Game On with the Arduino Esplora

Every time the Arduino team is about to release a new board, we expect something great in terms of better specs, more I/Os, a faster processor, more memory—or, well, just something to “fill the gap,” such as small-scale versions. With “Esplora” the Arduino team pleasantly surprises us again!

Arduino Esplora

The brand new Esplora is targeted toward gaming applications. It consists of a gamepad-shaped development board that includes an Arduino-compatible Atmel ATmega32U4, a light sensor, a temperature sensor, an accelerometer, a joystick, push buttons, a slider, an RGB LED, and a buzzer.

The Esplora is as a ready-to-use solution for designers who don’t want to deal with soldering or prototyping by means of discrete components. In fact, it comes preprogrammed with a controller script, so you only have to connect it to a PC, download the free game “Super Tux Cart,” and have fun.

An additional color LCD will be released soon in order to create a portable console. The only drawback is you can’t directly connect standard Arduino shields to it , mainly because of space limitations. Nevertheless, the board itself includes enough features to make it interesting.

The Esplora should enable you to implement a controller for almost any application you dream up. In our case, we’re sure it will bring back nice memories of the time when we were too young for soldering irons but already pros with gamepads!—Jaime González Arintero Berciano, Elektor International Media

 

DIY Green Energy Design Projects

Ready to start a low-power or energy-monitoring microcontroller-based design project? You’re in luck. We’re featuring eight award-winning, green energy-related designs that will help get your creative juices flowing.

The projects listed below placed at the top of Renesas’s RL78 Green Energy Challenge.

Electrostatic Cleaning Robot: Solar tracking mirrors, called heliostats, are an integral part of Concentrating Solar Power (CSP) plants. They must be kept clean to help maximize the production of steam, which generates power. Using an RL78, the innovative Electrostatic Cleaning Robot provides a reliable cleaning solution that’s powered entirely by photovoltaic cells. The robot traverses the surface of the mirror and uses a high voltage AC electric field to sweep away dust and debris.

Parts and circuitry inside the robot cleaner

Cloud Electrofusion Machine: Using approximately 400 times less energy than commercial electrofusion machines, the Cloud Electrofusion Machine is designed for welding 0.5″ to 2″ polyethylene fittings. The RL78-controlled machine is designed to read a barcode on the fitting which determines fusion parameters and traceability. Along with the barcode data, the system logs GPS location to an SD card, if present, and transmits the data for each fusion to a cloud database for tracking purposes and quality control.

Inside the electrofusion machine (Source: M. Hamilton)

The Sun Chaser: A GPS Reference Station: The Sun Chaser is a well-designed, solar-based energy harvesting system that automatically recalculates the direction of a solar panel to ensure it is always facing the sun. Mounted on a rotating disc, the solar panel’s orientation is calculated using the registered GPS position. With an external compass, the internal accelerometer, a DC motor and stepper motor, you can determine the solar panel’s exact position. The system uses the Renesas RDKRL78G13 evaluation board running the Micrium µC/OS-III real-time kernel.

[Video: ]

Water Heater by Solar Concentration: This solar water heater is powered by the RL78 evaluation board and designed to deflect concentrated amounts of sunlight onto a water pipe for continual heating. The deflector, armed with a counterweight for easy tilting, automatically adjusts the angle of reflection for maximum solar energy using the lowest power consumption possible.

RL78-based solar water heater (Source: P. Berquin)

Air Quality Mapper: Want to make sure the air along your daily walking path is clean? The Air Quality Mapper is a portable device designed to track levels of CO2 and CO gasses for constructing “Smog Maps” to determine the healthiest routes. Constructed with an RDKRL78G13, the Mapper receives location data from its GPS module, takes readings of the CO2 and CO concentrations along a specific route and stores the data in an SD card. Using a PC, you can parse the SD card data, plot it, and upload it automatically to an online MySQL database that presents the data in a Google map.

Air quality mapper design (Source: R. Alvarez Torrico)

Wireless Remote Solar-Powered “Meteo Sensor”: You can easily measure meteorological parameters with the “Meteo Sensor.” The RL78 MCU-based design takes cyclical measurements of temperature, humidity, atmospheric pressure, and supply voltage, and shares them using digital radio transceivers. Receivers are configured for listening of incoming data on the same radio channel. It simplifies the way weather data is gathered and eases construction of local measurement networks while being optimized for low energy usage and long battery life.

The design takes cyclical measurements of temperature, humidity, atmospheric pressure, and supply voltage, and shares them using digital radio transceivers. (Source: G. Kaczmarek)

Portable Power Quality Meter: Monitoring electrical usage is becoming increasingly popular in modern homes. The Portable Power Quality Meter uses an RL78 MCU to read power factor, total harmonic distortion, line frequency, voltage, and electrical consumption information and stores the data for analysis.

The portable power quality meter uses an RL78 MCU to read power factor, total harmonic distortion, line frequency, voltage, and electrical consumption information and stores the data for analysis. (Source: A. Barbosa)

High-Altitude Low-Cost Experimental Glider (HALO): The “HALO” experimental glider project consists of three main parts. A weather balloon is the carrier section. A glider (the payload of the balloon) is the return section. A ground base section is used for communication and display telemetry data (not part of the contest project). Using the REFLEX flight simulator for testing, the glider has its own micro-GPS receiver, sensors and low-power MCU unit. It can take off, climb to pre-programmed altitude and return to a given coordinate.

High-altitude low-cost experimental glider (Source: J. Altenburg)

CC268: The History of Embedded Tech

At the end of September 2012, an enthusiastic crew of electrical engineers and journalists (and significant others) traveled to Portsmouth, NH, from locations as far apart as San Luis Obispo, CA,  and Paris, France, to celebrate Circuit Cellar’s 25th anniversary. Attendees included Don Akkermans (Director, Elektor International Media), Steve Ciarcia (Founder, Circuit Cellar), the current magazine staff, and several well-known engineers, editors, and columnists. The event marked the beginning of the next chapter in the history of this long-revered publication. As you’d expect, contributors and staffers both reminisced about the past and shared ideas about its future. And in many instances, the conversations turned to the content in this issue, which was at that time entering the final phase of production. Why? We purposely designed this issue (and next month’s) to feature a diversity of content that would represent the breadth of coverage we’ve come to deliver during the past quarter century. A quick look at this issue’s topics gives you an idea of how far embedded technology has come. The topics also point to the fact that some of the most popular ’80s-era engineering concerns are as relevant as ever. Let’s review.

In the earliest issues of Circuit Cellar, home control was one of the hottest topics. Today, inventive DIY home control projects are highly coveted by professional engineers and newbies alike. On page 16, Scott Weber presents an interesting GPS-based time server for lighting control applications. An MCU extracts time from GPS data and transmits it to networked devices.

The time-broadcasting device includes a circuit board that’s attached to a GPS module. (Source: S. Weber, CC268)

Thiadmer Riemersma’s DIY automated component dispenser is a contemporary solution to a problem that has frustrated engineers for decades (p. 26). The MCU-based design simplifies component management and will be a welcome addition to any workbench.

The DIY automated component dispenser. (Source: T. Riemersma, CC268)

USB technology started becoming relevant in the mid-to-late 1990s, and since then has become the go-to connection option for designers and end users alike. Turn to page 30 for Jan Axelson’s  tips about debugging USB firmware. Axelson covers controller architectures and details devices such as the FTDI FT232R USB UART controller and Microchip Technology’s PIC18F4550 microcontroller.

Debugging USB firmware (Source: J. Axelson, CC268)

Electrical engineers have been trying to “control time” in various ways since the earliest innovators began studying and experimenting with electric charge. Contemporary timing control systems are implemented in a amazing ways. For instance, Richard Lord built a digital camera controller that enables him to photograph the movement of high-speed objects (p. 36).

Security and product reliability are topics that have been on the minds of engineers for decades. Whether you’re working on aerospace electronics or a compact embedded system for your workbench (p. 52), you’ll want to ensure your data is protected and that you’ve gone through the necessary steps to predict your project’s likely reliability (p. 60).

The issue’s last two articles detail how to use contemporary electronics to improve older mechanical systems. On page 64 George Martin presents a tachometer design you can implement immediately in a machine shop. And lastly, on page 70, Jeff Bachiochi wraps up his series “Mechanical Gyroscope Replacement.” The goal is to transmit reliable data to motor controllers. The photo below shows the Pololu MinIMU-9.

The Pololu MinIMU-9′s sensor axes are aligned with the mechanical gyro so the x and y output pitch and roll, respectively. (Source: J. Bachiochi, CC268)

DIY 10.1˝ Touchscreen Home Control System

Domotics (home automation) control systems are among the most innovative and rewarding design projects creative electrical engineers can undertake. Let’s take a look at an innovative Beagle Board-based control system that enables a user to control lights with a 10.1˝ capacitive touchscreen.

Domotics control system

The design features the following modules:

• An I/O board for testing purposes
• An LED strip board for controlling an RGB LED strip
• A relay board for switching 230-VAC devices
• An energy meter for measuring on/off (and also for logging)

ELektor editor and engineer Clemens Valens recently interviewed Koen van Dongen about the design. Van Dongen describes the system’s electronics and then demonstrates how to use the touchscreen to control a light and LED strip.

As Valens explains suggests, it would be a worthwhile endeavor to incorporate a Wi-Fi connection to enable cellphone and tablet control. If you build such system, be sure to share it with our staff. Good luck!

CircuitCellar.com is an Elektor International Media website.

DIY Internet-Enabled Home Control System

Why shell out hundreds or thousands of dollars on various home control systems (HCS) when you have the skills and resources to build your own? You can design and implement sophisticated Internet-enabled systems with free tools and some careful planning.

John Breitenbach did just that. He used a microcontroller, free software, and a cloud-based data platform to construct a remote monitoring system for his home’s water heater. The innovative design can email or text status messages and emergency alerts to a smartphone. You can build a similar system to monitor any number of appliances, rooms, or buildings.

An abridged version of Breitenbach’s article, “Internet-Enabled Home Control” (Circuit Cellar 264, July 2012), appears below. (A link to the entire article and an access password are noted at the end of this post.) Breitenbach writes:

Moving from the Northeast to North Carolina, my wife and I were surprised to find that most homes don’t have basements. In the north, the frost line is 36˝–48 ˝ below the surface. To prevent frost heave, foundations must be dug at least that deep. So, digging down an extra few feet to create a basement makes sense. Because the frost line is only 15 ˝ in the Raleigh area, builders rarely excavate the additional 8’ to create basements.

The lack of basements means builders must find unique locations for a home’s mechanical systems including the furnace, AC unit, and water heater. I was shocked to find that my home’s water heater is located in the attic, right above one of the bedrooms (see Photo 1).

Photo 1: My home’s water heater is located in our attic. (Photo courtesy of Michael Thomas)

During my high school summers I worked for my uncle’s plumbing business (“Breitenbach Plumbing—We’re the Best, Don’t Call the Rest”) and saw firsthand the damage water can do to a home. Water heaters can cause some dramatic end-of-life plumbing failures, dumping 40 or more gallons of water at once followed by the steady flow of the supply line.

Having cleaned up the mess of a failed water heater in my own basement up north, I haven’t had a good night’s sleep since I discovered the water heater in my North Carolina attic. For peace of mind, especially when traveling, I instrumented my attic so I could be notified immediately if water started to leak. My goal was to use a microcontroller so I could receive push notifications via e-mails or text messages. In addition to emergency messages, status messages sent on a regular basis reassure me the system is running. I also wanted to use a web browser to check the current status at any time.

MCU & SENSOR

The attic monitor is based on Renesas Electronics’s YRDKRX62N demonstration kit, which features the RX62N 32-bit microcontroller (see Photo 2). Renesas has given away thousands of these boards to promote the RX, and the boards are also widely available through distributors. The YRDK board has a rich feature set including a graphics display, push buttons, and an SD-card slot, plus Ethernet, USB, and serial ports. An Analog Devices ADT7420 digital I2C temperature sensor also enables you to keep an eye on the attic temperature. I plan to use this for a future addition to the project that compares this temperature to the outside air temperature to control an attic fan.

Photo 2: The completed board, which is based on a Renesas Electronics YRDKRX62N demonstration kit. (Photo courtesy of Michael Thomas)

SENSING WATER

Commercial water-detection sensors are typically made from two exposed conductive surfaces in close proximity to each other on a nonconductive surface. Think of a single-sided PCB with no solder mask and tinned traces (see Photo 3).

Photo 3: A leak sensor (Photo courtesy of Michael Thomas)

These sensors rely on the water conductivity to close the circuit between the two conductors. I chose a sensor based on this type of design for its low cost. But, once I received the sensors, I realized I could have saved myself a few bucks by making my own sensor from a couple of wires or a piece of proto-board.

When standing water on the sensor shorts the two contacts, the resistance across the sensor drops to between 400 kΩ and 600 kΩ. The sensor is used as the bottom resistor in a voltage divider with a 1-MΩ resistor up top. The output of the divider is routed to the 12-bit analog inputs on the RX62N microcontroller. Figure 1 shows the sensor interface circuit. When the voltage read by the analog-to-digital converter (ADC) drops below 2 V, it’s time to start bailing. Two sensors are connected: one in the catch pan under the water heater, and a second one just outside the catch pan to detect failures in the small expansion tank.

Figure 1: The sensor interface to the YRDK RX62N board

COMMUNICATIONS CHOICES

One of my project goals was to push notifications to my cell phone because Murphy’s Law says water heaters are likely to fail while you’re away for the weekend. Because I wanted to keep the project costs low, I used my home’s broadband connection as the gateway for the attic monitor. The Renesas RX62N microcontroller includes a 100-Mbps Ethernet controller, so I simply plugged in the cable to connect the board to my home network. The open-source µIP stack supplied by Renesas with the YRDK provides the protocol engine needed to talk to the Internet.

There were a couple of complications with using my home network as the attic monitor’s gateway to the world. It is behind a firewall built into my router and, for security reasons, I don’t want to open up ports to the outside world.

My Internet service provider (ISP) occasionally changes the Internet protocol (IP) address associated with my cable modem. So I would never know what address to point my web browser. I needed a solution that would address both of these problems. Enter Exosite, a company that provides solutions for cloud-based, machine-to-machine (M2M) communications.

TALKING TO THE CLOUD

Exosite provides a number of software components and services that enable M2M communications via the cloud. This is a different philosophy from supervisory control and data acquisition (SCADA) systems I’ve used in the past. The control systems I’ve worked on over the years typically involve a local host polling the hundreds or thousands of connected sensors and actuators that make up a commercial SCADA system. These systems are generally designed to be monitored locally at a single location. In the case of the attic monitor, my goal was to access a limited number of data points from anywhere, and have the system notify me rather than having to continuously poll. Ideally, I’d only hear from the device when there was a problem.

Exosite is the perfect solution: the company publishes a set of simple application programming interfaces (APIs) using standard web protocols that enable smart devices to push data to their servers in the cloud in real time. Once the data is in the cloud, events, alerts, and scripts can be created to do different things with the data—in my case, to send me an e-mail and SMS text alert if there is anything wrong with my water heater. Connected devices can share data with each other or pull data from public data sources, such as public weather stations. Exosite has an industrial-strength platform for large-scale commercial applications. It provides free access to it for the open-source community. I can create a free account that enables me to connect one or two devices to the Exosite platform.

Embedded devices using Exosite are responsible for pushing data to the server and pulling data from it. Devices use simple HTTP requests to accomplish this. This works great in my home setup because the attic monitor can work through my firewall, even when my Internet provider occasionally changes the IP address of my cable modem. Figure 2 shows the network diagram.

Figure 2: The cloud-based network

VIRTUAL USER INTERFACE

Web-based dashboards hosted on Exosite’s servers can be built and configured to show real-time and historical data from connected devices. Controls, such as switches, can be added to the dashboards to push data back down to the device, enabling remote control of embedded devices. Because the user interface is “in the cloud,” there is no need to store all the user interface (UI) widgets and data in the embedded device, which greatly reduces the storage requirements. Photo 4 shows the dashboard for the attic monitor.

Photo 4: Exosite dashboard for the attic monitor

Events and alerts can be added to the dashboard. These are logical evaluations Exosite’s server performs on the incoming data. Events can be triggered based on simple comparisons (e.g., a data value is too high or too low) or complex combinations of a comparison plus a duration (e.g., a data value remains too high for a period of time). Setting up a leak event for one of the sensors is shown in Photo 5.

Photo 5: Creating an event in Exosite

In this case, the event is triggered when the reported ADC voltage is less than 2 V. An event can also be triggered if Exosite doesn’t receive an update from the device for a set period of time. This last feature can be used as a watchdog to ensure the device is still working.

When an event is triggered, an alert can optionally be sent via e-mail. This is the final link that enables an embedded device in my attic to contact me anywhere, anytime, to alert me to a problem. Though I have a smartphone that enables me to access my e-mail account, I can also route the alarm message to my wife’s simpler phone through her cellular provider’s e-mail-to-text-message gateway. Most cellular providers offer this service, which works by sending an e-mail to a special address containing the cell phone number. On the Verizon network, the e-mail address is <yourcellularnumber>@vtext.com. Other providers have similar gateways.

The attic monitor periodically sends heartbeat messages to Exosite to let me know it’s still working. It also sends the status of the water sensors and the current temperature in the attic. I can log in to Exosite at any time to see my attic’s real-time status. I have also configured events and alarms that will notify me if a leak is detected or if the temperature gets too hot…

The complete article includes details such about the Internet engine, reading the cloud, tips for updating the design, and more.  You can read the entire article by typing netenabledcontrol to open the password-protected PDF.