Compact Wi-Fi Transceiver

Lemos

The LEMOS-LMX-WiFi wireless transceiver

The LEMOS-LMX-WiFi is a compact wireless transceiver that can operate on IEEE 802.11 networks. It is supported by a 32-bit microcontroller running a scalable TCP/IP stack. The transceiver is well suited for wireless embedded applications involving digital remote control, digital and analog remote monitoring, asset tracking, security systems, point of sale terminals, sensor monitoring, machine-to-machine (M2M) communication, environmental monitoring and control.

The 40.64-mm × 73.66-mm transceiver is available in two models: integrated PCB antenna or external antenna. Its features include software-selectable analog and digital I/O pins, a 2-Mbps maximum data rate, and a unique IEEE MAC address.

The LEMOS-LMX-WiFi can be powered by any 3.3-V to – 6-VDC source that can deliver 200 mA of current. The transceiver can interface to external devices that communicate via USART, I2C, and SPI. It also supports infrastructure and ad hoc networks.

Contact Lemos International for pricing.

Lemos International, Inc.
www.lemosint.com

A Look at Low-Noise Amplifiers

Maurizio Di Paolo Emilio, who has a PhD in Physics, is an Italian telecommunications engineer who works mainly as a software developer with a focus on data acquisition systems. Emilio has authored articles about electronic designs, data acquisition systems, power supplies, and photovoltaic systems. In this article, he provides an overview of what is generally available in low-noise amplifiers (LNAs) and some of the applications.

By Maurizio Di Paolo Emilio
An LNA, or preamplifier, is an electronic amplifier used to amplify sometimes very weak signals. To minimize signal power loss, it is usually located close to the signal source (antenna or sensor). An LNA is ideal for many applications including low-temperature measurements, optical detection, and audio engineering. This article presents LNA systems and ICs.

Signal amplifiers are electronic devices that can amplify a relatively small signal from a sensor (e.g., temperature sensors and magnetic-field sensors). The parameters that describe an amplifier’s quality are:

  • Gain: The ratio between output and input power or amplitude, usually measured in decibels
  • Bandwidth: The range of frequencies in which the amplifier works correctly
  • Noise: The noise level introduced in the amplification process
  • Slew rate: The maximum rate of voltage change per unit of time
  • Overshoot: The tendency of the output to swing beyond its final value before settling down

Feedback amplifiers combine the output and input so a negative feedback opposes the original signal (see Figure 1). Feedback in amplifiers provides better performance. In particular, it increases amplification stability, reduces distortion, and increases the amplifier’s bandwidth.

 Figure 1: A feedback amplifier model is shown here.


Figure 1: A feedback amplifier model is shown.

A preamplifier amplifies an analog signal, generally in the stage that precedes a higher-power amplifier.

IC LOW-NOISE PREAMPLIFIERS
Op-amps are widely used as AC amplifiers. Linear Technology’s LT1028 or LT1128 and Analog Devices’s ADA4898 or AD8597 are especially suitable ultra-low-noise amplifiers. The LT1128 is an ultra-low-noise, high-speed op-amp. Its main characteristics are:

  • Noise voltage: 0.85 nV/√Hz at 1 kHz
  • Bandwidth: 13 MHz
  • Slew rate: 5 V/µs
  • Offset voltage: 40 µV

Both the Linear Technology and Analog Devices amplifiers have voltage noise density at 1 kHz at around 1 nV/√Hz  and also offer excellent DC precision. Texas Instruments (TI)  offers some very low-noise amplifiers. They include the OPA211, which has 1.1 nV/√Hz  noise density at a  3.6 mA from 5 V supply current and the LME49990, which has very low distortion. Maxim Integrated offers the MAX9632 with noise below 1nV/√Hz.

The op-amp can be realized with a bipolar junction transistor (BJT), as in the case of the LT1128, or a MOSFET, which works at higher frequencies and with a higher input impedance and a lower energy consumption. The differential structure is used in applications where it is necessary to eliminate the undesired common components to the two inputs. Because of this, low-frequency and DC common-mode signals (e.g., thermal drift) are eliminated at the output. A differential gain can be defined as (Ad = A2 – A1) and a common-mode gain can be defined as (Ac = A1 + A2 = 2).

An important parameter is the common-mode rejection ratio (CMRR), which is the ratio of common-mode gain to the differential-mode gain. This parameter is used to measure the  differential amplifier’s performance.

Figure 2: The design of a simple preamplifier is shown. Its main components are the Linear Technology LT112 and the Interfet IF3602 junction field-effect transistor (JFET).

Figure 2: The design of a simple preamplifier is shown. Its main components are the Linear Technology LT1128 and the Interfet IF3602 junction field-effect transistor (JFET).

Figure 2 shows a simple preamplifier’s design with 0.8 nV/√Hz at 1 kHz background noise. Its main components are the LT1128 and the Interfet IF3602 junction field-effect transistor (JFET).  The IF3602 is a dual N-channel JFET used as stage for the op-amp’s input. Figure 3 shows the gain and Figure 4 shows the noise response.

Figure 3: The gain of a low-noise preamplifier.

Figure 3: The is a low-noise preamplifier’s gain.

 

Figure 4: The noise response of a low-noise preamplifier

Figure 4: A low-noise preamplifier’s noise response is shown.

LOW NOISE PREAMPLIFIER SYSTEMS
The Stanford Research Systems SR560 low-noise voltage preamplifier has a differential front end with 4nV/√Hz input noise and a 100-MΩ input impedance (see Photo 1a). Input offset nulling is accomplished by a front-panel potentiometer, which is accessible with a small screwdriver. In addition to the signal inputs, a rear-panel TTL blanking input enables you to quickly turn the instrument’s gain on and off (see Photo 1b).

Photo 1a:The Stanford Research Systems SR560 low-noise voltage preamplifier

Photo 1a: The Stanford Research Systems SR560 low-noise voltage preamplifier. (Photo courtesy of Stanford Research Systems)

Photo 1 b: A rear-panel TTL blanking input enables you to quickly turn the Stanford Research Systems SR560 gain on and off.

Photo 1b: A rear-panel TTL blanking input enables you to quickly turn the Stanford Research Systems SR560 gain on and off. (Photo courtesy of Stanford Research Systems)

The Picotest J2180A low-noise preamplifier provides a fixed 20-dB gain while converting a 1-MΩ input impedance to a 50-Ω output impedance and 0.1-Hz to 100-MHz bandwidth (see Photo 2). The preamplifier is used to improve the sensitivity of oscilloscopes, network analyzers, and spectrum analyzers while reducing the effective noise floor and spurious response.

Photo 2: The Picotest J2180A low-noise preamplifier is shown.

Photo 2: The Picotest J2180A low-noise preamplifier is shown. (Photo courtesy of picotest.com)

Signal Recovery’s Model 5113 is among the best low-noise preamplifier systems. Its principal characteristics are:

  • Single-ended or differential input modes
  • DC to 1-MHz frequency response
  • Optional low-pass, band-pass, or high-pass signal channel filtering
  • Sleep mode to eliminate digital noise
  • Optically isolated RS-232 control interface
  • Battery or line power

The 5113 (see Photo 3 and Figure 5) is used in applications as diverse as radio astronomy, audiometry, test and measurement, process control, and general-purpose signal amplification. It’s also ideally suited to work with a range of lock-in amplifiers.

Photo 3: This is the Signal Recovery Model 5113 low-noise pre-amplifier.

Photo 3: This is the Signal Recovery Model 5113 low-noise preamplifier. (Photo courtesy of Signal Recovery)

Figure 5: Noise contour figures are shown for the Signal Recovery Model 5113.

Figure 5: Noise contour figures are shown for the Signal Recovery Model 5113.

WRAPPING UP
This article briefly introduced low-noise amplifiers, in particular IC system designs utilized in simple or more complex systems such as the Signal Recovery Model 5113, which is a classic amplifier able to obtain different frequency bands with relative gain. A similar device is the SR560, which is a high-performance, low-noise preamplifier that is ideal for a wide variety of applications including low-temperature measurements, optical detection, and audio engineering.

Moreover, the Krohn-Hite custom Models 7000 and 7008 low-noise differential preamplifiers provide a high gain amplification to 1 MHz with an AC output derived from a very-low-noise FET instrumentation amplifier.

One common LNA amplifier is a satellite communications system. The ground station receiving antenna will connect to an LNA, which is needed because the received signal is weak. The received signal is usually a little above background noise. Satellites have limited power, so they use low-power transmitters.

Telecommunications engineer Maurizio Di Paolo Emilio was born in Pescara, Italy. Working mainly as a software developer with a focus on data acquisition systems, he helped design the thermal compensation system (TCS) for the optical system used in the Virgo Experiment (an experiment for detecting gravitational waves). Maurizio currently collaborates with researchers at the University of L’Aquila on X-ray technology. He also develops data acquisition hardware and software for industrial applications and manages technical training courses. To learn more about Maurizio and his expertise, read his essay on “The Future of Data Acquisition Technology.”

One Professor and Two Orderly Labs

Professor Wolfgang Matthes has taught microcontroller design, computer architecture, and electronics (both digital and analog) at the University of Applied Sciences in Dortmund, Germany, since 1992. He has developed peripheral subsystems for mainframe computers and conducted research related to special-purpose and universal computer architectures for the past 25 years.

When asked to share a description and images of his workspace with Circuit Cellar, he stressed that there are two labs to consider: the one at the University of Applied Sciences and Arts and the other in his home basement.

Here is what he had to say about the two labs and their equipment:

In both labs, rather conventional equipment is used. My regular duties are essentially concerned  with basic student education and hands-on training. Obviously, one does not need top-notch equipment for such comparatively humble purposes.

Student workplaces in the Dortmund lab are equipped for basic training in analog electronics.

Student workplaces in the Dortmund lab are equipped for basic training in analog electronics.

In adjacent rooms at the Dortmund lab, students pursue their own projects, working with soldering irons, screwdrivers, drills,  and other tools. Hence, these rooms are  occasionally called the blacksmith’s shop. Here two such workplaces are shown.

In adjacent rooms at the Dortmund lab, students pursue their own projects, working with soldering irons, screwdrivers, drills, and other tools. Hence, these rooms are occasionally called “the blacksmith’s shop.” Two such workstations are shown.

Oscilloscopes, function generators, multimeters, and power supplies are of an intermediate price range. I am fond of analog scopes, because they don’t lie. I wonder why neither well-established suppliers nor entrepreneurs see a business opportunity in offering quality analog scopes, something that could be likened to Rolex watches or Leica analog cameras.

The orderly lab at home is shown here.

The orderly lab in Matthes’s home is shown here.

Matthes prefers to build his  projects so that they are mechanically sturdy. So his lab is equipped appropriately.

Matthes prefers to build mechanically sturdy projects. So his lab is appropriately equipped.

Matthes, whose research interests include advanced computer architecture and embedded systems design, pursues a variety of projects in his workspace. He describes some of what goes on in his lab:

The projects comprise microcontroller hardware and software, analog and digital circuitry, and personal computers.

Personal computer projects are concerned with embedded systems, hardware add-ons, interfaces, and equipment for troubleshooting. For writing software, I prefer PowerBASIC. Those compilers generate executables, which run efficiently and show a small footprint. Besides, they allow for directly accessing the Windows API and switching to Assembler coding, if necessary.

Microcontroller software is done in Assembler and, if required, in C or BASIC (BASCOM). As the programming language of the toughest of the tough, Assembler comes second after wire [i.e., the soldering iron].

My research interests are directed at computer architecture, instruction sets, hardware, and interfaces between hardware and software. To pursue appropriate projects, programming at the machine level is mandatory. In student education, introductory courses begin with the basics of computer architecture and machine-level programming. However, Assembler programming is only taught at a level that is deemed necessary to understand the inner workings of the machine and to write small time-critical routines. The more sophisticated application programming is usually done in C.

Real work is shown here at the digital analog computer—bring-up and debugging of the master controller board. Each of the six microcontrollers is connected to a general-purpose human-interface module.

A digital analog computer in Matthes’s home lab works on master controller board bring-up and debugging. Each of the six microcontrollers is connected to a general-purpose human-interface module.

Additional photos of Matthes’s workspace and his embedded electronics and micrcontroller projects are available at his new website.

 

 

 

I/O Raspberry Pi Expansion Card

The RIO is an I/O expansion card intended for use with the Raspberry Pi SBC. The card stacks on top of a Raspberry Pi to create a powerful embedded control and navigation computer in a small 20-mm × 65-mm × 85-mm footprint. The RIO is well suited for applications requiring real-world interfacing, such as robotics, industrial and home automation, and data acquisition and control.

RoboteqThe RIO adds 13 inputs that can be configured as digital inputs, 0-to-5-V analog inputs with 12-bit resolution, or pulse inputs capable of pulse width, duty cycle, or frequency capture. Eight digital outputs are provided to drive loads up to 1 A each at up to 24 V.
The RIO includes a 32-bit ARM Cortex M4 microcontroller that processes and buffers the I/O and creates a seamless communication with the Raspberry Pi. The RIO processor can be user-programmed with a simple BASIC-like programming language, enabling it to perform logic, conditioning, and other I/O processing in real time. On the Linux side, RIO comes with drivers and a function library to quickly configure and access the I/O and to exchange data with the Raspberry Pi.

The RIO features several communication interfaces, including an RS-232 serial port to connect to standard serial devices, a TTL serial port to connect to Arduino and other microcontrollers that aren’t equipped with a RS-232 transceiver, and a CAN bus interface.
The RIO is available in two versions. The RIO-BASIC costs $85 and the RIO-AHRS costs $175.

Roboteq, Inc.
www.roboteq.com

CC280: Analog Communications and Calibration

Are you an analog aficionado? You’re in luck. Two articles, in particular, focus on the November issue’s analog techniques theme. (Look for the issue shortly after mid-October, when it will be available on our website.)

Block Diagram

Data from the base adapter is sent by level shifting the RS-232 or CMOS serial data between 9 and 12 V. A voltage comparator at the remote adapter slices the signal to generate a 0-to-5-V logic signal. The voltage on the signal wire never goes low enough for the 5-V regulator to go out of regulation.

These adapters use a combination of tricks. A single pair of wires carries full-duplex serial data and a small amount of power to a remote device for tasks (e.g., continuous remote data collection and control). The digital signals can be simple on/off signals or more complex signals (e.g., RS-232).

These adapters use a combination of tricks. A single pair of wires carries full-duplex serial data and a small amount of power to a remote device for tasks (e.g., continuous remote data collection and control). The digital signals can be simple on/off signals or more complex signals (e.g., RS-232).

Dick Cappels, a consultant who tinkers with analog and mixed-signal projects, presents a design using a pair of cable adapters and simple analog circuits to enable full-duplex, bidirectional communications and power over more than 100 m of paired wires. Why bother when Power Over Ethernet  (PoE), Bluetooth, and Wi-Fi approaches are available?

“In some applications, using Ethernet is a disadvantage because of the higher costs and greater interface complexity,” Cappels says. “You can use a microcontroller that costs less than a dollar and a few analog parts described in this article to perform remote data gathering and control.”

The base unit including the 5-to-15-V power supply is simple for its functionality. The two eight-pin DIP ICs are a voltage comparator and the switching regulator.

The base unit including the 5-to-15-V power supply is simple for its functionality. The two eight-pin DIP ICs are a voltage comparator and the switching regulator.

Cappels’s need for data channels to monitor his inground water tank inspired his design. Because his local municipality did not always keep the tank filled, he needed to know when it was dry so his pumps wouldn’t run without water and possibly become damaged.
“Besides the mundane application of monitoring a water tank, the system would be excellent for other communication uses,” Cappels says, including computer connection to a home weather station and intrusion-detection systems. Bit rates up to 250 kHz also enable the system to be used in two-way voice communication such as intercoms, he says.

Retired engineer David Cass Tyler became interested in writing his series about calibration while working on a consulting project. “I came to realize that some people don’t really know how to approach the issue of taking an analog-to-digital value to actual engineering units, nor how to correct calibration factors after the fact,” Tyler says

In Part 1 of his article series, Tyler notes: “Digital inputs and digital outputs are pretty simple. They are either on or off. However, for ADCs and DACs to be accurate, they must first be calibrated. This article addresses linear ADCs and DACs.” Part 2, appearing in the December issue, will discuss using polynomial curve fitting to convert nonlinear data to real-world engineering values.

In addition to its analog-themed articles, the November issue includes topics ranging from a DIY solar array tracker’s software to power-capped computer systems.

Editor’s Note: Learn more about Circuit Cellar contributors Dick Cappels and David Cass Tyler by reading their posts about their workspaces and favorite DIY tools.