Remote Control and Monitoring of Household Devices

Raul Alvarez, a freelance electronic engineer from Bolivia, has long been interested in wireless device-to-device communication.

“So when the idea of the Internet of Things (IoT) came around, it was like rediscovering the Internet,” he says.

I’m guessing that his dual fascinations with wireless and the IoT inspired his Home Energy Gateway project, which won second place in the 2012 DesignSpark chipKIT challenge administered by Circuit Cellar.

“The system enables users to remotely monitor their home’s power consumption and control household devices (e.g., fans, lights, coffee machines, etc.),” Alvarez says. “The main system consists of an embedded gateway/web server that, aside from its ability to communicate over the Internet, is also capable of local communications over a home area wireless network.”

Alvarez catered to his interests by creating his own wireless communication protocol for the system.

“As a learning exercise, I specifically developed the communication protocol I used in the home area wireless network from scratch,” he says. “I used low-cost RF transceivers to implement the protocol. It is simple and provides just the core functionality necessary for the application.”

Figure1: The Home Energy Gateway includes a Hope Microelectronics RFM12B transceiver, a Digilent chipKIT Max32 board, and a Microchip Technology ENC28J60 Ethernet controller chip.

Figure 1: The Home Energy Gateway includes a Hope Microelectronics RFM12B transceiver, a Digilent chipKIT Max32 board, and a Microchip Technology ENC28J60 Ethernet controller chip.

Alvarez writes about his project in the February issue of Circuit Cellar. His article concentrates on the project’s TCI/IP communications aspects and explains how they interface.

Here is his article’s overview of how the system functions and its primary hardware components:

Figure 1 shows the system’s block diagram and functional configuration. The smart meter collects the entire house’s power consumption information and sends that data every time it is requested by the gateway. In turn, the smart plugs receive commands from the gateway to turn on/off the household devices attached to them. This happens every time the user turns on/off the controls in the web control panel.

Photo 1: These are the three smart node hardware prototypes: upper left,  smart plug;  upper right, a second smart plug in a breadboard; and at bottom,  the smart meter.

Photo 1: These are the three smart node hardware prototypes: upper left, smart plug; upper right, a second smart plug in a breadboard; and at bottom, the smart meter.

I used the simple wireless protocol (SWP) I developed for this project for all of the home area wireless network’s wireless communications. I used low-cost Hope Microelectronics 433-/868-/915-MHz RFM12B transceivers to implement the smart nodes. (see Photo 1)
The wireless network is configured to work in a star topology. The gateway assumes the role of a central coordinator or master node and the smart devices act as end devices or slave nodes that react to requests sent by the master node.

The gateway/server is implemented in hardware around a Digilent chipKIT Max32 board (see Photo 2). It uses an RFM12B transceiver to connect to the home area wireless network and a Microchip Technology ENC28J60 chip module to connect to the LAN using Ethernet.

As the name implies, the gateway makes it possible to access the home area wireless network over the LAN or even remotely over the Internet. So, the smart devices are easily accessible from a PC, tablet, or smartphone using just a web browser. To achieve this, the gateway implements the SWP for wireless communications and simultaneously uses Microchip Technology’s TCP/IP Stack to work as a web server.

Photo 2: The Home Energy Gateway’s hardware includes a Digilent chipKIT Max32 board and a custom shield board.

Photo 2: The Home Energy Gateway’s hardware includes a Digilent chipKIT Max32 board and a custom shield board.

Thus, the Home Energy Gateway generates and serves the control panel web page over HTTP (this page contains the individual controls to turn on/off each smart plug and at the same time shows the power consumption in the house in real-time). It also uses the wireless network to pass control data from the user to the smart plugs and to read power consumption data from the smart meter.

The hardware module includes three main submodules: The chipKIT Max 32 board, the RFM12B wireless transceiver, and the ENC28J60 Ethernet module. The smart meter hardware module has an RFM12B transceiver for wireless communications and uses an 8-bit Microchip Technology PIC16F628A microcontroller as a main processor. The smart plug hardware module shows the smart plugs’ main hardware components and has the same microcontroller and radio transceiver as the smart meter. But the smart plugs also have a Sharp Microelectronics S212S01F solid-state relay to turn on/off the household devices.

On the software side, the gateway firmware is written in C for the Microchip Technology C32 Compiler. The smart meter’s PIC16F628A code is written in C for the Hi-TECH C compiler. The smart plug software is very similar.

Alvarez says DIY home-automation enthusiasts will find his prototype inexpensive and capable. He would like to add several features to the system, including the ability to e-mail notifications and reports to users.

For more details, check out the February issue now available for download by members or single-issue purchase.

Places for the IoT Inside Your Home

It’s estimated that by the year 2020, more than 30 billion devices worldwide will be wirelessly connected to the IoT. While the IoT has massive implications for government and industry, individual electronics DIYers have long recognized how projects that enable wireless communication between everyday devices can solve or avert big problems for homeowners.

February CoverOur February issue focusing on Wireless Communications features two such projects, including  Raul Alvarez Torrico’s Home Energy Gateway, which enables users to remotely monitor energy consumption and control household devices (e.g., lights and appliances).

A Digilent chipKIT Max32-based embedded gateway/web server communicates with a single smart power meter and several smart plugs in a home area wireless network. ”The user sees a web interface containing the controls to turn on/off the smart plugs and sees the monitored power consumption data that comes from the smart meter in real time,” Torrico says.

While energy use is one common priority for homeowners, another is protecting property from hidden dangers such as undetected water leaks. Devlin Gualtieri wanted a water alarm system that could integrate several wireless units signaling a single receiver. But he didn’t want to buy one designed to work with expensive home alarm systems charging monthly fees.

In this issue, Gualtieri writes about his wireless water alarm network, which has simple hardware including a Microchip Technology PIC12F675 microcontroller and water conductance sensors (i.e., interdigital electrodes) made out of copper wire wrapped around perforated board.

It’s an inexpensive and efficient approach that can be expanded. “Multiple interdigital sensors can be wired in parallel at a single alarm,” Gualtieri says. A single alarm unit can monitor multiple water sources (e.g., a hot water tank, a clothes washer, and a home heating system boiler).

Also in this issue, columnist George Novacek begins a series on wireless data links. His first article addresses the basic principles of radio communications that can be used in control systems.

Other issue highlights include advice on extending flash memory life; using C language in FPGA design; detecting capacitor dielectric absorption; a Georgia Tech researcher’s essay on the future of inkjet-printed circuitry; and an overview of the hackerspaces and enterprising designs represented at the World Maker Faire in New York.

Editor’s Note: Circuit Cellar‘s February issue will be available online in mid-to-late January for download by members or single-issue purchase by web shop visitors.

DesignSpark chipKIT Challenge 2012 Winners Named

The results for the DesignSpark chipKIT Challenge are now final. Dean Boman won First Prize for his chipKIT-based Energy Monitoring System, which provides users real-time home electrical usage data. A web server provides usage tracking on a circuit-by-circuit basis. It interfaces with a home automation system for long-term monitoring and data logging.

Dean Boman's Energy Monitoring System (Source: D. Boman)

Second prize went to Raul Alvarez for his Home Energy Gateway consumption monitor, which features an embedded gateway/web server that communicates with “smart” devices.

Raul Alvarezs Home Energy Gateway (Source: R. Alvarez)

Graig Pearen won Third Prize for his PV Array Tracker (Sun Seeker) project, which tracks, monitors, and adjusts PV arrays based on weather conditions.

Graig Pearen's PV Array Tracker (Source: G. Pearen)

Click HERE for a list of all the winners. You can review their project abstracts, documentation, schematics, diagrams, code, and more.

Participants in the competition were challenged develop innovative, energy-efficient designs with eco-friendly footprints. Entries were required to include an extension card developed using the DesignSpark PCB software tool and the Microchip Max32 chipKIT development board.

According to the documentation on the design challenge site:

The chipKIT™ Max32™ development platform is a 32-bit Arduino solution that enables hobbyists and academics to easily and inexpensively integrate electronics into their projects, even if they do not have an electronic-engineering background.

The platform consists of two PIC32-based development boards and open-source software that is compatible with the Arduino programming language and development environment. The chipKIT™ hardware is compatible with existing 3.3V Arduino shields and applications, and can be developed using a modified version of the Arduino IDE and existing Arduino resources, such as code examples, libraries, references and tutorials.

The chipKIT™ Basic I/O Shield (part # TDGL005) is compatible with the chipKIT™ Max32™ board, and offers users simple push buttons, switches, LEDs, I2C™ EEPROM, I2C temperature sensor, and a 128 x 32 pixel organic LED graphic display.

 

Click HERE for a list of all the winners. You can review their project abstracts, documentation, schematics, diagrams, code, and more.

Circuit Cellar/Elektor Inc. is the Contest Administrator.