Client Profile: Lauterbach, Inc

1111 Main Street #115
Vancouver, WA 98660

Contact:
sales_us@lauterbach.com

LauterbachFeatured Product: The TRACE32-ICD in-circuit debugger supports a range of on-chip debug interfaces. The debugger’s hardware is universal and enables you to connect to different target processors by simply changing the debug cable. The PowerDebug USB 3.0 can be upgraded with the PowerProbe or the PowerIntergrator to a logic analyzer.

Product Features: The TRACE 32-ICD JTAG debugger has a 5,000-KBps download rate. It features easy high-level Assembler debugging and an interface to all industry-standard compilers. The debugger enables fast download of code to target, OS awareness debugging, and flash programming. It displays internal and external peripherals at a logical level and includes support for hardware breakpoints and trigger (if supported by chip), multicore debugging (SMP and AMP), C and C++, and all common NOR and NAND flash devices.

For more information, visit www.lauterbach.com/bdmusb3.html.

Arduino Uno Blueprint — Free Download

Elektor.Labs recently produced an Arduino Uno blueprint poster for element14. The poster details everything you need to know about the Arduino Uno.

Download it for free here.

Download your Arduino Uno poster

Download your Arduino Uno poster

The poster also includes coding notes that will get you working with your Arduino Uno in no time.

About the Arduino Uno:

  • Core Architecture: AVR
  • Core Sub-Architecture: megaAVR
  • Silicon Core: ATmega328
  • Features: The Arduino Uno is powered via USB or an external supply. It’s programmed with Arduino software.

Recent Arduino-related articles from Circuit Cellar:

 

Electrostatic Cleaning Robot Project

How do you clean a clean-energy generating system? With a microcontroller (and a few other parts, of course). An excellent example is US designer Scott Potter’s award-winning, Renesas RL78 microcontroller-based Electrostatic Cleaning Robot system that cleans heliostats (i.e., solar-tracking mirrors) used in solar energy-harvesting systems. Renesas and Circuit Cellar magazine announced this week at DevCon 2012 in Garden Grove, CA, that Potter’s design won First Prize in the RL78 Green Energy Challenge.

This image depicts two Electrostatic Cleaning Robots set up on two heliostats. (Source: S. Potter)

The nearby image depicts two Electrostatic Cleaning Robots set up vertically in order to clean the two heliostats in a horizontal left-to-right (and vice versa) fashion.

The Electrostatic Cleaning Robot in place to clean

Potter’s design can quickly clean heliostats in Concentrating Solar Power (CSP) plants. The heliostats must be clean in order to maximize steam production, which generates power.

The robot cleaner prototype

Built around an RL78 microcontroller, the Electrostatic Cleaning Robot provides a reliable cleaning solution that’s powered entirely by photovoltaic cells. The robot traverses the surface of the mirror and uses a high-voltage AC electric field to sweep away dust and debris.

Parts and circuitry inside the robot cleaner

Object oriented C++ software, developed with the IAR Embedded Workbench and the RL78 Demonstration Kit, controls the device.

IAR Embedded Workbench IDE

The RL78 microcontroller uses the following for system control:

• 20 Digital I/Os used as system control lines

• 1 ADC monitors solar cell voltage

• 1 Interval timer provides controller time tick

• Timer array unit: 4 timers capture the width of sensor pulses

• Watchdog timer for system reliability

• Low voltage detection for reliable operation in intermittent solar conditions

• RTC used in diagnostic logs

• 1 UART used for diagnostics

• Flash memory for storing diagnostic logs

The complete project (description, schematics, diagrams, and code) is now available on the Challenge website.