Electrostatic Cleaning Robot Project

How do you clean a clean-energy generating system? With a microcontroller (and a few other parts, of course). An excellent example is US designer Scott Potter’s award-winning, Renesas RL78 microcontroller-based Electrostatic Cleaning Robot system that cleans heliostats (i.e., solar-tracking mirrors) used in solar energy-harvesting systems. Renesas and Circuit Cellar magazine announced this week at DevCon 2012 in Garden Grove, CA, that Potter’s design won First Prize in the RL78 Green Energy Challenge.

This image depicts two Electrostatic Cleaning Robots set up on two heliostats. (Source: S. Potter)

The nearby image depicts two Electrostatic Cleaning Robots set up vertically in order to clean the two heliostats in a horizontal left-to-right (and vice versa) fashion.

The Electrostatic Cleaning Robot in place to clean

Potter’s design can quickly clean heliostats in Concentrating Solar Power (CSP) plants. The heliostats must be clean in order to maximize steam production, which generates power.

The robot cleaner prototype

Built around an RL78 microcontroller, the Electrostatic Cleaning Robot provides a reliable cleaning solution that’s powered entirely by photovoltaic cells. The robot traverses the surface of the mirror and uses a high-voltage AC electric field to sweep away dust and debris.

Parts and circuitry inside the robot cleaner

Object oriented C++ software, developed with the IAR Embedded Workbench and the RL78 Demonstration Kit, controls the device.

IAR Embedded Workbench IDE

The RL78 microcontroller uses the following for system control:

• 20 Digital I/Os used as system control lines

• 1 ADC monitors solar cell voltage

• 1 Interval timer provides controller time tick

• Timer array unit: 4 timers capture the width of sensor pulses

• Watchdog timer for system reliability

• Low voltage detection for reliable operation in intermittent solar conditions

• RTC used in diagnostic logs

• 1 UART used for diagnostics

• Flash memory for storing diagnostic logs

The complete project (description, schematics, diagrams, and code) is now available on the Challenge website.

 

Member Profile: Thomas Struzik

Member Thomas Struzik at his bench.

 

  • Member Name: Thomas Struzik
  • Location: Houston, TX
  • Education: BSEE, Purdue University
  • Occupation: Software architect
  • Member Status: He has been a subscriber since day one. “I’ve got Issue 1 sitting in a box somewhere,” he said. Thomas adds that he was a BYTE magazine subscriber before Circuit Cellar.
  • Technical Interests: Thomas enjoys automation through embedded technology, robotics, low-level programming, and electronic music generation / enhancement.
  • Most Recent Embedded Tech-Related Purchase: He recently bought a CWAV USBee SX Digital Test Pod and an Atmel AVR Dragon.
  • Current and Recent Projects: Thomas is working on designing an isolated USB power supply for his car.
  • Thoughts on the Future of Embedded Technology: Ever-increasing complexity is becoming a stumbling block for the “average” user. “Few people even realize the technology embedded in everyday items,” he said. “How many people know that brand-new LCD TV they’ve got is actually running Linux under the covers? Fortunately, there seems to be a resurgence of ‘need-to-know how stuff works’ with the whole DIY/maker culture. But even that is still a small island compared to the population in general.”

Game On with the Arduino Esplora

Every time the Arduino team is about to release a new board, we expect something great in terms of better specs, more I/Os, a faster processor, more memory—or, well, just something to “fill the gap,” such as small-scale versions. With “Esplora” the Arduino team pleasantly surprises us again!

Arduino Esplora

The brand new Esplora is targeted toward gaming applications. It consists of a gamepad-shaped development board that includes an Arduino-compatible Atmel ATmega32U4, a light sensor, a temperature sensor, an accelerometer, a joystick, push buttons, a slider, an RGB LED, and a buzzer.

The Esplora is as a ready-to-use solution for designers who don’t want to deal with soldering or prototyping by means of discrete components. In fact, it comes preprogrammed with a controller script, so you only have to connect it to a PC, download the free game “Super Tux Cart,” and have fun.

An additional color LCD will be released soon in order to create a portable console. The only drawback is you can’t directly connect standard Arduino shields to it , mainly because of space limitations. Nevertheless, the board itself includes enough features to make it interesting.

The Esplora should enable you to implement a controller for almost any application you dream up. In our case, we’re sure it will bring back nice memories of the time when we were too young for soldering irons but already pros with gamepads!—Jaime González Arintero Berciano, Elektor International Media

 

DIY Green Energy Design Projects

Ready to start a low-power or energy-monitoring microcontroller-based design project? You’re in luck. We’re featuring eight award-winning, green energy-related designs that will help get your creative juices flowing.

The projects listed below placed at the top of Renesas’s RL78 Green Energy Challenge.

Electrostatic Cleaning Robot: Solar tracking mirrors, called heliostats, are an integral part of Concentrating Solar Power (CSP) plants. They must be kept clean to help maximize the production of steam, which generates power. Using an RL78, the innovative Electrostatic Cleaning Robot provides a reliable cleaning solution that’s powered entirely by photovoltaic cells. The robot traverses the surface of the mirror and uses a high voltage AC electric field to sweep away dust and debris.

Parts and circuitry inside the robot cleaner

Cloud Electrofusion Machine: Using approximately 400 times less energy than commercial electrofusion machines, the Cloud Electrofusion Machine is designed for welding 0.5″ to 2″ polyethylene fittings. The RL78-controlled machine is designed to read a barcode on the fitting which determines fusion parameters and traceability. Along with the barcode data, the system logs GPS location to an SD card, if present, and transmits the data for each fusion to a cloud database for tracking purposes and quality control.

Inside the electrofusion machine (Source: M. Hamilton)

The Sun Chaser: A GPS Reference Station: The Sun Chaser is a well-designed, solar-based energy harvesting system that automatically recalculates the direction of a solar panel to ensure it is always facing the sun. Mounted on a rotating disc, the solar panel’s orientation is calculated using the registered GPS position. With an external compass, the internal accelerometer, a DC motor and stepper motor, you can determine the solar panel’s exact position. The system uses the Renesas RDKRL78G13 evaluation board running the Micrium µC/OS-III real-time kernel.

[Video: ]

Water Heater by Solar Concentration: This solar water heater is powered by the RL78 evaluation board and designed to deflect concentrated amounts of sunlight onto a water pipe for continual heating. The deflector, armed with a counterweight for easy tilting, automatically adjusts the angle of reflection for maximum solar energy using the lowest power consumption possible.

RL78-based solar water heater (Source: P. Berquin)

Air Quality Mapper: Want to make sure the air along your daily walking path is clean? The Air Quality Mapper is a portable device designed to track levels of CO2 and CO gasses for constructing “Smog Maps” to determine the healthiest routes. Constructed with an RDKRL78G13, the Mapper receives location data from its GPS module, takes readings of the CO2 and CO concentrations along a specific route and stores the data in an SD card. Using a PC, you can parse the SD card data, plot it, and upload it automatically to an online MySQL database that presents the data in a Google map.

Air quality mapper design (Source: R. Alvarez Torrico)

Wireless Remote Solar-Powered “Meteo Sensor”: You can easily measure meteorological parameters with the “Meteo Sensor.” The RL78 MCU-based design takes cyclical measurements of temperature, humidity, atmospheric pressure, and supply voltage, and shares them using digital radio transceivers. Receivers are configured for listening of incoming data on the same radio channel. It simplifies the way weather data is gathered and eases construction of local measurement networks while being optimized for low energy usage and long battery life.

The design takes cyclical measurements of temperature, humidity, atmospheric pressure, and supply voltage, and shares them using digital radio transceivers. (Source: G. Kaczmarek)

Portable Power Quality Meter: Monitoring electrical usage is becoming increasingly popular in modern homes. The Portable Power Quality Meter uses an RL78 MCU to read power factor, total harmonic distortion, line frequency, voltage, and electrical consumption information and stores the data for analysis.

The portable power quality meter uses an RL78 MCU to read power factor, total harmonic distortion, line frequency, voltage, and electrical consumption information and stores the data for analysis. (Source: A. Barbosa)

High-Altitude Low-Cost Experimental Glider (HALO): The “HALO” experimental glider project consists of three main parts. A weather balloon is the carrier section. A glider (the payload of the balloon) is the return section. A ground base section is used for communication and display telemetry data (not part of the contest project). Using the REFLEX flight simulator for testing, the glider has its own micro-GPS receiver, sensors and low-power MCU unit. It can take off, climb to pre-programmed altitude and return to a given coordinate.

High-altitude low-cost experimental glider (Source: J. Altenburg)

CC268: The History of Embedded Tech

At the end of September 2012, an enthusiastic crew of electrical engineers and journalists (and significant others) traveled to Portsmouth, NH, from locations as far apart as San Luis Obispo, CA,  and Paris, France, to celebrate Circuit Cellar’s 25th anniversary. Attendees included Don Akkermans (Director, Elektor International Media), Steve Ciarcia (Founder, Circuit Cellar), the current magazine staff, and several well-known engineers, editors, and columnists. The event marked the beginning of the next chapter in the history of this long-revered publication. As you’d expect, contributors and staffers both reminisced about the past and shared ideas about its future. And in many instances, the conversations turned to the content in this issue, which was at that time entering the final phase of production. Why? We purposely designed this issue (and next month’s) to feature a diversity of content that would represent the breadth of coverage we’ve come to deliver during the past quarter century. A quick look at this issue’s topics gives you an idea of how far embedded technology has come. The topics also point to the fact that some of the most popular ’80s-era engineering concerns are as relevant as ever. Let’s review.

In the earliest issues of Circuit Cellar, home control was one of the hottest topics. Today, inventive DIY home control projects are highly coveted by professional engineers and newbies alike. On page 16, Scott Weber presents an interesting GPS-based time server for lighting control applications. An MCU extracts time from GPS data and transmits it to networked devices.

The time-broadcasting device includes a circuit board that’s attached to a GPS module. (Source: S. Weber, CC268)

Thiadmer Riemersma’s DIY automated component dispenser is a contemporary solution to a problem that has frustrated engineers for decades (p. 26). The MCU-based design simplifies component management and will be a welcome addition to any workbench.

The DIY automated component dispenser. (Source: T. Riemersma, CC268)

USB technology started becoming relevant in the mid-to-late 1990s, and since then has become the go-to connection option for designers and end users alike. Turn to page 30 for Jan Axelson’s  tips about debugging USB firmware. Axelson covers controller architectures and details devices such as the FTDI FT232R USB UART controller and Microchip Technology’s PIC18F4550 microcontroller.

Debugging USB firmware (Source: J. Axelson, CC268)

Electrical engineers have been trying to “control time” in various ways since the earliest innovators began studying and experimenting with electric charge. Contemporary timing control systems are implemented in a amazing ways. For instance, Richard Lord built a digital camera controller that enables him to photograph the movement of high-speed objects (p. 36).

Security and product reliability are topics that have been on the minds of engineers for decades. Whether you’re working on aerospace electronics or a compact embedded system for your workbench (p. 52), you’ll want to ensure your data is protected and that you’ve gone through the necessary steps to predict your project’s likely reliability (p. 60).

The issue’s last two articles detail how to use contemporary electronics to improve older mechanical systems. On page 64 George Martin presents a tachometer design you can implement immediately in a machine shop. And lastly, on page 70, Jeff Bachiochi wraps up his series “Mechanical Gyroscope Replacement.” The goal is to transmit reliable data to motor controllers. The photo below shows the Pololu MinIMU-9.

The Pololu MinIMU-9’s sensor axes are aligned with the mechanical gyro so the x and y output pitch and roll, respectively. (Source: J. Bachiochi, CC268)

DIY 10.1˝ Touchscreen Home Control System

Domotics (home automation) control systems are among the most innovative and rewarding design projects creative electrical engineers can undertake. Let’s take a look at an innovative Beagle Board-based control system that enables a user to control lights with a 10.1˝ capacitive touchscreen.

Domotics control system

The design features the following modules:

• An I/O board for testing purposes
• An LED strip board for controlling an RGB LED strip
• A relay board for switching 230-VAC devices
• An energy meter for measuring on/off (and also for logging)

ELektor editor and engineer Clemens Valens recently interviewed Koen van Dongen about the design. Van Dongen describes the system’s electronics and then demonstrates how to use the touchscreen to control a light and LED strip.

As Valens explains suggests, it would be a worthwhile endeavor to incorporate a Wi-Fi connection to enable cellphone and tablet control. If you build such system, be sure to share it with our staff. Good luck!

CircuitCellar.com is an Elektor International Media website.

DIY Internet-Enabled Home Control System

Why shell out hundreds or thousands of dollars on various home control systems (HCS) when you have the skills and resources to build your own? You can design and implement sophisticated Internet-enabled systems with free tools and some careful planning.

John Breitenbach did just that. He used a microcontroller, free software, and a cloud-based data platform to construct a remote monitoring system for his home’s water heater. The innovative design can email or text status messages and emergency alerts to a smartphone. You can build a similar system to monitor any number of appliances, rooms, or buildings.

An abridged version of Breitenbach’s article, “Internet-Enabled Home Control” (Circuit Cellar 264, July 2012), appears below. (A link to the entire article and an access password are noted at the end of this post.) Breitenbach writes:

Moving from the Northeast to North Carolina, my wife and I were surprised to find that most homes don’t have basements. In the north, the frost line is 36˝–48 ˝ below the surface. To prevent frost heave, foundations must be dug at least that deep. So, digging down an extra few feet to create a basement makes sense. Because the frost line is only 15 ˝ in the Raleigh area, builders rarely excavate the additional 8’ to create basements.

The lack of basements means builders must find unique locations for a home’s mechanical systems including the furnace, AC unit, and water heater. I was shocked to find that my home’s water heater is located in the attic, right above one of the bedrooms (see Photo 1).

Photo 1: My home’s water heater is located in our attic. (Photo courtesy of Michael Thomas)

During my high school summers I worked for my uncle’s plumbing business (“Breitenbach Plumbing—We’re the Best, Don’t Call the Rest”) and saw firsthand the damage water can do to a home. Water heaters can cause some dramatic end-of-life plumbing failures, dumping 40 or more gallons of water at once followed by the steady flow of the supply line.

Having cleaned up the mess of a failed water heater in my own basement up north, I haven’t had a good night’s sleep since I discovered the water heater in my North Carolina attic. For peace of mind, especially when traveling, I instrumented my attic so I could be notified immediately if water started to leak. My goal was to use a microcontroller so I could receive push notifications via e-mails or text messages. In addition to emergency messages, status messages sent on a regular basis reassure me the system is running. I also wanted to use a web browser to check the current status at any time.

MCU & SENSOR

The attic monitor is based on Renesas Electronics’s YRDKRX62N demonstration kit, which features the RX62N 32-bit microcontroller (see Photo 2). Renesas has given away thousands of these boards to promote the RX, and the boards are also widely available through distributors. The YRDK board has a rich feature set including a graphics display, push buttons, and an SD-card slot, plus Ethernet, USB, and serial ports. An Analog Devices ADT7420 digital I2C temperature sensor also enables you to keep an eye on the attic temperature. I plan to use this for a future addition to the project that compares this temperature to the outside air temperature to control an attic fan.

Photo 2: The completed board, which is based on a Renesas Electronics YRDKRX62N demonstration kit. (Photo courtesy of Michael Thomas)

SENSING WATER

Commercial water-detection sensors are typically made from two exposed conductive surfaces in close proximity to each other on a nonconductive surface. Think of a single-sided PCB with no solder mask and tinned traces (see Photo 3).

Photo 3: A leak sensor (Photo courtesy of Michael Thomas)

These sensors rely on the water conductivity to close the circuit between the two conductors. I chose a sensor based on this type of design for its low cost. But, once I received the sensors, I realized I could have saved myself a few bucks by making my own sensor from a couple of wires or a piece of proto-board.

When standing water on the sensor shorts the two contacts, the resistance across the sensor drops to between 400 kΩ and 600 kΩ. The sensor is used as the bottom resistor in a voltage divider with a 1-MΩ resistor up top. The output of the divider is routed to the 12-bit analog inputs on the RX62N microcontroller. Figure 1 shows the sensor interface circuit. When the voltage read by the analog-to-digital converter (ADC) drops below 2 V, it’s time to start bailing. Two sensors are connected: one in the catch pan under the water heater, and a second one just outside the catch pan to detect failures in the small expansion tank.

Figure 1: The sensor interface to the YRDK RX62N board

COMMUNICATIONS CHOICES

One of my project goals was to push notifications to my cell phone because Murphy’s Law says water heaters are likely to fail while you’re away for the weekend. Because I wanted to keep the project costs low, I used my home’s broadband connection as the gateway for the attic monitor. The Renesas RX62N microcontroller includes a 100-Mbps Ethernet controller, so I simply plugged in the cable to connect the board to my home network. The open-source µIP stack supplied by Renesas with the YRDK provides the protocol engine needed to talk to the Internet.

There were a couple of complications with using my home network as the attic monitor’s gateway to the world. It is behind a firewall built into my router and, for security reasons, I don’t want to open up ports to the outside world.

My Internet service provider (ISP) occasionally changes the Internet protocol (IP) address associated with my cable modem. So I would never know what address to point my web browser. I needed a solution that would address both of these problems. Enter Exosite, a company that provides solutions for cloud-based, machine-to-machine (M2M) communications.

TALKING TO THE CLOUD

Exosite provides a number of software components and services that enable M2M communications via the cloud. This is a different philosophy from supervisory control and data acquisition (SCADA) systems I’ve used in the past. The control systems I’ve worked on over the years typically involve a local host polling the hundreds or thousands of connected sensors and actuators that make up a commercial SCADA system. These systems are generally designed to be monitored locally at a single location. In the case of the attic monitor, my goal was to access a limited number of data points from anywhere, and have the system notify me rather than having to continuously poll. Ideally, I’d only hear from the device when there was a problem.

Exosite is the perfect solution: the company publishes a set of simple application programming interfaces (APIs) using standard web protocols that enable smart devices to push data to their servers in the cloud in real time. Once the data is in the cloud, events, alerts, and scripts can be created to do different things with the data—in my case, to send me an e-mail and SMS text alert if there is anything wrong with my water heater. Connected devices can share data with each other or pull data from public data sources, such as public weather stations. Exosite has an industrial-strength platform for large-scale commercial applications. It provides free access to it for the open-source community. I can create a free account that enables me to connect one or two devices to the Exosite platform.

Embedded devices using Exosite are responsible for pushing data to the server and pulling data from it. Devices use simple HTTP requests to accomplish this. This works great in my home setup because the attic monitor can work through my firewall, even when my Internet provider occasionally changes the IP address of my cable modem. Figure 2 shows the network diagram.

Figure 2: The cloud-based network

VIRTUAL USER INTERFACE

Web-based dashboards hosted on Exosite’s servers can be built and configured to show real-time and historical data from connected devices. Controls, such as switches, can be added to the dashboards to push data back down to the device, enabling remote control of embedded devices. Because the user interface is “in the cloud,” there is no need to store all the user interface (UI) widgets and data in the embedded device, which greatly reduces the storage requirements. Photo 4 shows the dashboard for the attic monitor.

Photo 4: Exosite dashboard for the attic monitor

Events and alerts can be added to the dashboard. These are logical evaluations Exosite’s server performs on the incoming data. Events can be triggered based on simple comparisons (e.g., a data value is too high or too low) or complex combinations of a comparison plus a duration (e.g., a data value remains too high for a period of time). Setting up a leak event for one of the sensors is shown in Photo 5.

Photo 5: Creating an event in Exosite

In this case, the event is triggered when the reported ADC voltage is less than 2 V. An event can also be triggered if Exosite doesn’t receive an update from the device for a set period of time. This last feature can be used as a watchdog to ensure the device is still working.

When an event is triggered, an alert can optionally be sent via e-mail. This is the final link that enables an embedded device in my attic to contact me anywhere, anytime, to alert me to a problem. Though I have a smartphone that enables me to access my e-mail account, I can also route the alarm message to my wife’s simpler phone through her cellular provider’s e-mail-to-text-message gateway. Most cellular providers offer this service, which works by sending an e-mail to a special address containing the cell phone number. On the Verizon network, the e-mail address is <yourcellularnumber>@vtext.com. Other providers have similar gateways.

The attic monitor periodically sends heartbeat messages to Exosite to let me know it’s still working. It also sends the status of the water sensors and the current temperature in the attic. I can log in to Exosite at any time to see my attic’s real-time status. I have also configured events and alarms that will notify me if a leak is detected or if the temperature gets too hot…

The complete article includes details such about the Internet engine, reading the cloud, tips for updating the design, and more.  You can read the entire article by typing netenabledcontrol to open the password-protected PDF.

Build a Microcontroller-Based Mail Client

Does the sheer amount of junk mail that fills your Inbox make you hate everything about e-mail? If so, it’s time to have a little fun with electronic mail by building a compact microcontroller-based mail client system. Alexander Mann designed a system that uses an Atmel ATmega32 and a Microchip Technology ENC28J60 Ethernet controller to check continuously for e-mail. When a message arrives, he can immediately read it on the system’s LCD and respond with a standard keyboard.

Mann writes:

My MiniEmail system is a compact microcontroller-based mail client (see Photo 1). The silent, easy-to-use system doesn’t require a lot of power and it is immune to mail worms. Another advantage is the system’s short start-up time. If you want to write a quick e-mail but your PC is off, you can simply switch on the miniature e-mail client and start writing without having to wait for your PC to boot up and load the necessary applications. All you need is an Ethernet connection and the MiniEmail system.

Photo 1: The complete MiniEmail system includes an LCD, a keyboard, and several connections. (A. Mann, Circuit Cellar 204)

HARDWARE

The hardware for the MiniEmail system is inexpensive. It cost me about $50. The LCD is the most expensive part. To keep things simple, I left the system’s power supply, 5- to 3.3-V conversion crystals, and latch out of Figure 1.

Figure 1: This is a block diagram of MiniEmail’s hardware. The arrows indicate the directions of data flow between the devices. The rounded boxes indicate parts that do not sit on the circuit board.

The main components are an Atmel ATmega32 microcontroller and a Microchip Technology ENC28J60 Ethernet controller. Because a mail client is a piece of complex software, you need a fast microcontroller that has a considerable amount of program space. The MiniEmail system uses almost all of the ATmega32’s features, including the SPI, internal EEPROM and SRAM, counters, USART interface, sleep modes, all 32 I/O lines, and most of the 32 KB of program memory. The ENC28J60 is a stand-alone Ethernet controller that provides basic functionality for transmitting frames over an Ethernet connection. It has 8 KB of built-in SRAM, which can be divided into transmit and receive buffers as desired, and it provides several interrupt sources (e.g., when new packets have arrived). The ATmega32 also has 128 KB of external SRAM connected as well as an LCD, which is a standard module with a resolution of 128 × 64 pixels.

Take a look at the ATmega32’s pin connections in Figure 2. Ports A and C are used as 8-bit-wide general I/O ports, one of which is latched using an NXP Semiconductors 74HC573.

Figure 2: Here’s the complete schematic for the MiniEmail. The LF1S022 is the RJ-45 connector for the Ethernet connection.

The two ports provide data connections to the LCD and SRAM (U3). For the SRAM, you need three additional wires: write (*RAM_WR), read strobe (*RAM_RD), and the seventeenth bit of the address (ADDR16). The LCD connector (CON1) uses five additional wires (for the signals CS1, CS2, DI, EN, and RW). CS1 and CS2 are taken from the general I/O port A (DATA6 and DATA7) and determine which of the two halves of the LCD is selected (i.e., the two controllers on the LCD module you are talking to). RW (where you can use ADDR16 again) sets the direction of the LCD access (read or write). DI describes the type of instruction sent to the LCD. EN is the enable signal for read and write cycles. For the keyboard, you need only two pins: KEY_DATA and KEY_CLOCK. The clock signal must be connected to an external interrupt pin, INT1. One additional wire is needed to switch the latch (LE).

You are left with eight I/O pins on the ATmega32’s ports B and D. RXD and TXD are connected to a MAX232, an RS-232 level converter that also provides the negative supply voltage needed for the LCD (LCD_VOUT in Figure 2). The ATmega32’s USART functionality is used as a debugging interface. It isn’t needed for normal operation.

SOFTWARE

The firmware for this project is posted on the Circuit Cellar FTP site. I wrote the firmware in C language with a few small parts of inline assembler. I used the open-source software suite WinAVR, which includes the GNU GCC compiler with special libraries for AVR devices and avrdude, a tool for the in-system programming of AVR microcontrollers…

USER INTERFACE

The user interface consists of three control elements: menus, edit fields, and an elaborate text editor. A special screen (the Mail Menu) enables you to quickly browse through your mailbox. After power-up, the system displays a greeting message. After a short while, the Main menu appears (see Photo 2).

Photo 2: This is a screenshot of MiniEmail’s main menu. In the upper-right corner, a clock shows the current time, which is retrieved from the Internet. An arrow to the left of the menu items indicates the selected item. (A. Mann, Circuit Cellar 204)

The Compose Mail, Check Mailbox, and Configuration submenus form a hierarchical menu structure. When the other items listed beneath the respective menu titles in the diagram are activated (e.g., start the text editor), they enable you to input data, such as a username and password, or retrieve mail from the mail server. “Standby” is the only action that is accessible directly from the main menu. All other actions are grouped by function in the submenus.

WRITING MAIL

With respect to the firmware, sending mail is much easier than reading it, so let’s first focus on the Compose Mail menu. The first item in the menu starts the text editor so you can enter the body of your letter. You then enter the recipient’s mailing address and the subject of your e-mail, just like you would do when sending e-mail from your PC. Additional fields, such as CC or BCC are not included, but since this requires only one more line in the header of the mail, it is not difficult. Your e-mail also needs a reply address, so the recipient knows who sent the mail. The reply address is normally the same for all of the messages you write. The text you enter in this edit field is stored in the ATmega32’s EEPROM, so you don’t have to type it every time you write a letter. After you select the last menu item, “Send” initiates the dispatch of the mail and displays a message that indicates whether or not it was successful.

CHECKING FOR MAIL

What makes this part more sophisticated is the ability to handle not only one e-mail at a time, but also fetch mail from the server. The system can determine which messages are new and which messages have been read. It can also extract data such as the sender, subject, or sent date from the header of the mail and then display the information.

The amount of mail the firmware can handle is limited by the size of the external SRAM. The maximum number of e-mails is currently 1,024. (If you’ve got more mail, you will be so busy answering it that you won’t have time to build your own MiniEmail client—or you should delete some old mail). Note that 1,024 is the number of unique identifiers that the system can remember. The server assigns a unique identifier to each piece of mail. The system uses the identifiers to keep track of which letters are new on the server, which have already been read, and which have been marked for deletion.

All of the header data for all of the 1,024 messages cannot be held in SRAM at once; only the most recent (about 50) mail headers are held. When you want to browse through older e-mails, the firmware automatically reconnects to the server and fetches the headers of the next 50 e-mails.

When you select Check Mailbox in the main menu, you get to a submenu where you can retrieve and read mail. Before you can collect your mail, you must enter your username and password, which can be stored in EEPROM for your convenience. The firmware then retrieves the headers and displays the Mail Menu, where you can browse through your e-mail. Apart from the size and the date, the first 42 characters of the subject and the mail sender are shown. In the first row, additional icons indicate (from left to right) whether a message is new, has been marked for deletion, or has been read. You can view the content of the selected message by pressing Return. When the mail is fetched from the server, it is prepared for viewing. The header and HTML tags, as well as long runs of the same character, are stripped from the mail and base64 decoding (used to encode 8-bit characters) is performed, so the content of the message is as readable as plain text. Binary attachments (e.g., images) can’t be handled. Following this, the mail is viewed in the text editor (with editing disabled).

A similar action is performed when you press “r” in the Mail Menu. In that case, you can edit the text so you can add your reply. Leaving the text editor will bring you back to the Send Mail menu, where the reply address and subject will be filled in so your mail will be clear for take-off. To delete a message, simply press D to mark it for deletion….

OUTLOOK

I hadn’t imagined how many details would need to be considered when I started this project more than a year ago. It has been a very interesting and challenging project. It has also been a lot of fun.

The MiniEmail system provides all of the basics for communicating via email, but such a project is never really finished. There are still dozens of items on my to-do list. Fortunately, the ATmega32 can be replaced with a new member of the AVR family, the Atmel ATmega644, which is pin-compatible to the ATmega32 and has twice the flash memory (and internal SRAM). That will provide enough space for many of my new ideas. I want to get rid of the static IP address, add CC and BCC fields, use a bigger display or a smaller (variable-width) font, improve the filtering and display of mail content and attachments, and add an address book (it would be best in combination with an additional external EEPROM with an SPI, such as the AT25256).

This project proves, rather impressively, that the ATmega32 and the ENC28J60 are a powerful combination. They can be used for many useful Internet applications. My e-mail client system is surely one of the most exciting. I can think of many other interesting possibilities. At the moment, my MiniEmail assembly serves as an online thermometer so I can check my room’s temperature from anywhere in the world…

Mann’s entire article appears in Circuit Cellar 204, 2007. Type “miniemailopen”  to access the password-protected article.

DIY Solar-Powered, Gas-Detecting Mobile Robot

German engineer Jens Altenburg’s solar-powered hidden observing vehicle system (SOPHECLES) is an innovative gas-detecting mobile robot. When the Texas Instruments MSP430-based mobile robot detects noxious gas, it transmits a notification alert to a PC, Altenburg explains in his article, “SOPHOCLES: A Solar-Powered MSP430 Robot.”  The MCU controls an on-board CMOS camera and can wirelessly transmit images to the “Robot Control Center” user interface.

Take a look at the complete SOPHOCLES design. The CMOS camera is located on top of the robot. Radio modem is hidden behind the camera so only the antenna is visible. A flexible cable connects the camera with the MSP430 microcontroller.

Altenburg writes:

The MSP430 microcontroller controls SOPHOCLES. Why did I need an MSP430? There are lots of other micros, some of which have more power than the MSP430, but the word “power” shows you the right way. SOPHOCLES is the first robot (with the exception of space robots like Sojourner and Lunakhod) that I know of that’s powered by a single lithium battery and a solar cell for long missions.

The SOPHOCLES includes a transceiver, sensors, power supply, motor
drivers, and an MSP430. Some block functions (i.e., the motor driver or radio modems) are represented by software modules.

How is this possible? The magic mantra is, “Save power, save power, save power.” In this case, the most important feature of the MSP430 is its low power consumption. It needs less than 1 mA in Operating mode and even less in Sleep mode because the main function of the robot is sleeping (my main function, too). From time to time the robot wakes up, checks the sensor, takes pictures of its surroundings, and then falls back to sleep. Nice job, not only for robots, I think.

The power for the active time comes from the solar cell. High-efficiency cells provide electric energy for a minimum of approximately two minutes of active time per hour. Good lighting conditions (e.g., direct sunlight or a light beam from a lamp) activate the robot permanently. The robot needs only about 25 mA for actions such as driving its wheel, communicating via radio, or takes pictures with its built in camera. Isn’t that impossible? No! …

The robot has two power sources. One source is a 3-V lithium battery with a 600-mAh capacity. The battery supplies the CPU in Sleep mode, during which all other loads are turned off. The other source of power comes from a solar cell. The solar cell charges a special 2.2-F capacitor. A step-up converter changes the unregulated input voltage into 5-V main power. The LTC3401 changes the voltage with an efficiency of about 96% …

Because of the changing light conditions, a step-up voltage converter is needed for generating stabilized VCC voltage. The LTC3401 is a high-efficiency converter that starts up from an input voltage as low as 1 V.

If the input voltage increases to about 3.5 V (at the capacitor), the robot will wake up, changing into Standby mode. Now the robot can work.

The approximate lifetime with a full-charged capacitor depends on its tasks. With maximum activity, the charging is used after one or two minutes and then the robot goes into Sleep mode. Under poor conditions (e.g., low light for a long time), the robot has an Emergency mode, during which the robot charges the capacitor from its lithium cell. Therefore, the robot has a chance to leave the bad area or contact the PC…

The control software runs on a normal PC, and all you need is a small radio box to get the signals from the robot.

The Robot Control Center serves as an interface to control the robot. Its main feature is to display the transmitted pictures and measurement values of the sensors.

Various buttons and throttles give you full control of the robot when power is available or sunlight hits the solar cells. In addition, it’s easy to make short slide shows from the pictures captured by the robot. Each session can be saved on a disk and played in the Robot Control Center…

The entire article appears in Circuit Cellar 147 2002. Type “solarrobot”  to access the password-protected article.

Propeller Games (P2): Game Logic

In the first part of this article series on Parallax Propeller-based gaming projects, I hooked up the hardware for the Hi/Lo game on a breadboard. Now I’ll write the game logic. The finished code is available here.

The power of the Propeller chip is in its multiple CPU cores. But you can do just fine with one processor, especially for a simple game like Hi/Lo. You program each of the processors in assembly or in the Parallax-invented SPIN high-level language. Assembly programs run blazingly fast directly in the CPU core. SPIN compiles to a binary format that is interpreted by the SPIN interpreter (written in assembly). The interpreter runs in the CPU core.

The CPU core is designed for speed, but it only has room for 512 instructions. The SPIN interpreter fetches your program byte by byte from shared RAM. Your code runs more slowly, but you have 32K of space to work with. I’ll use assembly in future projects, but SPIN is perfect for Hi/Lo.

A SPIN file is a collection of functions and data (shared by all functions in the file). The functions use local variables kept on a call stack. You break up your programming task into smaller functions that build on one another and call each other. You pass parameters to the functions and use the return values. It is all very similar to C programming though the syntax is different. The interpreter begins with the first function in your file no matter what you name it.

I started the project with a test “main” and the functions to control the Hi/Lo speaker, LEDs, and switches. 

This function plays a tone on the speaker (Source: C. Cantrell)

The “playTone” function generates a square wave on the speaker pin. The “cnt” register is a built-in 32-bit value that increments with every system clock. I run the prop stick full out with an 80-MHz clock configuration (5M-Hz crystal with a *16 internal multiplier). The “waitcnt” instruction puts the CPU to sleep until the system clock reaches the requested value. There are two waits in the loop that generates one clock cycle. Thus the generated frequency is roughly 40 MHz/freq. I say “roughly” because each instruction takes a little time to execute. The actual generated frequency is slightly less. There are much better ways to generate a precise square wave with the propeller hardware, but this is function is easy to understand, and it works fine for the simple Hi/Lo game.

The LED display is a collection of 14 segments and two dots that are turned on or off by writing a 1 or 0 to the Propeller port pins. The program use a look-up table that defines the various segment patterns to be shown.

The output pin bit patterns for numeric digits (Source: C. Cantrell)

The look-up table is defined in a data (DAT) section in the program. The SPIN language allows you to define binary constants with a “%” prefix. You can use the underscore (“_”) anywhere in any numeric constant to make it easier to read. The comment line just above the table shows how the segments map to bit positions in the propeller’s output register.

The “drawNumber” function displays a two digit value on the display. The function first divides the value by 10. The whole part (value/10) is the digit in the 10s place. The remainder (value//10) is the digit in the 1s place. The function looks up the separate patterns, ORs them together, and writes to the “outa” output register to toggle the lights.

I wrote LED functions to “drawBlank” (blank the display) and “drawHi” (show “Hi”) and “drawLo” (show “Lo”). These one-line functions are easy enough to code inline where they are used. But having the functions in distinct blocks makes the using code easier to understand and modify.

The functions to read the buttons return Boolean values: true if the switch is pressed or false if it is not. When a button is pressed, the corresponding input bit in “ina” goes to “1.” There are five buttons and five functions—one for each. There is also an “isAny” function to detect if any button is pressed.

The function returns "true" if a button is pressed. (Source: C. Cantrell)

The game itself has two distinct modes. The “splash” mode flashes “Hi/Lo” and waits for a player to press a button. This is an “attract” mode that draws players to the game. The “splash” function returns when a button has been pressed. The “playGame” function is the game logic. The function returns when the game is over. Thus the main loop simply calls the two functions in an infinite loop.

???????????. (Source: C. Cantrell)

The “splash” function calls “drawHi” and “drawLo” with a pause between.

The function attracts a player to the game. (Source: C. Cantrell)

The “pauseStopOnAnyButton” function counts up the delay and watches for “isAny”. It aborts the pause and returns true if a button is pressed. The “SPLASH_DELAY” is defined in the constant (“CON”) area of the program. I keep all “magic numbers” like delay counts and tone values in the CON area for easy tweaking.

The “playGame” function uses three helper functions: “getPlayerGuess,” “showWin,” and “showHint.” The “showWin” and “showHint” functions are just a couple of lines each and could be coded inline. Having them separate allows you to enhance the visual effects without changing the game logic code.

The “getPlayerGuess” does the real work of the game. It watches the buttons and changes the displayed number accordingly.

The function takes the player input. (Source: C. Cantrell)

The “getPlayerGuess” function is an infinite loop with five IF checks for each button. When the middle button is pressed the function returns with the global “playerGuess” variable holding the input value. The other buttons increment or decrement the digits on the display. Each IF block checks for overflow and plays a feedback tone.

There you have it: a simple Hi Lo game. The visual and input effects are in separate functions ready to be spruced up. I bet your solution has many more bells and whistles! I look forward to reading your ideas in the comments of this blog.

Next time I’ll wrap up the Hi Lo game with a little multitasking. I’ll write parallel programs to run in two new CPU cogs to manage sound effects and the LED display.

Chris Cantrell earned an MSEE from the University of Alabama. He writes Java and Flex for Emerson Network Power in Huntsville, Alabama. Circuit Cellar published 10 of his articles between 2002 and 2012: Issue 145, Issue 152, Issue 161, Issue 184, Issue 187, Issue 193, Issue 205, Issue 209, Issue 139, and Issue 260.

Propeller Games (P1): Hi Lo

Welcome to the Propeller Games! In a few installments, I’ll present several gaming projects that use the Parallax Propeller chip. The Propeller is perfect for gaming with its multiple CPU cores to handle simultaneous gaming activities and its on-board video generation circuitry.

My first game project is the classic “higher/lower” game, where the computer thinks of a number between 0 and 99 and you guess it. You have probably seen this played as the “Clock Game” on The Price is Right TV show, though some contestants struggle with a basic binary search algorithm. (You can watch videos of the game at YouTube.com.)

This entire project is built on a solderless breadboard. If you are new to the Propeller, this is the perfect project to get acquainted with the hardware and programming. If you are a Propeller guru, you will enjoy the nostalgia of gaming on LEDs and push buttons. Grab your breadboard and follow along.

Parts

What you’ll need:

  • Breadboard and wire
  • 9-VDC wall transformer
  • Parallax PropStick USB
  • Two-digit 7-segment LED display
  • Five SPST pushbuttons
  • Audio speaker
  • Sixteen 200-Ω resistors
  • Five 10-kΩ resistors

The board and basic parts

The Parallax Propeller chip requires a few external components. You need a 3.3-VDC power regulator, a crystal, and a USB-to-serial converter. You also need a serial EEPROM if you want the Propeller to run your program at power up. You can buy all these separately and wire them up on the breadboard. Or you can save time and space with the Parallax PropStick USB. It combines all these external parts on the same footprint as the 40-pin Propeller chip.

I bought the LED display for this project from Mouser Electronics (part number 630-HDSP-521E). The large red segments are common anode (common ground). You supply positive voltage from a propeller port pin through a 220-Ω resistor to light the segments.

I bought the push buttons from Pololu Robotics & Electronics (part number 1400). They are specially designed for mounting on a breadboard. One side of each switch is connected to 3.3 V and the other is connected to a propeller port pin and pulled to ground with a 10-kΩ resistor.

I bought the speaker from Digi-Key (part number 668-1140-ND). The negative terminal of the speaker hooks to the breadboard’s ground. The positive terminal hooks directly to a Propeller port pin.

A speaker, one LED segment, and one switch wired to the Propeller

I placed four of the switches on the corners of the display. These switches are used as up/down inputs for each digit allowing the player to select a number from 00 to 99. The fifth button to the right of the display is the “Enter” button.

The photo above shows the speaker, one LED segment, and one switch wired to the Propeller. I tested the hardware and software incrementally as I hooked it up instead of trying to debug the final system as a whole.

The Parallax Propeller Tool is the free graphical Integrated Development Environment (IDE) you use to develop code for the Propeller. The code editor colors and highlights your work making it easy to see functions and keywords. It also manages indentation. The SPIN programming language uses indentation to identify code blocks much as Python does.

Basic hardware test

The code above is my basic hardware test. The CON (constants) section at the top configures the clock speed of the chip: 5 MHz × 16 = 80 MHz. The OBJ (object) section pulls in the serial terminal driver library. This library object allows you to use the USB cable for both programming and an input/output terminal. The one second pause on line 12 gives you time to switch from the IDE program to the terminal program on your PC once the code is downloaded. The Propeller tool download includes the parallax serial terminal for your PC.

Line 10 sets general I/O pin 0 (P0) as an output (they are inputs by default). Line 17 reads the switch connected to P11 and turns the LED segment on or off accordingly. Line 18 prints the state of the input pins to the PC terminal in an infinite loop.

Parallax serial terminal

It took me a while to warm up to the SPIN programming language. It is syntactically very different from C and its derivatives. But conceptually it is familiar: you break your software up into functions and local/global variables. In the end the simplicity of the syntax and the friendliness of the IDE won me over!

I really like the “Propeller font” used in the Propeller Tool IDE. It includes special symbols you can use to draw circuits and timing diagrams in your code comments. For instance:

Check out the font

Now to wire up the rest of the LEDs and switches. I thought about wiring the left digit to the first port byte and the right digit to the second port byte so that the segments are laid out the same way in each byte. This would make the software easier to write. But the pins for the segments on the display are kind of scattered around at random. The wiring is easier and neater if you wire the segments from the bottom of the display to the bottom of the propeller and from the top of the display to the top of the propeller. You can make up for the scattered pattern with software.

Two tips: Wire the segments from the bottom of the display to the bottom of the Propeller. Wire from the top of the display to the top of the Propeller.

Hi/Lo breadboard layout

That’s it for this installment. Now I’ll clean up all the little wire stripping sprinkles I left around my workbench. In Part 2 of this series, I’ll switch modes from hardware to software and write the Hi/Lo game. Hopefully you are following along. Until next time, may the COGs be ever in your favor.

Chris Cantrell earned an MSEE from the University of Alabama. He writes Java and Flex for Emerson Network Power in Huntsville, Alabama. Circuit Cellar published 10 of his articles between 2002 and 2012: Issue 145, Issue 152, Issue 161, Issue 184, Issue 187, Issue 193, Issue 205, Issue 209, Issue 139, and Issue 260.

Project Spotlight: “3D-Printed Mouse” Circuitry & Design

I get to meet and interact with creative engineers and researchers around the world who are working on innovative MCU-based projects. Some of them show up at our office to chat. Others I meet with when I travel to California for events like the Embedded Systems Conference. But many of the most interesting people and projects I find are on the Net. A perfect example is David Mellis, whose projects and research grabbed my attention recently while I was browsing the MIT Media Lab website. He is a PhD student in the High-Low Tech research group at the MIT Media Lab.

Mellis gave me permission to write about the projects and post some of the photos from his website, so let’s take a look at one of them—the “3D-Printed Mouse.”

The 3D-Printed Mouse design (Source: D. Mellis)

Check out the mouse strapped to a hand.

The mouse in hand (Source: D. Mellis)

Mellis writes:

This mouse combines a traditional electronic circuit board and components with a 3D-printed enclosure. The mouse is open-source: the original files necessary to make or modify its design are available for download below.

Download

Enclosure
Rhino: mouse.3dm
STLs: mouse-shell.stl, mouse-base.stl

Circuit board
Eagle files: mouse.brd, mouse.sch
Gerbers: mouse-gerbers.zip
Schematic: mouse.pdf

Component Datasheets

Button: SS-P_1110.pdf
Mouse Chip: ADNS2620.pdf

Code: hid-mouse.zip

Mellis notes that the circuitry and code are based on SparkFun’s ADNS2620 Evaluation Board, but “have been modified to include buttons.”

The first prototype with the SparkFun board (Source: D. Mellis)

Click here to access the project site.

 

Wireless Data Control for Remote Sensor Monitoring

Circuit Cellar has published dozens of interesting articles about handy wireless applications over the years. And now we have another innovative project to report about. Circuit Cellar author Robert Bowen contacted us recently with a link to information about his iFarm-II controller data acquisition system.

The iFarm-II controller data acquisition system (Source: R. Bowen)

The design features two main components. Bowen’s “iFarm-Remote” and the “iFarm-Base controller” work together to as an accurate remote wireless data acquisition system. The former has six digital inputs (for monitoring relay or switch contacts) and six digital outputs (for energizing a relay’s coil). The latter is a stand-alone wireless and internet ready controller. Its LCD screen displays sensor readings from the iFarm-Remote controller. When you connect the base to the Internet, you can monitor data reading via a browser. In addition, you can have the base email you notifications pertaining to the sensor input channels.

You can connect the system to the Internet for remote monitoring. The Network Settings Page enables you to configure the iFarm-Base controller for your network. (Source: R. Bowen)

Bowen writes:

The iFarm-II Controller is a wireless data acquisition system used to remotely monitor temperature and humidity conditions in a remote location. The iFarm consists of two controllers, the iFarm-Remote and iFarm-Base controller. The iFarm-Remote is located in remote location with various sensors (supports sensors that output +/-10VDC ) connected. The iFarm-Remote also provides the user with 6-digital inputs and 6-digital outputs. The digital inputs may be used to detect switch closures while the digital outputs may be used to energize a relay coil. The iFarm-Base supports either a 2.4GHz or 900Mhz RF Module.

The iFarm-Base controller is responsible for sending commands to the iFarm-Remote controller to acquire the sensor and digital input status readings. These readings may be viewed locally on the iFarm-Base controllers LCD display or remotely via an Internet connection using your favorite web-browser. Alarm conditions can be set on the iFarm-Base controller. An active upper or lower limit condition will notify the user either through an e-mail or a text message sent directly to the user. Alternatively, the user may view and control the iFarm-Remote controller via web-browser. The iFarm-Base controllers web-server is designed to support viewing pages from a PC, Laptop, iPhone, iTouch, Blackberry or any mobile device/telephone which has a WiFi Internet connection.—Robert Bowen, http://wireless.xtreemhost.com/

iFarm-Host/Remote PCB Prototype (Source: R. Bowen)

Robert Bowen is a senior field service engineer for MTS Systems Corp., where he designs automated calibration equipment and develops testing methods for customers involved in the material and simulation testing fields. Circuit Cellar has published three of his articles since 2001:

Tech Highlights from Design West: RL78, AndroPod, Stellaris, mbed, & more

The Embedded Systems Conference has always been a top venue for studying, discussing, and handling the embedded industry’s newest leading-edge technologies. This year in San Jose, CA, I walked the floor looking for the tech Circuit Cellar and Elektor members would love to get their hands on and implement in novel projects. Here I review some of the hundreds of interesting products and systems at Design West 2012.

RENESAS

Renesas launched the RL78 Design Challenge at Design West. The following novel RL78 applications were particularly intriguing.

  • An RL78 L12 MCU powered by a lemon:

    A lemon powers the RL78 (Photo: Circuit Cellar)

  • An RL78 kit used for motor control:

    The RL78 used for motor control (Photo: Circuit Cellar)

  • An RL78 demo for home control applications:

    The RL78 used for home control (Photo: Circuit Cellar)

TEXAS INSTRUMENTS

Circuit Cellar members have used TI products in countless applications. Below are two interesting TI Cortex-based designs

A Cortex-M3 digital guitar (you can see the Android connection):

TI's digital guitar (Photo: Circuit Cellar)

Stellaris fans will be happy to see the Stellaris ARM Cortex -M4F in a small wireless application:

The Stellaris goes wireless (Photo: Circuit Cellar)

NXP mbed

Due to the success of the recent NXP mbed Design Challenge, I stopped at the mbed station to see what exciting technologies our NXP friends were exhibiting. They didn’t disappoint. Check out the mbed-based slingshot developed for playing Angry Birds!

mbed-Based sligshot for going after "Angry Birds" (Photo: Circuit Cellar)

Below is a video of the project on the mbedmicro YouTube page:

FTDI

I was pleased to see the Elektor AndroPod hard at work at the FTDI booth. The design enables users to easily control a robotic arm with Android smartphones and tablets.

FTDI demonstrates robot control with Android (Photo: Circuit Cellar)

As you can imagine, the possible applications are endless.

The AndroPod at work! (Photo: Circuit Cellar)

Q&A: Dave Jones (Engineer, EEVBlog)

Are you an electrical engineer, hacker, or maker looking for a steady dose of reliable product reviews, technical insight, and EE musings? If so, Dave Jones is your man. The Sydney, Australia-based engineer’s video blog (EEVblog) and podcast (The Amp Hour, which he co-hosts with Chris Gammell) are quickly becoming must-subscribe feeds for plugged-in inquisitive electronics enthusiasts around the world.

Dave Jones: engineer, video blogger, and podcaster

The April issue of Circuit Cellar features an interview with Jones, who describes his passion for electronics, reviewing various technologies, and his unscripted approach to video blogging and podcasting. Below is an abridged version of the interview.

David L. Jones is a risk taker. In addition to jumping off cliffs in the name of product testing, the long-time engineer recently switched to full-time blogging. In February 2012, Dave and I discussed his passion for electronics, his product review process, and what it means to be a full-time video blogger.—Nan Price, Associate Editor

NAN: When did you first start working with electronics?

DAVE: The video story can be found at “EEVblog #54 – Electronics – When I was a boy…” www.youtube.com/watch?v=XpayYlJdbJk. I was very young, maybe six or so, when I was taking apart stuff to see how it worked, so my parents got me a 50-in-1Tandy (RadioShack) electronics kit and that was it, I was hooked, electronics became my life. And indeed, this seems to be fairly typical of how many engineers of the era got started.

By the time I was eight, I already had my own lab and was working on my own projects. All my pocket money went into tools, parts, and magazines.

The electronics magazine industry was everything back then before the Internet and communications revolution. I would eagerly await every issue of the Australian electronics magazines like Electronics Australia, Electronics Today International (ETI), Applied and Australian Electronics Monthly (AEM), Talking Electronics, and later Silicon Chip.

NAN: Tell us about some of your early projects.

DAVE: Given that it was over 30 years ago, it’s hard to recall I’m afraid. Unfortunately, I just didn’t think to use a (film) camera back then to record stuff, it just wasn’t something that you did as a kid. The family camera only came out on special occasions. So those projects have been lost in the annals of time.

My first big published magazine project was a digital storage oscilloscope (DSO) adapter for PCs, in a 1993 issue of Electronics Australia. I originally designed this in the late 1980s. (See “electronics.alternatezone.com, http://alternatezone.com/electronics/dsoa.ht.)

NAN: You have many interests and talents. What made you choose engineering as your full-time gig?

DAVE: There was no choice, electronics has been my main hobby since I can remember, so electronics engineering was all I ever wanted to do to. I’ve branched out into a few other hobbies over the years, but electronics has always remained what I’ve wanted to do.

NAN: The Electronics Engineering Video Blog—EEVBlog—is touted as “an off-the-cuff video blog for electronics engineers, hobbyists, hackers, and makers.” Tell us about EEVBlog and what inspired you to begin it.

DAVE: I’ve always been into sharing my electronics, either through magazines, via my website, or on newsgroups, so I guess it’s natural that I’d end up doing something like this.

In early 2009 I saw that (WordPress-type) blogs were really taking off for all sorts of topics and some people were even doing “video blogs” on YouTube. I wondered if there were any blogs for electronics, and after a search I found a lot of text-based blogs, but it seemed like no one was doing a video blog about electronics, like a weekly show that people could watch … So I thought it’d be fun to do an electronics video blog and blaze a new trail and see what happened.

Being fairly impulsive, I didn’t think about it much; I just dusted off a horrible old 320 × 240 webcam, sat down in front of my computer, and recorded 10 minutes (the YouTube limit back then) of whatever came into my head. I figured a product review, a book review, a chip review, and some industry news was a good mix … I’ve had constant linear growth since then, and now have a regular weekly audience of over 10,000 viewers and over 4 million views on YouTube. Not to mention that it’s now my full-time job.

The complete April issue of Circuit Cellar is now available. For more information about Dave Jones, his video blog, and podcast, visit www.eevblog.com and www.theamphour.com.