An Engineer Who Retires to the Garage

Jerry Brown, of Camarillo, CA, retired from the aerospace industry five years ago but continues to consult and work on numerous projects at home. For example, he plans to submit an article to Circuit Cellar about a Microchip Technology PIC-based computer display component (CDC) he designed and built for a traffic-monitoring system developed by a colleague.

Jerry Brown sits at his workbench. The black box atop the workbench is an embedded controller and is part of a traffic monitoring system he has been working on.

Jerry Brown sits at his workbench. The black box atop the workbench is an embedded controller and part of  his traffic monitoring system project.

“The traffic monitoring system is composed of a beam emitter component (BEC), a beam sensor component (BSC), and the CDC, and is intended for unmanned use on city streets, boulevards, and roadways to monitor and record the accumulative count, direction of travel, speed, and time of day for vehicles that pass by a specific location during a set time period,” he says.

Brown particularly enjoys working with PWM LED controllers. Circuit Cellar editors look forward to seeing his project article. In the meantime, he sent us the following description and pictures of the space where he conceives and executes his creative engineering ideas.

Jerry's garage-based lab.

Brown’s garage-based lab.

My workspace, which I call my “lab,” is on one side of my two-car garage and is fairly well equipped. (If you think it looks a bit messy, you should have seen it before I straightened it up for the “photo shoot.”)  

I have a good supply of passive and active electronic components, which are catalogued and, along with other parts and supplies, are stored in the cabinets and shelves alongside and above the workbench. I use the computer to write and compile software programs and to program PIC flash microcontrollers.  

The photos show the workbench and some of the instrumentation I have in the lab, including a waveform generator, a digital storage oscilloscope, a digital multimeter, a couple of power supplies, and a soldering station.  

The black box visible on top of the workbench is an embedded controller and is part of the traffic monitoring system that I have been working on.

Instruments in Jerry's lab include a waveform generator, a digital storage oscilloscope, a digital multimeter, a couple of power supplies, and a soldering station.

Instruments in Brown’s lab include a waveform generator, a digital storage oscilloscope, a digital multimeter, a couple of power supplies, and a soldering station. 

Brown has a BS in Electrical Engineering and a BS in Business Administration from California Polytechnic State University in San Luis Obispo, CA. He worked in the aerospace industry for 30 years and retired as the Principal Engineer/Manager of a Los Angeles-area aerospace company’s electrical and software design group.

A Well-Organized Workspace for Home Automation Systems

Organization and plenty of space to work on projects are the main elements of Dean Boman’s workspace (see Photo 1). Boman, a retired systems engineer, says most of his projects involve home automation. He described some of his workspace features via e-mail:

My test equipment suite consists of a Rigol digital oscilloscope, a triple-output power supply, various single-output power supplies, and several Microchip Technology in-circuit development tools.

I have also built a simple logic analyzer, an FPGA programmer, and an EPROM programmer. For PCB fabrication, I have a complete setup from MG Chemicals to expose, develop, etch, and plate boards up to about 6” × 9” in size.

Photo 1: Boman’s workbench includes overhead cabinets to help reduce clutter. The computer in the foreground is his web server and main home-automation system controller. (Source: D. Boman)

Photo 1: Boman’s workbench includes overhead cabinets to help reduce clutter. The computer in the foreground is his web server and main home-automation system controller. (Source: D. Boman)

Boman is currently troubleshooting a small 1-W ham radio transmitter (see Photo 2).

Photo 2: Boman is currently troubleshooting a small 1-W ham radio transmitter (Source: D. Boman)

Photo 2: Here is his workbench with the radio transmitter. (Source: D. Boman)

Boman says the 10’ long countertop surface (in the background in Photo 3) is:

Great for working on larger items (e.g., computers). It is also a great surface for debugging designs as you have plenty of room for test equipment, drawings, and datasheets.

Photo 3: Boman’s setup includes plenty of spacefor large projects. (Source: D. Boman)

Photo 3: Boman’s setup includes plenty of room for large projects. (Source: D. Boman)

Most of Boman’s projects involve in-home automation (see Photo 4).

My current system provides functions such as: security system monitoring, irrigation control, water leak detection, temperature monitoring, electrical usage monitoring, fire detection, access control, weather monitoring, water usage monitoring, solar hot water system control, and security video recording. I also have an Extra Class ham radio license (WE7J) and build some ham radio equipment.

Here is how he described his system setup:

The shelf on the top contains the network routers and the security system. The cabinets on the wall contain an irrigation system controller and a network monitor for network management. I was fortunate in that we built a custom home a few years ago so I was able to run about two miles of cabling in the walls during construction.

Photo 4: Boman has various elements of his home-automation control system mounted on the wall. (Source: D. Boman)

Photo 4: Boman has various elements of his home-automation control system mounted on the wall. (Source: D. Boman)

Boman uses small containers to hold an inventory of surface-mount components (see Photo 5).

Over the past 10 years or so I have migrated to doing surface-mount designs almost exclusively. I have found that once you get over the learning curve, the surface-mount designs are much simpler to design and troubleshoot then the through-hole type technology. The printed wiring boards are also much simpler to fabricate, which is important since I etch my own boards.

Photo 5: Surface-mount components are neatly corralled in containers. (Source: D. Boman)

Photo 5: Surface-mount components are neatly corralled in containers. (Source: D. Boman)

Overall, Boman’s setup is well suited to his interests. He keeps everything handy in well-organized containers and has plenty of testing space In addition, his custom-built home enabled him to run behind-the-scenes cabling, freeing up valuable workspace.

Do you want to share images of your workspace, hackspace, or “circuit cellar”? Send your images and space info to editor<at>circuitcellar.com.