One Professor and Two Orderly Labs

Professor Wolfgang Matthes has taught microcontroller design, computer architecture, and electronics (both digital and analog) at the University of Applied Sciences in Dortmund, Germany, since 1992. He has developed peripheral subsystems for mainframe computers and conducted research related to special-purpose and universal computer architectures for the past 25 years.

When asked to share a description and images of his workspace with Circuit Cellar, he stressed that there are two labs to consider: the one at the University of Applied Sciences and Arts and the other in his home basement.

Here is what he had to say about the two labs and their equipment:

In both labs, rather conventional equipment is used. My regular duties are essentially concerned  with basic student education and hands-on training. Obviously, one does not need top-notch equipment for such comparatively humble purposes.

Student workplaces in the Dortmund lab are equipped for basic training in analog electronics.

Student workplaces in the Dortmund lab are equipped for basic training in analog electronics.

In adjacent rooms at the Dortmund lab, students pursue their own projects, working with soldering irons, screwdrivers, drills,  and other tools. Hence, these rooms are  occasionally called the blacksmith’s shop. Here two such workplaces are shown.

In adjacent rooms at the Dortmund lab, students pursue their own projects, working with soldering irons, screwdrivers, drills, and other tools. Hence, these rooms are occasionally called “the blacksmith’s shop.” Two such workstations are shown.

Oscilloscopes, function generators, multimeters, and power supplies are of an intermediate price range. I am fond of analog scopes, because they don’t lie. I wonder why neither well-established suppliers nor entrepreneurs see a business opportunity in offering quality analog scopes, something that could be likened to Rolex watches or Leica analog cameras.

The orderly lab at home is shown here.

The orderly lab in Matthes’s home is shown here.

Matthes prefers to build his  projects so that they are mechanically sturdy. So his lab is equipped appropriately.

Matthes prefers to build mechanically sturdy projects. So his lab is appropriately equipped.

Matthes, whose research interests include advanced computer architecture and embedded systems design, pursues a variety of projects in his workspace. He describes some of what goes on in his lab:

The projects comprise microcontroller hardware and software, analog and digital circuitry, and personal computers.

Personal computer projects are concerned with embedded systems, hardware add-ons, interfaces, and equipment for troubleshooting. For writing software, I prefer PowerBASIC. Those compilers generate executables, which run efficiently and show a small footprint. Besides, they allow for directly accessing the Windows API and switching to Assembler coding, if necessary.

Microcontroller software is done in Assembler and, if required, in C or BASIC (BASCOM). As the programming language of the toughest of the tough, Assembler comes second after wire [i.e., the soldering iron].

My research interests are directed at computer architecture, instruction sets, hardware, and interfaces between hardware and software. To pursue appropriate projects, programming at the machine level is mandatory. In student education, introductory courses begin with the basics of computer architecture and machine-level programming. However, Assembler programming is only taught at a level that is deemed necessary to understand the inner workings of the machine and to write small time-critical routines. The more sophisticated application programming is usually done in C.

Real work is shown here at the digital analog computer—bring-up and debugging of the master controller board. Each of the six microcontrollers is connected to a general-purpose human-interface module.

A digital analog computer in Matthes’s home lab works on master controller board bring-up and debugging. Each of the six microcontrollers is connected to a general-purpose human-interface module.

Additional photos of Matthes’s workspace and his embedded electronics and micrcontroller projects are available at his new website.

 

 

 

A Serene Workspace for Board Evaluation and Writing

 Elecronics engineer, entrepreneur, and author Jack Ganssle recently sent us information about his Finksburg, MD, workspace:

I’m in a very rural area and I value the quietness and the view out of the window over my desk. However, there are more farmers than engineers here so there’s not much of a high-tech community! I work out of the house and share an office with my wife, who handles all of my travel and administrative matters. My corner is both lab space and desk. Some of the equipment changes fairly rapidly as vendors send in gear for reviews and evaluation.

ganssle-workspace

Ganssle’s desk is home to ever-changing equipment. His Agilent Technologies MSO-X-3054A mixed-signal oscilloscope is a mainstay.

The centerpiece, though, is my Agilent Technologies MSO-X-3054A mixed-signal oscilloscope. It’s 500 MHz, 4 GSps, and includes four analog channels and 16 digital channels, as well as a waveform generator and protocol analyzer. I capture a lot of oscilloscope traces for articles and talks, and the USB interface sure makes that easy. That’s pretty common on oscilloscopes, now, but being an old-timer I remember struggling with a Polaroid scope camera.

The oscilloscope’s waveform generator has somewhat slow (20-ns) rise time when making pulses, so the little circuit attached to it sharpens this to 700 ps, which is much more useful for my work. The photo shows a Siglent SDS1102CML oscilloscope on the bench that I’m currently evaluating. It’s amazing how much capability gets packed into these inexpensive instruments.

The place is actually packed with oscilloscopes and logic analyzers, but most are tucked away. I don’t know how many of those little USB oscilloscope/logic analyzers vendors have sent for reviews. I’m partial to bench instruments, but do like the fact that the USB instruments are typically quite cheap. Most have so-so analog performance but the digital sampling is generally great.

Only barely visible in the picture, under the bench there’s an oscilloscope from 1946 with a 2” CRT I got on eBay just for fun. It’s a piece of garbage with a very nonlinear timebase, but a lot of fun. The beam is aimed by moving a magnet around! Including the CRT there are only four tubes. Can you imagine making anything with just four transistors today?

The big signal generator is a Hewlett-Packward 8640B, one of the finest ever made with astonishing spectral purity and a 0.5-dB amplitude flatness across 0.5 MHz to 1 GHz. A couple of digital multimeters and a pair of power supplies are visible as well. The KORAD supply has a USB connection and a serviceable, if klunky, PC application that drives it. Sometimes an experiment needs a slowly changing voltage, which the KORAD manages pretty well.

They’re mostly packed away, but I have a ton of evaluation kits and development boards. A Xilinx MicroZed is shown on the bench. It’s is a very cool board that has a pair of Cortex-A9s plus FPGA fabric in a single chip.

I use IDEs and debuggers from, well, everyone: Microchip Technology, IAR Systems, Keil, Segger, you name it. These run on a variety of processors but, along with so many others, more and more I’m using Cortex-M series parts.

My usual lab work is either evaluating boards, products and instruments, or running experiments that turn into articles. It pains me to see so much engineering is done via superstition today. For example, people pick switch contact debounce times based on hearsay or smoke signals or something. Engineers need data, so I tested about 50 pairs of switches to determine what real bounce characteristics are. The results are on my website. Ditto for watchdog timers and other important issues embedded people deal with.

Ganssle notes that his other “bench” is his woodworking shop. To learn more about Ganssle, read our 2013 interview.

Pulse-Shaping Basics

Pulse shaping (i.e., base-band filtering) can vastly improve the behavior of wired or wireless communication links in an electrical system. With that in mind, Circuit Cellar columnist Robert Lacoste explains the advantages of filtering and examines Fourier transforms; random non-return-to-zero NRZ signaling; and low-pass, Gaussian, Nyquist, and raised-cosine filters.

Lacoste’s article, which appears in Circuit Cellar’s April 2014 issue, includes an abundance of graphic simulations created with Scilab Enterprises’s open-source software. The simulations will help readers grasp the details of pulse shaping, even if they aren’t math experts. (Note: You can download the Scilab source files Lacoste developed for his article from Circuit Cellar’s FTP site.)

Excerpts from Lacoste’s article below explain the importance of filtering and provide a closer look at low-pass filters:

WHY FILTERING?
I’ll begin with an example. Imagine you have a 1-Mbps continuous digital signal you need to transmit between two points. You don’t want to specifically encode these bits; you just want to transfer them one by one as they are.

Before transmission, you will need to transform the 1 and 0s into an actual analog signal any way you like. You can use a straightforward method. Simply define a pair of voltages (e.g., 0 and 5 V) and put 0 V on the line for a 0-level bit and put 5 V on the line for a 1-level bit.


This method is pedantically called non-return-to-zero (NRZ). This is exactly what a TTL UART is doing; there is nothing new here. This analog signal (i.e., the base-band signal) can then be sent through the transmission channel and received at the other end (see top image in Figure 1).


Note: In this article I am not considering any specific transmission channel. It could range from a simple pair of copper wires to elaborate wireless links using amplitude, frequency and/or phase modulation, power line modems, or even optical links. Everything I will discuss will basically be applicable to any kind of transmission as it is linked to the base-band signal encoding prior to any modulation.

Directly transmitting a raw digital signal, such as this 1-Mbps non-return-to-zero (NRZ) stream (at top), is a waste of bandwidth. b—Using a pulse-shaping filter (bottom) reduces the required bandwidth for the same bit rate, but with a risk of increased transmission errors.

Figure 1: Directly transmitting a raw digital signal, such as this 1-Mbps non-return-to-zero (NRZ) stream (top), is a waste of bandwidth. Using a pulse-shaping filter (bottom) reduces the required bandwidth for the same bit rate, but with a risk of increased transmission errors.


Now, what is the issue when using simple 0/5-V NRZ encoding? Bandwidth efficiency. You will use more megahertz than needed for your 1-Mbps signal transmission. This may not be an issue if the channel has plenty of extra capacity (e.g., if you are using a Category 6 1-Gbps-compliant shielded twisted pair cable to transmit these 1 Mbps over a couple of meters).


Unfortunately, in real life you will often need to optimize the bandwidth. This could be for cost reasons, for environmental concerns (e.g., EMC perturbations), for regulatory issues (e.g., RF channelization), or simply to increase the effective bit rate as much as possible for a given channel.


Therefore, a good engineering practice is to use just the required bandwidth through a pulse-shaping filter. This filter is fitted between your data source and the transmitter (see bottom of Figure 1).


The filter’s goal is to reduce as much as possible the occupied bandwidth of your base-band signal without affecting the system performance in terms of bit error rate. These may seem like contradictory requirements. How can you design such a filter? That’s what I will try to explain in this article….


LOW-PASS FILTERS

A base-band filter is needed between the binary signal source and the transmission media or modulator. But what characteristics should this filter include? It must attenuate as quickly as possible the unnecessary high frequencies. But it must also enable the receiver to decode the signal without errors, or more exactly without more errors than specified. You will need a low-pass filter to limit the high frequencies. As a first example, I used a classic Butterworth second-order filter with varying cut-off frequencies to make the simulation. Figure 2 shows the results. Let me explain the graphs.

Figure 2: This random non-return-to-zero (NRZ) signal (top row) was passed through a second-order Butterworth low-pass filter. When the cut-off frequency is low (310 kHz), the filtered signal (middle row) is distorted and the eye diagram is closed. With a higher cutoff (410 kHz, bottom row), the intersymbol interference (ISI) is lower but the frequency content is visible up to 2 MHz.

Figure 2: This random non-return-to-zero (NRZ) signal (top row) was passed through a second-order Butterworth low-pass filter. When the cut-off frequency is low (310 kHz), the filtered signal (middle row) is distorted and the eye diagram is closed. With a higher cutoff (410 kHz, bottom row), the intersymbol interference (ISI) is lower but the frequency content is visible up to 2 MHz.

The leftmost column shows the signal frequency spectrum after filtering with the filter frequency response in red as a reference. The middle column shows a couple of bits of the filtered signal (i.e., in the time domain), as if you were using an oscilloscope. Last, the rightmost column shows the received signal’s so-called “eye pattern.” This may seem impressive, but the concept is very simple.

Imagine you have an oscilloscope. Trigger it on any rising or falling front of the signal, scale the display to show one bit time in the middle of the screen, and accumulate plenty of random bits on the screen. You’ve got the eye diagram. It provides a visual representation of the difficulty the receiver will have to recover the bits. The more “open” the eye, the easier it is. Moreover, if the successive bits’ trajectories don’t superpose to each other, there is a kind of memory effect. The voltage for a given bit varies depending on the previously transmitted bits. This phenomenon is called intersymbol interference (ISI) and it makes life significantly more difficult for decoding.


Take another look at the Butterworth filter simulations. The first line is the unfiltered signal as a reference (see Figure 2, top row). The second line with a 3-dB, 310-kHz cut-off frequency shows a frequency spectrum significantly reduced after 1 MHz but with a high level of ISI. The eye diagram is nearly closed (see Figure 2, middle row). The third line shows the result with a 410-kHz Butterworth low-pass filter (see Figure 2, bottom row). Its ISI is significantly lower, even if it is still visible. (The successive spot trajectories don’t pass through the same single point.) Anyway, the frequency spectrum is far cleaner than the raw signal, at least from 2 MHz.

Lacoste’s article serves as solid introduction to the broad subject of pulse-shaping. And it concludes by re-emphasizing a few important points and additional resources for readers:

Transmitting a raw digital signal on any medium is a waste of bandwidth. A filter can drastically improve the performance. However, this filter must be well designed to minimize intersymbol interference.

The ideal solution, namely the Nyquist filter, enables you to restrict the used spectrum to half the transmitted bit rate. However, this filter is just a mathematician’s dream. Raised cosine filters and Gaussian filters are two classes of real-life filters that can provide an adequate complexity vs performance ratio.

At least you will no longer be surprised if you see references to such filters in electronic parts’ datasheets. As an example, see Figure 3, which is a block diagram of Analog Devices’s ADF7021 high-performance RF transceiver.

This is a block diagram of Analog Devices’s ADF7021 high-performance transceiver. On the bottom right there is a “Gaussian/raised cosine filter” block, which is a key factor in efficient RF bandwidth usage.

Figure 3: This is a block diagram of Analog Devices’s ADF7021 high-performance transceiver. On the bottom right there is a “Gaussian/raised cosine filter” block, which is a key factor in efficient RF bandwidth usage.

The subject is not easy and can be easily misunderstood. I hope this article will encourage you to learn more about the subject. Bernard Sklar’s book Digital Communications: Fundamentals and Applications is a good reference. Playing with simulations is also a good way to understand, so don’t hesitate to read and modify the Scilab examples I provided for you on Circuit Cellar’s FTP site.  

Lacoste’s full article is in the April issue, now available for membership download or single issue purchase. And for more information about improving the efficiency of wireless communication links, check out Lacoste’s 2011 article “Line-Coding Techniques,” Circuit Cellar 255, which tells you how you can encode your bits before transmission.

A Workspace for Microwave Imaging, Small Radar Systems, and More

Gregory L. Charvat stays very busy as an author, a visiting research scientist at the Massachusetts Institute of Technology (MIT) Media Lab, and the hardware team leader at the Butterfly Network, which brings together experts in computer science, physics, and electrical engineering to create new approaches to medical diagnostic imaging and treatment.

If that wasn’t enough, he also works as a start-up business consultant and pursues personal projects out of the basement-garage workspace of his Westbrook, CT, home (see Photo 1). Recently, he sent Circuit Cellar photos and a description of his lab layout and projects.

Photo 1

Photo 1: Charvat, seated at his workbench, keeps his equipment atop sturdy World War II-era surplus lab tables.

Charvat’s home setup not only provides his ideal working conditions, but also considers  frequent moves required by his work.

Key is lots of table space using WW II surplus lab tables (they built things better back then), lots of lighting, and good power distribution.

I’m involved in start-ups, so my wife and I move a lot. So, we rent houses. When renting, you cannot install the outlets and things needed for a lab like this. For this reason, I built my own line voltage distribution panel; it’s the big thing with red lights in the middle upper left of the photos of the lab space (see Photo 2).  It has 16 outlets, each with its own breaker, pilot lamp (not LED).  The entire thing has a volt and amp meter to monitor power consumption and all power is fed through a large EMI filter.

Photo 2: This is another view of the lab, where strong lighting and two oscilloscopes are the minimum requirements.

Photo 2: This is another view of the lab, where strong lighting and two oscilloscopes are the minimum requirements.

Projects in the basement-area workplace reflect Charvat’s passion for everything from microwave imaging systems and small radar sensor technology to working with vacuum tubes and restoring antique electronics.

My primary focus is the development of microwave imaging systems, including near-field phased array, quasi-optical, and synthetic-aperture radar (SAR). Additionally, I develop small radar sensors as part of these systems or in addition to. Furthermore, I build amateur radio transceivers from scratch. I developed the only all-tube home theater system (published in the May-June 2012 issues of audioXpress magazine) and like to restore antique radio gear, watches, and clocks.

Charvat says he finds efficient, albeit aging, gear for his “fully equipped microwave, analog, and digital lab—just two generations too late.”

We’re fortunate to have access to excellent test gear that is old. I procure all of this gear at ham fests, and maintain and repair it myself. I prefer analog oscilloscopes, analog everything. These instruments work extremely well in the modern era. The key is you have to think before you measure.

Adequate storage is also important in a lab housing many pieces for Charvat’s many interests.

I have over 700 small drawers full of new inventory.  All standard analog parts, transistors, resistors, capacitors of all types, logic, IF cans, various radio parts, RF power transistors, etc., etc.

And it is critical to keep an orderly workbench, so he can move quickly from one project to the next.

No, it cannot be a mess. It must be clean and organized. It can become a mess during a project, but between projects it must be cleaned up and reset. This is the way to go fast.  When you work full time and like to dabble in your “free time” you must have it together, you must be organized, efficient, and fast.

Photos 3–7 below show many of the radar and imaging systems Charvat says he is testing in his lab, including linear rail SAR imaging systems (X and X-band), a near-field S-band phased-array radar, a UWB impulse X-band imaging system, and his “quasi-optical imaging system (with the big parabolic dish).”

Photo 3: This shows impulse rail synthetic aperture radar (SAR) in action, one of many SAR imaging systems developed in Charvat’s basement-garage lab.

Photo 3: This photo shows the impulse rail synthetic aperture radar (SAR) in action, one of many SAR imaging systems developed in Charvat’s basement-garage lab.

Photo 4: Charvat built this S-band, range-gated frequency-modulated continuous-wave (FMCW) rail SAR imaging system

Photo 4: Charvat built this S-band, range-gated frequency-modulated continuous-wave (FMCW) rail SAR imaging system.

Photo 5: Charvat designed an S-band near-field phased-array imaging system that enables through-wall imaging.

Photo 5: Charvat designed an S-band near-field phased-array imaging system that enables through-wall imaging.

Photo 5: Charvat's X-band, range-gated UWB FMCW rail SAR system is shown imaging his bike.

Photo 6: Charvat’s X-band, range-gated UWB FMCW rail SAR system is shown imaging his bike.

Photo 7: Charvat’s quasi-optical imaging system includes a parabolic dish.

Photo 7: Charvat’s quasi-optical imaging system includes a parabolic dish.

To learn more about Charvat and his projects, read this interview published in audioXpress (October 2013). Also, Circuit Cellar recently featured Charvat’s essay examining the promising future of small radar technology. You can also visit Charvat’s project website or follow him on Twitter @MrVacuumTube.

Evaluating Oscilloscopes (Part 4)

In this final installment of my four-part mini-series about selecting an oscilloscope, I’ll look at triggering, waveform generators, and clock synchronization, and I’ll wrap up with a series summary.

My previous posts have included Part 1, which discusses probes and physical characteristics of stand-alone vs. PC-based oscilloscopes; Part 2, which examines core specifications such as bandwidth, sample rate, and ADC resolution; and Part 3, which focuses on software. My posts are more a “collection of notes” based on my own research rather than a completely thorough guide. But I hope they are useful and cover some points you might not have otherwise considered before choosing an oscilloscope.

This is a screenshot from Colin O'Flynn's YouTube video "Using PicoScope AWG for Testing Serial Data Limits."

This is a screenshot from Colin O’Flynn’s YouTube video “Using PicoScope AWG for Testing Serial Data Limits.”

Topic 1: Triggering Methods
Triggering your oscilloscope properly can make a huge difference in being able to capture useful waveforms. The most basic triggering method is just a “rising” or “falling” edge, which almost everyone is (or should be) familiar with.

Whether you need a more advanced trigger method will depend greatly on your usage scenario and a bit on other details of your oscilloscope. If you have a very long buffer length or ability to rapid-fire record a number of waveforms, you might be able to live with a simple trigger since you can easily throw away data that isn’t what you are looking for. If your oscilloscope has a more limited buffer length, you’ll need to trigger on the exact moment of interest.

Before I detail some of the other methods, I want to mention that you can sometimes use external instruments for triggering. For example, you might have a logic analyzer with an extremely advanced triggering mechanism.  If that logic analyzer has a “trigger out,” you can trigger the oscilloscope from your logic analyzer.

On to the trigger methods! There are a number of them related to finding “odd” pulses: for example, finding glitches shorter or wider than some length or finding a pulse that is lower than the regular height (called a “runt pulse”). By knowing your scope triggers and having a bit of creativity, you can perform some more advanced troubleshooting. For example, when troubleshooting an embedded microcontroller, you can have it toggle an I/O pin when a task runs. Using a trigger to detect a “pulse dropout,” you can trigger your oscilloscope when the system crashes—thus trying to see if the problem is a power supply glitch, for example.

If you are dealing with digital systems, be on the lookout for triggers that can function on serial protocols. For example, the Rigol Technologies stand-alone units have this ability, although you’ll also need an add-on to decode the protocols! In fact, most of the serious stand-alone oscilloscopes seem to have this ability (e.g., those from Agilent, Tektronix, and Teledyne LeCroy); you may just need to pay extra to enable it.

Topic 2: External Trigger Input
Most oscilloscopes also have an “external trigger input.”  This external input doesn’t display on the screen but can be used for triggering. Specifically, this means your trigger channel doesn’t count against your “ADC channels.” So if you need the full sample rate on one channel but want to trigger on another, you can use the “ext in” as the trigger.
Oscilloscopes that include this feature on the front panel make it slightly easier to use; otherwise, you’re reaching around behind the instrument to find the trigger input.

Topic 3: Arbitrary Waveform Generator
This isn’t strictly an oscilloscope-related function, but since enough oscilloscopes include some sort of function generator it’s worth mentioning. This may be a standard “signal generator,” which can generate waveforms such as sine, square, triangle, etc. A more advanced feature, called an arbitrary waveform generator (AWG), enables you to generate any waveform you want.

I previously had a (now very old) TiePie engineering HS801 that included an AWG function. The control software made it easy to generate sine, square, triangle, and a few other waveforms. But the only method of generating an arbitrary waveform was to load a file you created in another application, which meant I almost never used the “arbitrary” portion of the AWG. The lesson here is that if you are going to invest in an AWG, make sure the software is reasonable to use.

The AWG may have a few different specifications; look for the maximum analog bandwidth along with the sample rate. Be careful of outlandish claims: a 200 MS/s digital to analog converter (DAC) could hypothetically have a 100-MHz analog bandwidth, but the signal would be almost useless. You could only generate some sort of sine wave at that frequency, which would probably be full of harmonics. Even if you generated a lower-frequency sine wave (e.g., 10 MHz), it would likely contain a fair amount of harmonics since the DAC’s output filter has a roll-off at such a high frequency.

Better systems will have a low-pass analog filter to reduce harmonics, with the DAC’s sample rate being several times higher than the output filter roll-off. The Pico Technology PicoScope 6403D oscilloscope I’m using can generate a 20-MHz signal but has a 200 MS/s sample rate on the DAC. Similarly, the TiePie engineering HS5-530 has a 30-MHz signal bandwidth, and similarly uses a 240 MS/s sample rate. A sample rate of around five to 10 times the analog bandwidth seems about standard.

Having the AWG integrated into the oscilloscope opens up a few useful features. When implementing a serial protocol decoder, you may want to know what happens if the baud rate is slightly off from the expected rate. You can quickly perform this test by recording a serial data packet on the oscilloscope, copying it to the AWG, and adjusting the AWG sample rate to slightly raise or lower the baud rate. I illustrate this in the following video.


Topic 4: Clock Synchronization

One final issue of interest: In certain applications, you may need to synchronize the sample rate to an external device. Oscilloscopes will often have two features for doing this. One will output a clock from the oscilloscope, the other will allow you to feed an external clock into the oscilloscope.

The obvious application is synchronizing a capture between multiple oscilloscopes. You can, however, use this for any application where you wish to use a synchronous capture methodology. For example, if you wish to use the oscilloscope as part of a software-defined radio (SDR), you may want to ensure the sampling happens synchronous to a recovered clock.

The input frequency of this clock is typically 10 MHz, although some devices enable you to select between several allowed frequencies. If the source of this clock is anything besides another instrument, you may have to do some clock conditioning to convert it into one of the valid clock source ranges.

Summary and Closing Comments
That’s it! Over the past four weeks I’ve tried to raise a number of issues to consider when selecting an oscilloscope. As previously mentioned, the examples were often PicoScope-heavy simply because it is the oscilloscope I own. But all the topics have been relevant to any other oscilloscope you may have.

You can check out my YouTube playlist dealing with oscilloscope selection and review.  Some topics might suggest further questions to ask.

I’ve probably overlooked a few issues, but I can’t cover every possible oscilloscope and option. When selecting a device, my final piece of advice is to download the user manual and study it carefully, especially for features you find most important. Although the datasheet may gloss over some details, the user manual will typically address the limitations you’ll run into, such as FFT length or the memory depths you can configure.

Author’s note: Every reasonable effort has been made to ensure example specifications are accurate. There may, however, be errors or omissions in this article. Please confirm all referenced specifications with the device vendor.