples.

DEEP DIVES ON MOTOR CONTROL AND MONITORING

BLDC Fan Current
Today’s small fans and blowers depend on brushless DC (BLDC) motor technology for their operation. In this article, Ed Nisley explains how these seemingly simple devices are actually quite complex when you measure them in action. He makes some measurements on the motor inside a tangential blower and explores how the data relates to the basic physics of moving air.

Electronic Speed Control (Part 1)
An Electronic Speed Controller (ESC) is an important device in motor control designs, especially in the world of radio-controlled (RC) model vehicles. In Part 1, Jeff Bachiochi lays the groundwork by discussing the evolution of brushed motors to brushless motors. He then explores in detail the role ESC devices play in RC vehicle motors.

MCU-Based Motor Condition Monitoring
Thanks to advances in microcontrollers and sensors, it’s now possible to electronically monitor aspects of a motor’s condition, like current consumption, pressure and vibration. In this article, Texas Instrument’s Amit Ashara steps through how to best use the resources on an MCU to preform condition monitoring on motors. He looks at the signal chain, connectivity issues and A-D conversion.

AND MORE FROM OUR EXPERT COLUMNISTS

Verifying Code Readout Protection Claims
How do you verify the security of microcontrollers? MCU manufacturers often make big claims, but sometimes it is in your best interest to verify them yourself. In this article, Colin O’Flynn discusses a few threats against code readout and looks at verifying some of those claimed levels.

Thermoelectric Cooling (Part 1)
When his thermoelectric water color died prematurely, George Novacek was curious whether it was a defective unit or a design problem. With that in mind, he decided to create a test chamber using some electronics combined with components salvaged from the water cooler. His tests provide some interesting insights into thermoelectric cooling.

 

Tuesday’s Newsletter: Microcontroller Watch

Coming to your inbox tomorrow: Circuit Cellar’s Microcontroller Watch newsletter. Tomorrow’s newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your Microcontroller Watch newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

IoT Technology Focus. (6/19) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Embedded Boards.(6/26) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Analog & Power. (7/3) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Tuesday’s Newsletter: Analog & Power

Coming to your inbox tomorrow: Circuit Cellar’s Analog & Power newsletter. Tomorrow’s newsletter content zeros in on the latest developments in analog and power technologies including ADCs, DACs, DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your Analog & Power newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Microcontroller Watch. (6/12) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

IoT Technology Focus. (6/19) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Embedded Boards.(6/26) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

ETX Module Provides Long Life Cycle Solution

ADLINK Technology has continued its commitment and support to customers who have designs based on the ETX computer-on-module form factor. ETX is one of the earliest computer-on-module form factors. After more than two decades, its popularity is only second to COM Express when it comes to installed user base. With the recent discontinuation of the hugely popular Intel Atom processor N270, many customers are searching for an ETX module replacement to keep their systems up and running.

They are in need of an ETX drop-in solution at both hardware and software levels (Intel-to-Intel) with equivalent or improved performance and a better thermal envelope to simplify the transition. The problem is that customer’s current module suppliers may not have ETX on their roadmaps anymore. Since ETX is no longer a viable choice for completely new designs, many earlier manufacturers have moved on and dropped out of the ETX market.

ADLINK’s solution is the ETX-BT, based on the Intel Atom processor E3800 series SoC (formerly Bay Trail).  This Intel Atom product family is possibly the last processor that can fully support all ETX legacy interfaces: PATA IDE, ISA bus, PCI bus, serial/parallel ports, VGA and LVDS (Hsync/Vsync mode). The ETX-BT is available in both commercial (0°C to 60°C)  and Extreme Rugged (-40°C to +85°C) versions and has a life cycle of 10 years, keeping in line with Intel’s warranted life cycle for the Intel Atom processor E3800 series of 15 years from release.

ADLINK was a pioneer in the ETX form factor computer-on-module market, and continues to support its users in sustaining and extending the life of their existing ETX-based system.

ADLINK Technology | www.adlinktech.com

Next Newsletter: Sensors and Measurement

Coming to your inbox tomorrow: Circuit Cellar’s Sensors and Measurement newsletter.
May has a 5th Tuesday, so we’re bringing you this bonus newsletter beyond our normal four rotating weekly subject areas. While sensors have always played a key role in embedded systems, the exploding IoT phenomenon has pushed sensor technology to the forefront. This newsletter looks at the latest technology trends and product developments in sensors and measurement.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your
Sensors & Measurement newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Embedded Boards.(5/22) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Analog & Power. (6/5) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Microcontroller Watch (6/12) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

Gesture Recognition in a Boxing Glove

Sensors Packed in the Punch

Learn how these two Boston University graduate students built a gesture-detection wearable that acts as a building block for a larger fitness telemetry system. Using a Linux-based Gumstix Verdex, the wearable couples an inertial measurement unit with a pressure sensor embedded in a boxing glove.

By Blade Olson and Patrick Dillon

Diagnostic monitoring of physical activity is growing in demand for physical therapists, entertainment technologists, sports trainers and for postoperative monitoring with surgeons [1][2]. In response to the need for a low-cost, low-profile, versatile, extensible, wearable activity sensor, the Hit-Rec boxing sensor is a proof-of-concept device that demonstrates on-board gesture recognition and high-throughput data monitoring are possible on a wearable sensor that can withstand violent impacts. The Hit-Rec’s ability to gather raw sensor values and run calculations at a high frame rate make the Hit-Rec an ideal diagnostic device for physical therapists searching for slight perturbations across a user’s gestures in a single recording session or for looking at discrepancies between the ideal motions of a healthy individual and the user’s current motions. The following sections will describe the implementation of a prototype for the Hit-Rec using a boxing glove (See Lead Photo Above).

SYSTEM OVERVIEW

The Hit-Rec sensor incorporates a Gumstix Verdex Pro running Linux, a 9-DoF (degree of freedom) inertial measurement unit (IMU), a pressure sensor that is connected to the Gumstix via a 12-bit analog-to-digital converter (ADC) and LEDs for user feedback. The ADC and IMU both communicate over I2C. The LEDs communicate to the Gumstix through general purpose input/output (GPIO). Figure 1 shows a high-level explanation of hardware interfaces and Figure 2 provides an illustration of the system overview. All software was written in C and runs exclusively on the Gumstix Verdex Pro. A Linux kernel module was written to interact with the LEDs from the user-space program that performs data capture and analysis. IMU data was smoothed and corrected in real-time with an open-source attitude and heading reference system (AHRS) provided by Mahony [3][4]. A circular buffer queue was used to store and retrieve sensor data for recording and analysis. Punch classification compares accelerometer values at each data point and chooses the gesture with smallest discrepancy.

Figure 1
This high-level diagram details the data transfer connections made between the main hardware and software components of the Hit-Rec.

Figure 2
Overview of the software architecture for translating IMU and Pressure data to user feedback

Each of three LEDs on the Hit-Rec glove represents a different gesture type. After the “punchomatic” program is started, the user is prompted to record three gestures by way of three flashing LEDs. In the background, IMU data is continuously being recorded. The first, yellow LED flashes until an impact is registered, at which point the last 50 frames of IMU data are used as the “fingerprint“ for the gesture. This gesture fingerprint is stored for the rest of the session. Two additional gestures are recorded in an identical manner using the red and blue LEDs for the subsequent punches. After three gestures have been recorded, the user can punch in any form and the Hit-Rec will classify the new punch according to the three recently recorded punch gestures. Feedback on the most closely related punch is presented by lighting up the corresponding LED of the originally recorded gesture when a new punch occurs.

SENSORS

We used the Adafruit LSM9DS0 with breakout board as an IMU sensor and a force-sensitive resistor (FSR) from Adafruit as a pressure sensor. Both sensors communicate over I2C, which the pressure sensor achieves through an ADC. …

Read the full article in the June 335 issue of Circuit Cellar

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!

Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

Next Newsletter: Embedded Boards

Coming to your inbox tomorrow: Circuit Cellar’s Embedded Boards newsletter. Tomorrow’s newsletter content focuses on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your
Embedded Boards newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

May has a 5th Tuesday, so we’re bringing you a bonus newsletter:
Sensors and Measurement
. (5/29) While sensors have always played a key role in embedded systems, the exploding IoT phenomenon has pushed sensor technology to the forefront. This newsletter looks at the latest technology trends and product developments in sensors and measurement.

Analog & Power. (6/5) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Microcontroller Watch (6/12) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

June Circuit Cellar: Sneak Preview

The June issue of Circuit Cellar magazine is coming soon. And we’ve planted a lovely crop of embedded electronics articles for you to enjoy.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of June 2018 Circuit Cellar:

PCB DESIGN AND POWER: MAKING SMART CHOICES

PCB Design and Verification
PCB design tools and methods continue to evolve as they race to keep pace with faster, highly integrated electronics. Automated, rules-based chip placement is getting more sophisticated and leveraging AI in interesting ways. And supply chains are linking tighter with PCB design processes. Circuit Cellar Chief Editor Jeff Child looks at the latest PCB design and verification tools and technologies.

PCB Ground Planes
Tricky design decisions crop up when you’re faced with crafting a printed circuit board (PCB) for any complex system—and many of them involve the ground plane. There is dealing with noisy components and deciding between a common ground plane or separate ones—and that’s just the tip of the iceberg. Robert Lacoste shares his insights on the topic, examining the physics, simulation tools and design examples of ground plane implementations.

Product Focus: AC-DC Converters
To their peril, embedded system developers often treat their choice of power supply as an afterthought. But choosing the right AC-DC converter is critical to the ensuring your system delivers power efficiently to all parts of your system. This Product Focus section updates readers on these trends and provides a product album of representative AC-DC converter products.

SENSORS TAKE MANY FORMS AND FUNCTIONS

Sensors and Measurement
While sensors have always played a key role in embedded systems, the exploding Internet of Things (IoT) phenomenon has pushed sensor technology to the forefront. Any IoT implementation depends on an array of sensors that relay input back to the cloud. Circuit Cellar Chief Editor Jeff Child dives into the latest technology trends and product developments in sensors and measurement.

Passive Infrared Sensors
One way to make sure that lights get turned off when you leave a room is to use Passive Infrared (PIR) sensors. Jeff Bachiochi examines the science and technology behind PIR sensors. He then details how to craft effective program code and control electronics to use PIR sensors is a useful way.

Gesture-Recognition in Boxing Glove
Learn how two Boston University graduate students built a gesture-detection wearable that acts as a building block for a larger fitness telemetry system. Using a Linux-based Gumstix Verdex, the wearable couples an inertial measurement unit with a pressure sensor embedded in a boxing glove to recognize the user’s hits and classify them according to predefined, user-recorded gestures.

SECURITY, RELIABILITY AND MORE

Internet of Things Security (Part 3)
In this next part of his article series on IoT security, Bob Japenga looks at the security features of a specific series of microprocessors: Microchip’s SAMA5D2. He examines these security features and discusses what protection they provide.

Aeronautical Communication Protocols
Unlike ground networks, where data throughout is the priority, avionics networks are all about reliability. As a result, the communications protocols used in for aircraft networking seem pretty obscure to the average engineer. In this article, George Novacek reviews some of the most common aircraft comms protocols including ARINC 429, ARINC 629 and MIL-STD-1553B

DEEP DIVES ON PROCESSOR DESIGN AND DIGITAL SIGNAL PROCESSING

Murphy’s Laws in the DSP World (Part 1)
A Pandora’s box of unexpected issues gets opened the moment you move from the real world of analog signals and enter the world of digital signal processing (DSP). In Part 1 of this new article series, Mike Smith defines six “Murphy’s Laws of DSP” and provides you with methods and techniques to navigate around them.

Processor Design Techniques and Optimizations
As electronics get smaller and more complex day by day, knowing the basic building blocks of processors is more important than ever. In this article, Nishant Mittal explores processor design from various perspectives—including architecture types, pipelining and ALU varieties.

Tuesday’s Newsletter: IoT Tech Focus

Coming to your inbox tomorrow: Circuit Cellar’s IoT Technology Focus newsletter. Tomorrow’s newsletter covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your IoT Technology Focus newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Embedded Boards.(5/22) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

May has a 5th Tuesday, so we’re bringing you a bonus newsletter:
Sensors and Measurement
. (5/29) While sensors have always played a key role in embedded systems, the exploding IoT phenomenon has pushed sensor technology to the forefront. This newsletter looks at the latest technology trends and product developments in sensors and measurement.

Analog & Power. (6/5) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Microcontroller Watch (6/12) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

Tuesday’s Newsletter: Microcontroller Watch

Coming to your inbox tomorrow: Circuit Cellar’s Microcontroller Watch newsletter. Tomorrow’s newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your Microcontroller Watch newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

IoT Technology Focus. (5/15) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Embedded Boards.(5/22) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

May has a 5th Tuesday, so we’re bringing you a bonus newsletter:
Sensors and Measurement
. (5/29) While sensors have always played a key role in embedded systems, the exploding IoT phenomenon has pushed sensor technology to the forefront. This newsletter looks at the latest technology trends and product developments in sensors and measurement.

Analog & Power. (6/5) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Tuesday’s Newsletter: Analog & Power

Coming to your inbox tomorrow: Circuit Cellar’s Analog & Power newsletter. Tomorrow’s newsletter content zeros in on the latest developments in analog and power technologies including ADCs, DACs, DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your Analog & Power newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Microcontroller Watch. (5/8) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

IoT Technology Focus. (5/15) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Embedded Boards.(5/22) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

May has a 5th Tuesday, so we’re bringing you a bonus newsletter:
Sensors and Measurement
. (5/29) While sensors have always played a key role in embedded systems, the exploding IoT phenomenon has pushed sensor technology to the forefront. This newsletter looks at the latest technology trends and product developments in sensors and measurement.

 

Intel Coffee Lake H-Series Debut Processors Debut in Congatec and Seco Modules

By Eric Brown

Intel has rolled out new H-, M-, U- and T-series Intel Core and Xeon chips, expanding its line of 14 nm fabricated, 8th Gen Core Kaby Lake Refresh processors, code-named “Coffee Lake.” Of special interest are four new dual- and quad-core U-series chips with up to 2.7 GHz clock rates and 28 W TDPs, as well as four quad- and hexa-core H-series Core i5 and i7 processors and a pair of hexa-core M-series Xeon chips, all with 45 W TDP (total dissipated power).

Congatec Conga-TS370 (top) and Seco COMe-C08-BT6 (bottom) (click images to enlarge)

The hexa-core Core i7-8850H, quad-core Core i5-8400H, and hexa-core Xeon E-2176M are appearing in a pair of 125 mm x 95 mm COM Express Basic Type 6 announced by Congatec and Seco. Both the Conga-TS370 and Seco’s COMe-C08-BT6 are available with Linux or Windows 10, and support 0 to 60°C temperatures (see farther below).

Intel’s 8th Gen M- and H-series processors (click image to enlarge)

Intel launched its first round of 8th-Gen Kaby Lake Refresh “Coffee Lake” chips back in September. This fourth generation of its 14 nm fabricated Core chips — following Broadwell, Skylake, and Kaby Lake — offers relatively modest performance and power efficiency improvements.Like most of AMD’s new Ryzen Embedded V1000 SoCs, most of the Coffee Lake processors are double threaded, so four cores give you eight threads and six cores give you 12. The exception is a line of standard, desktop-oriented T-series chips with 35 W TDPs. The T-series models are all single-threaded except the top-of-the-line, hexa-core Core i7-8700T, clocked to 2.4 GHz /4.0 GHz.

Intel’s latest batch of U-series (top) and new T-series CPUs (bottom)
(click images to enlarge)

The latest batch of U-series processors give you more speed, but higher 28 W TDPs than the original batch. The initial U-series chips, which were used in recent Linux-based laptops from System76 and ZaReason, provide slightly faster quad- instead of dual-core designs with the same price and 15 W TDP as 7th-Gen “Kaby Lake” models. The first round of Coffee Lake chips also included some high-end models tuned to gaming, as well as the first hexa-core Core i5 and first quad-core Core i3 models.

Also today, Intel unveiled a new line of 300-series I/O chipsets that are based on the upcoming Cannon Lake PCH. The lineup includes a Q370 model that supports up to 6x USB 3.1 Gen2 ports, up to 24x PCIe 3.0 lanes, and Intel Wireless-AC for faster 802.11ac.

Intel’s original line of 8th Gen CPUs (top) and new 300-series I/O chipsets (bottom) (click images to enlarge)Intel added to the Coffee Lake parade with some gaming focused G-series chips that use a Radeon Vega GPU from rival AMD. The Core i7-8809G, which can be overclocked, as well as the fixed rate Core i7-8705G, are available in Intel NUC mini-PCs.Today’s media coverage emphasized Intel’s first mobile version of its gaming-oriented Core i9 design. The hexa-core Core i9-8950HK CPU uses thermal velocity boost” technology to jump from 2.9 GHz to 4.8 GHz.

The related H- and M-series processors used by Seco and Congatec include the Core i7-8850H, the fastest of the two hexa-core Core i7 models with 2. 6GHz /4.3 GHz performance. The i7-8850H offers a 9MB Intel Smart Cache and supports “partial” overclocking. The Core i5-8400H is the fastest of the two quad-core i5 models, with 2.5 GHz /4.2 GHz performance and an 8MB cache. The hexa-core, 2.7 GH z/4.4 GHz Xeon E-2176M with 12 MB cache is the slower of the two Xeon M-series chips. (The turbo speeds can only be achieved by one core at a time.)

All the models used by Congatec and Seco offer 45W TDPs and support Intel Optane memory and Intel VPro technology. As with other Coffee Lake processors, there are software patches to protect against Meltdown and Spectre vulnerabilities. However, a hardware fix will await the 10nm Cannon Lake generation.

The three models used by the Conga-TS370 and COMe-C08-BT6 modules are the:

  • Intel Core i7-8850H (6x 12-thread 14nm Coffee Lake cores at 2.6 GHz /4.3 GHz); 9 MB Cache, 45W TDP (35W cTDP)
  • Intel Core i5-8400H 4x 8-thread 14 nm Coffee Lake cores at 2.5 GHz /4.2 GHz); 8 MB Cache, 45W TDP (35W cTDP)
  • Intel Xeon E-2176M, 8850H (6x 12-thread 14 nm Coffee Lake cores at 2.7 GHz /4.4 GHz); 9 MB Cache, 45 W TDP (35W cTDP)

Intel claims that the six-core H-series and M-series modules offer between 45 to 50 percent more multi-thread and 15 to 25 percent more single-thread performance compared to 7th Gen “Kaby Lake” Core processors. The built-in Intel Gen9 LP graphics can manage up to 3x independent displays at once, with a resolution up to 4096 x 2304 at 60 Hz, 24 bpp. There’s support for DirectX 12 and OpenGL 4.5, as well as an H.265 / HEVC hardware transcoder.

Conga-TS370

Like Congatec’s 6th Gen Skylake based Conga-TS170 and 7th Gen Kaby Lake powered Conga-TS175, the Conga-TS370 uses the COM Express Type 6 Basic form factor. All common Linux operating systems, as well as the 64-bit versions of Microsoft Windows 10 and Windows 10 IoT are supported.

 

Conga-TS370 block diagram
(click image to enlarge)

The module offers up to 10-year availability, and targets applications including “high performance embedded and mobile systems, industrial and medical workstations, storage servers and cloud workstations, as well as media transcoding and edge computing cores,” says Congatec.Thanks to the Coffee Lake-H chips, the module supports Intel Optane memory, as well as Intel Software Guard extensions, Trusted Execution Engine, and Intel Platform Trust Technology. The Core processors use the new Intel PCH-H QM370 Series I/O chipset while the Xeon is paired with a CM246 Series controller.

You can load up to 32GB of  DDR4-2666 memory via dual sockets with optional ECC. There are 4x SATA III interfaces, as well as an Intel i219-LM GbE controller with AMT 12.0 support. Expansion features include a PEG x16 Gen3 interface and 8x PCIe Gen 3.0 lanes.

The integrated Intel UHD630 graphics supports up to three independent 4K displays via HDMI 1.4a, eDP 1.4, and DisplayPort 1.2. Dual-channel LVDS is also available as an alternative to eDP, and for the first time, you can switch between eDP to LVDS by software alone, says Congatec.

The highlighted feature enabled by Coffee Lake-H is its support for up to 4x USB 3.1 Gen 2 ports, which operate at up to 10 Gbps. The module also includes 8x USB 2.0 interfaces.

The Conga-TS370 is further equipped with LPC, I2C, SMBus, GPIO, SDIO, and dual UARTs. There’s also an HD Audio interface, TPM 2.0, and ACPI 4.0 with battery support. The Congatec Board Controller provides features including watchdog, non-volatile user storage, and backlight control.

Support services are available, along with a range of accessories and standardized or customized carrier boards and systems. A Conga-Teva2 carrier is in the works but is not yet documented.

COMe-C08-BT6

Seco’s COMe-C08-BT6 module, which follows it similarly Type 6, 6th Gen Skylake based COMe-B09-BT6, is designed for applications including gaming, signage, infotainment, HMI, biomedical devices, Industry 4.0, automation, and telco. There’s support for 64-bit Linux and Windows 10.

 

COMe-C08-BT6
(click image to enlarge)

Not surprisingly, the feature set is very similar to that of the Conga-TS370. You get up to 3 2GB of DDR4-2666 with ECC, 4x SATA 3.0 channels, and an Intel i219-LM GbE controller.The COMe-C08-BT6 has the same triple display and 4K support as the Congatec model. In this case you get DP, HDMI, and DVI DDI interfaces, as well as a choice of eDP, LVDS, or LVDS + VGA interfaces. HD Audio is also available.

Like the Conga-TS370, there are 4x USB 3.1 Gen 2 interfaces, 8x USB 2.0 links, a PEG x16 Gen3 interface, and 8x PCIe Gen 3.0 lanes. Other features include 2x UARTs, as well as SPI, I2C, SMBus, LPC, and GPIO. You also get a watchdog, optional TPM 2.0, thermal and fan management signals, and 12 V or optional 5 V DC input.

CCOMe-965 carrier (top) and block diagram (bottom)
(click images to enlarge)The COMe-C08-BT6 is available with Seco’s CCOMe-965 Mini-ITX carrier board, which also supports other Seco Type 6 modules such as the COMe-B09-BT6 and Ryzen V1000 based COMe-B75-CT6. There’s also a Cross Platform Development Kit that includes the CCOMe-965, along with HDMI and DisplayPort cables, and is said to support ARM-based Type 6 COMs in addition to x86.

CCOMe-C30 carrier (top) and block diagram (bottom)
(click images to enlarge)One final development option is an upcoming, 3.5-inch form factor CCOMe-C30 board that features a DP++ port, 2x mini-DP++ ports, and LVDS and eDP connections. The 146 mm x 102 mm board has dual M.2 sockets, dual GbE ports, and SATA and microSD slots. You also get 2x USB 3.0 and 2x USB 2.0 ports, plus 4x serial headers, among other features.Further information

No pricing or availability information was provided for the Congatec Conga-TS370 or Seco COMe-C08-BT6 Type 6 modules. More on Congatec’s Conga-TS370 module may be found in the Conga-TS370 announcement and product pages.

More on Seco’s COMe-C08-BT6 may be found on the COMe-C08-BT6 product page.

Intel’s latest Intel Coffee Lake processors should start shipping in volume by the end of the month. More information may be found on Intel’s 8th Gen Intel Core announcement page.

This article originally appeared on LinuxGizmos.com on April 3.

Congatec | www.congtatec.com

Seco | www.seco.com

Next Newsletter: Embedded Boards

Coming to your inbox tomorrow: Circuit Cellar’s Embedded Boards newsletter. Tomorrow’s newsletter content focuses on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your Embedded Boards newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Analog & Power. (5/1) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Microcontroller Watch. (5/8) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

IoT Technology Focus. (5/15) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.