Project Spotlight: “3D-Printed Mouse” Circuitry & Design

I get to meet and interact with creative engineers and researchers around the world who are working on innovative MCU-based projects. Some of them show up at our office to chat. Others I meet with when I travel to California for events like the Embedded Systems Conference. But many of the most interesting people and projects I find are on the Net. A perfect example is David Mellis, whose projects and research grabbed my attention recently while I was browsing the MIT Media Lab website. He is a PhD student in the High-Low Tech research group at the MIT Media Lab.

Mellis gave me permission to write about the projects and post some of the photos from his website, so let’s take a look at one of them—the “3D-Printed Mouse.”

The 3D-Printed Mouse design (Source: D. Mellis)

Check out the mouse strapped to a hand.

The mouse in hand (Source: D. Mellis)

Mellis writes:

This mouse combines a traditional electronic circuit board and components with a 3D-printed enclosure. The mouse is open-source: the original files necessary to make or modify its design are available for download below.

Download

Enclosure
Rhino: mouse.3dm
STLs: mouse-shell.stl, mouse-base.stl

Circuit board
Eagle files: mouse.brd, mouse.sch
Gerbers: mouse-gerbers.zip
Schematic: mouse.pdf

Component Datasheets

Button: SS-P_1110.pdf
Mouse Chip: ADNS2620.pdf

Code: hid-mouse.zip

Mellis notes that the circuitry and code are based on SparkFun’s ADNS2620 Evaluation Board, but “have been modified to include buttons.”

The first prototype with the SparkFun board (Source: D. Mellis)

Click here to access the project site.

 

Wireless Data Control for Remote Sensor Monitoring

Circuit Cellar has published dozens of interesting articles about handy wireless applications over the years. And now we have another innovative project to report about. Circuit Cellar author Robert Bowen contacted us recently with a link to information about his iFarm-II controller data acquisition system.

The iFarm-II controller data acquisition system (Source: R. Bowen)

The design features two main components. Bowen’s “iFarm-Remote” and the “iFarm-Base controller” work together to as an accurate remote wireless data acquisition system. The former has six digital inputs (for monitoring relay or switch contacts) and six digital outputs (for energizing a relay’s coil). The latter is a stand-alone wireless and internet ready controller. Its LCD screen displays sensor readings from the iFarm-Remote controller. When you connect the base to the Internet, you can monitor data reading via a browser. In addition, you can have the base email you notifications pertaining to the sensor input channels.

You can connect the system to the Internet for remote monitoring. The Network Settings Page enables you to configure the iFarm-Base controller for your network. (Source: R. Bowen)

Bowen writes:

The iFarm-II Controller is a wireless data acquisition system used to remotely monitor temperature and humidity conditions in a remote location. The iFarm consists of two controllers, the iFarm-Remote and iFarm-Base controller. The iFarm-Remote is located in remote location with various sensors (supports sensors that output +/-10VDC ) connected. The iFarm-Remote also provides the user with 6-digital inputs and 6-digital outputs. The digital inputs may be used to detect switch closures while the digital outputs may be used to energize a relay coil. The iFarm-Base supports either a 2.4GHz or 900Mhz RF Module.

The iFarm-Base controller is responsible for sending commands to the iFarm-Remote controller to acquire the sensor and digital input status readings. These readings may be viewed locally on the iFarm-Base controllers LCD display or remotely via an Internet connection using your favorite web-browser. Alarm conditions can be set on the iFarm-Base controller. An active upper or lower limit condition will notify the user either through an e-mail or a text message sent directly to the user. Alternatively, the user may view and control the iFarm-Remote controller via web-browser. The iFarm-Base controllers web-server is designed to support viewing pages from a PC, Laptop, iPhone, iTouch, Blackberry or any mobile device/telephone which has a WiFi Internet connection.—Robert Bowen, http://wireless.xtreemhost.com/

iFarm-Host/Remote PCB Prototype (Source: R. Bowen)

Robert Bowen is a senior field service engineer for MTS Systems Corp., where he designs automated calibration equipment and develops testing methods for customers involved in the material and simulation testing fields. Circuit Cellar has published three of his articles since 2001:

Tech Highlights from Design West: RL78, AndroPod, Stellaris, mbed, & more

The Embedded Systems Conference has always been a top venue for studying, discussing, and handling the embedded industry’s newest leading-edge technologies. This year in San Jose, CA, I walked the floor looking for the tech Circuit Cellar and Elektor members would love to get their hands on and implement in novel projects. Here I review some of the hundreds of interesting products and systems at Design West 2012.

RENESAS

Renesas launched the RL78 Design Challenge at Design West. The following novel RL78 applications were particularly intriguing.

  • An RL78 L12 MCU powered by a lemon:

    A lemon powers the RL78 (Photo: Circuit Cellar)

  • An RL78 kit used for motor control:

    The RL78 used for motor control (Photo: Circuit Cellar)

  • An RL78 demo for home control applications:

    The RL78 used for home control (Photo: Circuit Cellar)

TEXAS INSTRUMENTS

Circuit Cellar members have used TI products in countless applications. Below are two interesting TI Cortex-based designs

A Cortex-M3 digital guitar (you can see the Android connection):

TI's digital guitar (Photo: Circuit Cellar)

Stellaris fans will be happy to see the Stellaris ARM Cortex -M4F in a small wireless application:

The Stellaris goes wireless (Photo: Circuit Cellar)

NXP mbed

Due to the success of the recent NXP mbed Design Challenge, I stopped at the mbed station to see what exciting technologies our NXP friends were exhibiting. They didn’t disappoint. Check out the mbed-based slingshot developed for playing Angry Birds!

mbed-Based sligshot for going after "Angry Birds" (Photo: Circuit Cellar)

Below is a video of the project on the mbedmicro YouTube page:

FTDI

I was pleased to see the Elektor AndroPod hard at work at the FTDI booth. The design enables users to easily control a robotic arm with Android smartphones and tablets.

FTDI demonstrates robot control with Android (Photo: Circuit Cellar)

As you can imagine, the possible applications are endless.

The AndroPod at work! (Photo: Circuit Cellar)

Q&A: Dave Jones (Engineer, EEVBlog)

Are you an electrical engineer, hacker, or maker looking for a steady dose of reliable product reviews, technical insight, and EE musings? If so, Dave Jones is your man. The Sydney, Australia-based engineer’s video blog (EEVblog) and podcast (The Amp Hour, which he co-hosts with Chris Gammell) are quickly becoming must-subscribe feeds for plugged-in inquisitive electronics enthusiasts around the world.

Dave Jones: engineer, video blogger, and podcaster

The April issue of Circuit Cellar features an interview with Jones, who describes his passion for electronics, reviewing various technologies, and his unscripted approach to video blogging and podcasting. Below is an abridged version of the interview.

David L. Jones is a risk taker. In addition to jumping off cliffs in the name of product testing, the long-time engineer recently switched to full-time blogging. In February 2012, Dave and I discussed his passion for electronics, his product review process, and what it means to be a full-time video blogger.—Nan Price, Associate Editor

NAN: When did you first start working with electronics?

DAVE: The video story can be found at “EEVblog #54 – Electronics – When I was a boy…” www.youtube.com/watch?v=XpayYlJdbJk. I was very young, maybe six or so, when I was taking apart stuff to see how it worked, so my parents got me a 50-in-1Tandy (RadioShack) electronics kit and that was it, I was hooked, electronics became my life. And indeed, this seems to be fairly typical of how many engineers of the era got started.

By the time I was eight, I already had my own lab and was working on my own projects. All my pocket money went into tools, parts, and magazines.

The electronics magazine industry was everything back then before the Internet and communications revolution. I would eagerly await every issue of the Australian electronics magazines like Electronics Australia, Electronics Today International (ETI), Applied and Australian Electronics Monthly (AEM), Talking Electronics, and later Silicon Chip.

NAN: Tell us about some of your early projects.

DAVE: Given that it was over 30 years ago, it’s hard to recall I’m afraid. Unfortunately, I just didn’t think to use a (film) camera back then to record stuff, it just wasn’t something that you did as a kid. The family camera only came out on special occasions. So those projects have been lost in the annals of time.

My first big published magazine project was a digital storage oscilloscope (DSO) adapter for PCs, in a 1993 issue of Electronics Australia. I originally designed this in the late 1980s. (See “electronics.alternatezone.com, http://alternatezone.com/electronics/dsoa.ht.)

NAN: You have many interests and talents. What made you choose engineering as your full-time gig?

DAVE: There was no choice, electronics has been my main hobby since I can remember, so electronics engineering was all I ever wanted to do to. I’ve branched out into a few other hobbies over the years, but electronics has always remained what I’ve wanted to do.

NAN: The Electronics Engineering Video Blog—EEVBlog—is touted as “an off-the-cuff video blog for electronics engineers, hobbyists, hackers, and makers.” Tell us about EEVBlog and what inspired you to begin it.

DAVE: I’ve always been into sharing my electronics, either through magazines, via my website, or on newsgroups, so I guess it’s natural that I’d end up doing something like this.

In early 2009 I saw that (WordPress-type) blogs were really taking off for all sorts of topics and some people were even doing “video blogs” on YouTube. I wondered if there were any blogs for electronics, and after a search I found a lot of text-based blogs, but it seemed like no one was doing a video blog about electronics, like a weekly show that people could watch … So I thought it’d be fun to do an electronics video blog and blaze a new trail and see what happened.

Being fairly impulsive, I didn’t think about it much; I just dusted off a horrible old 320 × 240 webcam, sat down in front of my computer, and recorded 10 minutes (the YouTube limit back then) of whatever came into my head. I figured a product review, a book review, a chip review, and some industry news was a good mix … I’ve had constant linear growth since then, and now have a regular weekly audience of over 10,000 viewers and over 4 million views on YouTube. Not to mention that it’s now my full-time job.

The complete April issue of Circuit Cellar is now available. For more information about Dave Jones, his video blog, and podcast, visit www.eevblog.com and www.theamphour.com.

Renesas RL78 Green Energy Challenge

Up for an international design challenge? It’s time for the Renesas RL78 Green Energy Challenge! Renesas has partnered with IAR Systems to deliver engineers a power-house combo of low-power devices and high-quality software. They’re steering a great, green revolution and are challenging you to transform how the world experiences energy efficiency by developing a unique, low-power application using the RL78 MCU and IAR toolchain. Succeed and win a share of $17,500 in Grand Prizes from Renesas! * The Renesas Grand Prize winner will also win a free trip to Renesas DevCon in October where winners will be announced.

But that’s not all. Earn additional prizes like developments tools, Pmods, Wi-Fi modules, embedded systems books, and more from Contest Partners through weekly prize drawings. Follow Renesas on Twitter and Facebook for weekly challenge questions from official Contest Partners. Weekly Partner Challenges, and the respective winners, will be announced every Monday throughout the competition.

So, do you have a great idea for a remote device that monitors pollution? What about a box collecting data on home power usage or an energy harvesting biometric design? Perhaps your grand plan is for a low power controller scavenging heat from an oven or furnace, a meter reading biomass parameters, or a braking system for a wind turbine? It’s up to you! Send us your best RL78 based ideas to help make the world a better place.

The Challenge starts March 26, 2012 and ends on August 31, 2012. Winners will be announced in October at Renesas’ DevCon 2012.

Hundreds of free RL78/G13 development kits (“RDK”s), loaded with IAR’s Kickstart edition, are being distributed to those who qualify. Click here to see if you qualify for a complimentary RDK!

*Prizes in U.S. dollars.

Circuit Cellar, Inc. and Elektor International Media is the Contest Administrator.