FREE Sample Issue – Oct. 2017

 

We’ve made the October 2017 issue of Circuit Cellar available as a sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!

Inside This Issue:
Emulating Legacy Interfaces
Do it with Microcontrollers
By Wolfgang Matthes

OctP18
Building a Retro TV Remote
PIC MCU-Based Design
By Dev Gualtieri
Building a Robot Hand
With Servos and Electromyography
By Michael Haidar, Jason Hwang and Srikrishnaa VadivelLogger Device Tracks Amp Hours (Part 1)
Measuring Home Electricity
By William Wachsmann

OctP38
Commercial Drone Design Solutions Take Flight

Chips, Boards and Platforms
By Jeff Child

Design for Manufacturing: Does It Have to be so Difficult?
An interview with Scott N. Miller and Thos Niles
By Wisse Hettinga

Signal Chain Tech Pushes Bandwidth Barriers
ADCs, FPGAs and DACs
By Jeff Child

Embedded in Thin Slices
Build an Embedded Systems Consulting Company (Part 6)
Trade-Offs of Fixed-Price Contracts
By Bob JapengaThe Consummate Engineer
In the Loop on Positive Feedback
New Value in an Old Concept
By George Novacek

OctP56

The Darker Side
Antenna Performance Measurement Made Easy
Covering the Basics
By Robert Lacoste
From the Bench
Gas Monitoring and Sensing (Part 1)
Fun with Fragrant Analysis
By Jeff BachiochiTECH THE FUTURE
The Future of PCB Design

Racing to Keep Pace With PCB Complexities
By Duane Benson

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!

Commercial Drone Design Solutions Take Flight

Chips, Boards and Platforms

The control, camera and communications electronics inside today’s commercial drones have to pack in an ambitious amount of functionality while keeping size, weight and power as low as possible.

By Jeff Child, Editor-in-Chief

There aren’t many areas of embedded systems these days that are as dynamic and fast-growing as commercial drones. Drones represent a vivid example of a technology that wouldn’t have been possible if not for the ever-increasing levels of chip integration driven by Moore’s law. Drones are riding that wave, enabling an amazing rate of change so that 4k HD video capture, image stabilization, new levels of autonomy and even highly integrated supercomputing is now possible on drones.

 

The Intel Aero Ready to Fly Drone is a pre-assembled quadcopter built for professional drone application developers. The platform features a board running an Intel 2.56 GHz quad-core Intel Atom x7-Z8750 processor.

The Intel Aero Ready to Fly Drone is a pre-assembled quadcopter built for professional drone application developers. The platform features a board running an Intel 2.56 GHz quad-core Intel Atom x7-Z8750 processor.

To get a sense of the rapid growth of drone use, just consider drones from the point of view of the Federal Aviation Administration (FAA). Integrating commercial drones into the FAA’s mission has been a huge effort over the past couple years. To paraphrase Michael P. Huerta, Administrator of the FAA, there are over 320,000 registered manned aircraft today and it took 100 years to reach that number. In contrast, only nine months after the FAA put its drone registration process in place, there were more than 550,000 registered users—comprised of both hobbyists and commercial drone users.

Electronics for Drones

Today’s commercial/civilian drone technologies are advancing faster than most people could have imagined only a couple years ago. And drone designs will continue to reap the benefits of advances in processor / chip technologies, sensor innovations and tools that make them easier to create. Feeding those needs, chip and board vendors of all sizes have been rolling out solutions to help drone system developers create new drone products and get to market quickly. Among these vendors are large players like Intel and Qualcomm–along with a whole host of specialized technology suppliers offering video ICs, single-chip cameras and a variety of sensor solutions all aimed at drone platforms. ….

We’ve made the October 2017 issue of Circuit Cellar available as a sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.
Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!

 

Buck Converter Extends Battery Life of USB Type-C Gear

Maxim Integrated Products has announced the MAX77756, a 24 V, 500 mA, low quiescent current (IQ) buck converter. The product targets developers of multi-cell, USB Type-C products in need high current, dual inputs and I2C support. USB Type-C products must generate an always-on 3.3 V rail to detect USB insertions. Products utilizing the Power Delivery (PD) voltage range (5 V to 20 V) can generate an always-on (1.8 V /3.3 V /5.0 V) digital supply MAX77756_EVKit_imagerail for the port controller using the MAX77756 step-down converter. In addition, the MAX77756 has a 2 0 μA quiescent current that extends battery life by reducing idle power consumption. To simplify the system design, the MAX77756 has a dual input ideal diode ORing circuit that allows the chip to power from the external USB source if the battery is empty.

Multi-cell battery-operated devices—such as ultrabooks, laptops, tablets, drones and home automation appliances—can easily evolve to Type-C with PD using the flexible MAX77756 power supply. The MAX77756 has a unique combination of wide input voltage range, low quiescent current, higher current load, dual input, and I2C for flexibility and programmability. There is also a default power mode if customers do not want to use the I2C bus. The MAX77756 is a robust IC with short-circuit and thermal protection, 8ms internal soft-start to minimize inrush current, proven current-mode control architecture, and up to 26V input voltage standoff.

Key Advantages

  • Low quiescent current: 1.5 μA Buck and 20 μA MUX for always-on operation
  • High efficiency: Up to 92% with integrated power MUX
  • Small solution size: 2.33mm x 1.42mm 15-bump WLP; no external Schottky array needed
  • Wide input voltage: Operates on full VBUS range (5 V – 20 V) and VBATT (2S, 3S, 4S Li+)

MAX77756 is available from stock and priced at $0.65 (10,000+)..An evaluation board MAX77756EVKIT# (see photo) is available from stock and priced at $70

Maxim Integrated Products | www.maximintegrated.com

October Circuit Cellar: A Sneak Preview

The October issue of Circuit Cellar magazine is on the launch pad, ready to deliver a selection of excellent embedded electronics articles covering trends, technology and design.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of October Circuit Cellar:

TECHNOLOGY FOR DRONES / ROBOTIC HAND

Commercial Drone Design Solutions Take Flight: Chips, Boards and Platforms
The control, camera and comms electronics inside today’s drones have to pack in an ambitious amount of functionality. Circuit Cellar Chief Editor Jeff Child explores the latest Oct 327 Coverand greatest chip and module solutions serving today’s commercial and consumer drone designs.

Building a Robot Hand: With Servos and Electromyography
Learn how three Cornell University students developed a robotic hand. The system captures impulses generated by muscle contractions and then filters and feeds those signals to a microcontroller which controls finger movement.

 

CAN’T STOP THE SIGNAL

Signal Chain Tech Pushes Bandwidth Barriers: ADCs, FPGAs and DACs
FPGAs and D-A converters are key  technologies making up a signal chain. Here, Circuit Cellar Chief Editor Jeff Child steps through the state-of-the-art options available for crafting efficient, highly-integrated signal-centric systems.

Antenna Performance Measurement Made Easy: Covering the Basics
If you’re doing any kind of wireless communications design, chances are you’re including an antenna. Columnist Robert Lacoste shows how the task of measuring an antenna’s performance is less costly and exotic than you’d think.

MONITORING GEAR WITH MICROCONTROLLER BRAINS

Gas Monitoring and Sensing (Part 1): Fun with Fragrant Analysis
Columnist Jeff Bachiochi covers the background issues surrounding gas monitoring and sensing. Then he describes how he uses sensors, A/D conversion and Arduino technologies to do oxygen measurement.

Logger Device Tracks Amp Hours (Part 1): Measuring Home Electricity
Setting out to monitor and log electricity usage in his house, Bill Wachsmann built an amp-hour logger using a microcontroller and a clamp on ammeter.

KEEPING THE LEGACY ALIVE

Emulating Legacy Interfaces: Do it with Microcontrollers
There’s a number of important legacy interface technologies—like ISA and PCI—that are no longer supported by the mainstream computing industry. In his article Wolfgang Matthes examines ways to use microcontrollers  to emulate the bus signals of legacy interconnect schemes.

Building a Retro TV Remote : PIC MCU-Based Design
Dev Gualtieri embarks on building a retro-style TV remote, based on a Microchip PIC microcontroller. He outlines the phototransistor, battery and software designs he made along the way.

AND MORE FROM OUR EXPERT COLUMNISTS:

Get in the Loop on Positive Feedback: New Value in an Old Concept
Positive feedback loops are an important element of modern circuitry such as crystal oscillators, PLLs and other devices. Here, George Novacek goes deep into the math and circuit analysis of positive feedback and how it’s used in electronics.

Build an Embedded Systems Consulting Company (Part 6): Trade-Offs of Fixed-Price Contracts
Continuing his “Building an Embedded Systems Consulting Company” article series, this month Bob Japenga explores the nature of contracts and how fixed price contracts can be an effective, albeit dangerous tool in marketing.

The Most Technical

Input Voltage

–Jeff Child, Editor-in-Chief

JeffHeadShotIt is truly a thrill and an honor for me to be joining the Circuit Cellar team as the magazine’s new Editor-in-Chief. And in this—my first editorial in my new role—I want to seize the opportunity to talk about Circuit Cellar. A lot of factors attracted me to this publication. But in a nutshell its position in the marketplace is compelling. It intersects with two converging trends happening in technology today.

First, there’s the phenomenon of the rich set of tools, chips, and information resources available today. They put more power into the hands of makers and electronics DIY experts than ever before. You’ve got hardware such as Arduino and Raspberry Pi. Open source software ranging from Linux to Eclipse make integrating and developing software easier than ever. And porting back and forth between open source software and commercial embedded software is no longer prohibitive now that commercial software vendors are in a “join them, not beat them” phase of their thinking. Easy access has even reached processors thanks to the emergence of RISC-V for example (click here for more). Meanwhile, powerful FPGA chips enable developers to use one chip where an entire board or box was previously required.

The second big trend is how system-level chip technologies—like SoC-style processors and the FPGAs I just mentioned—are enabling some of the most game-changing applications driving today’s markets: including commercial drones, driverless cars, Internet-of-Things (IoT), robotics, mobile devices and more. This means that exciting and interesting new markets are attracting not just big corporations looking for high volume play, but also small start-up vendors looking to find their own niche within those market areas. And there are a lot of compelling opportunities in those spaces. Ideas that start as small embedded systems projects can—and are—blossoming into lucrative new enterprises.

What’s so exciting is that Circuit Cellar readers are at the center of both those two trends. There’s a particular character this magazine has that separates it from other technology magazines. There are a variety of long-established publications that cover electronics and whose stated missions are to serve engineers. I’ve worked for some of them, and they all have their strengths. But you can tell just by looking at the features and columns of Circuit Cellar that we don’t hold back or curtail our stories when it comes to technical depth. We get right down to the bits and bytes and lines code. Our readers are engineers and academics who want to know not only the rich details of a microcontroller’s on-board peripherals, but also how other like-minded geeks applied that technology to their DIY or commercial project. They want to know if the DC-DC converter they are considering has a wide enough input voltage to serve their needs.

Another cool thing for me about Circuit Cellar is the magazine’s origin story. Back when I was in high school and in my early days studying Computer Science in college, Steve Ciarcia had a popular column called Circuit Cellar in BYTE magazine. I was a huge fan of BYTE. I would take my issue and bring it to a coffee shop and read it intently. (Mind you this was pre-Internet. Coffee shops didn’t have Wi-Fi.) What I appreciated most about BYTE was that it had far more technical depth than the likes of PC World and PC Computing. I felt like it was aimed at a person with a technical bent like myself. When Steve later went on to found this magazine—nearly 30 years ago—he gave it the Circuit Cellar name but he also maintained that unique level of technical depth that entices engineers.

With all that in mind, I plan to uphold the stature and legacy in the electronics industry that I and all of you have long admired about Circuit Cellar. We will work to continue being the Most Technical information resource for professional engineers, academics, and other electronics specialists world-wide. Meanwhile, you can look forward to expanded coverage of those exciting market-spaces I discussed earlier. Those new applications really exemplify how embedded computing technology is changing the world. Let’s have some fun.