RS Components + Elektor = DesignSpark Magazine

RS Components has announced the launch of its new online publication, DesignSpark Magazine. The new magazine will be published in collaboration with Elektor International Media, the global electronics design and publishing house that publishes Elektor, Circuit Cellar, audioXpress, and more.

DesignSpark Magazine will replace RS Components’s popular eTech Magazine, which was first released as a digital edition in July 2010. According to a statement released by RS Components, “The new title is available as a fully digital publication in iPad, iPhone, Android tablet and page-turner formats. The publishing partnership with Elektor will produce not only a fresh-look magazine, but in addition will draw on Elektor’s long experience in the electronics publishing field to deliver the highest quality of technical content as a source of inspiration for design engineers worldwide.”

DesignSpark Magazine, which derives its name from designspark.com, the RS online community for electronics design engineers, will address three key topic areas:

  • Technologies – This will feature the best boards and board-level components for engineers and give readers a snapshot of the newest hot products in the market.
  • Software and tools – Keeping readers in touch with the latest resources to save time and money, this area will focus on free tools to support engineers.
  • Projects – Inspired by positive feedback on project-style articles in eTech, this expanded section in the new magazine will feature more design-tips articles contributed by Elektor, as well as make-and-build projects from the DesignSpark community. Readers will have access to the information located in this section to develop their own projects.

The new publication is designed to appeal to readers across the globe, with the concurrent launch of eight different language versions: English; Dutch; French; German; Italian; Japanese; Simplified Chinese and Spanish.

Mark Cundle, Head of Technical Marketing at RS, commented, “The RS online DesignSpark community has become a respected and well-used source of information and tools for electronics engineers over the past few years, so it is a natural progression to align the name of our proprietary online publication with the DesignSpark brand. The magazine is an integral part of our efforts to provide customers with a trusted, reliable source of technical information to help reduce design times and costs.”

Wisse Hettinga, International Director for Elektor International Media, said, “This exciting collaboration with RS Components will be good news for everyone who is an enthusiast and active in electronics design. It will mean more designs, more inspiration, more ‘how to’ and ‘where to get’ information to speed up the design process and create new, interesting electronic products.”

[Via Electrocomponents.com]

CircuitCellar.com is an Elektor International Media website.

CC266: Microcontroller-Based Data Management

Regardless of your area of embedded design or programming expertise, you have one thing in common with every electronics designer, programmer, and engineering student across the globe: almost everything you do relates to data. Each workday, you busy yourself with acquiring data, transmitting it, repackaging it, compressing it, securing it, sharing it, storing it, analyzing it, converting it, deleting it, decoding it, quantifying it, graphing it, and more. I could go on, but I won’t. The idea is clear: manipulating and controlling data in its many forms is essential to everything you do.

The ubiquitous importance of data is what makes Circuit Cellar’s Data Acquisition issue one of the most popular each year. And since you’re always seeking innovative ways to obtain, secure, and transmit data, we consider it our duty to deliver you a wide variety of content on these topics. The September 2012 issue (Circuit Cellar 266) features both data acquisition system designs and tips relating to control and data management.

On page 18, Brian Beard explains how he planned and built a microcontroller-based environmental data logger. The system can sense and record relative light intensity, barometric pressure, relative humidity, and more.

a: This is the environmental data logger’s (EDL) circuit board. b: This is the back of the EDL.

Data acquisition has been an important theme for engineering instructor Miguel Sánchez, who since 2005 has published six articles in Circuit Cellar about projects such as a digital video recorder (Circuit Cellar 174), “teleporting” serial communications via the ’Net (Circuit Cellar 193), and a creative DIY image-processing system (Circuit Cellar 263). An informative interview with Miguel begins on page 28.

Turn to page 38 for an informative article about how to build a compact acceleration data acquisition system. Mark Csele covers everything you need to know from basic physics to system design to acceleration testing.

This is the complete portable accelerometer design. with the serial download adapter. The adapter is installed only when downloading data to a PC and mates with an eight pin connector on the PCB. The rear of the unit features three powerful
rare-earth magnets that enable it to be attached to a vehicle.

In “Hardware-Accelerated Encryption,” Patrick Schaumont describes a hardware accelerator for data encryption (p. 48). He details the advanced encryption standard (AES) and encourages you to consider working with an FPGA.

This is the embedded processor design flow with FPGA. a: A C program is compiled for a softcore CPU, which is configured in an FPGA. b: To accelerate this C program, it is partitioned into a part for the software CPU, and a part that will be implemented as a hardware accelerator. The softcore CPU is configured together with the hardware accelerator in the FPGA.

Are you now ready to start a new data acquisition project? If so, read George Novacek’s article “Project Configuration Control” (p. 58), George Martin’s article “Software & Design File Organization” (p. 62), and Jeff Bachiochi’s article “Flowcharting Made Simple” (p. 66) before hitting your workbench. You’ll find their tips on project organization, planning, and implementation useful and immediately applicable.

Lastly, on behalf of the entire Circuit Cellar/Elektor team, I congratulate the winners of the DesignSpark chipKIT Challenge. Turn to page 32 to learn about Dean Boman’s First Prize-winning energy-monitoring system, as well as the other exceptional projects that placed at the top. The complete projects (abstracts, photos, schematic, and code) for all the winning entries are posted on the DesignSpark chipKIT Challenge website.

DesignSpark chipKIT Challenge 2012 Winners Named

The results for the DesignSpark chipKIT Challenge are now final. Dean Boman won First Prize for his chipKIT-based Energy Monitoring System, which provides users real-time home electrical usage data. A web server provides usage tracking on a circuit-by-circuit basis. It interfaces with a home automation system for long-term monitoring and data logging.

Dean Boman's Energy Monitoring System (Source: D. Boman)

Second prize went to Raul Alvarez for his Home Energy Gateway consumption monitor, which features an embedded gateway/web server that communicates with “smart” devices.

Raul Alvarezs Home Energy Gateway (Source: R. Alvarez)

Graig Pearen won Third Prize for his PV Array Tracker (Sun Seeker) project, which tracks, monitors, and adjusts PV arrays based on weather conditions.

Graig Pearen's PV Array Tracker (Source: G. Pearen)

Click HERE for a list of all the winners. You can review their project abstracts, documentation, schematics, diagrams, code, and more.

Participants in the competition were challenged develop innovative, energy-efficient designs with eco-friendly footprints. Entries were required to include an extension card developed using the DesignSpark PCB software tool and the Microchip Max32 chipKIT development board.

According to the documentation on the design challenge site:

The chipKIT™ Max32™ development platform is a 32-bit Arduino solution that enables hobbyists and academics to easily and inexpensively integrate electronics into their projects, even if they do not have an electronic-engineering background.

The platform consists of two PIC32-based development boards and open-source software that is compatible with the Arduino programming language and development environment. The chipKIT™ hardware is compatible with existing 3.3V Arduino shields and applications, and can be developed using a modified version of the Arduino IDE and existing Arduino resources, such as code examples, libraries, references and tutorials.

The chipKIT™ Basic I/O Shield (part # TDGL005) is compatible with the chipKIT™ Max32™ board, and offers users simple push buttons, switches, LEDs, I2C™ EEPROM, I2C temperature sensor, and a 128 x 32 pixel organic LED graphic display.

 

Click HERE for a list of all the winners. You can review their project abstracts, documentation, schematics, diagrams, code, and more.

Circuit Cellar/Elektor Inc. is the Contest Administrator.