Open-Source Hardware for the Efficient Economy

In the open-source hardware development and distribution model, designs are created collaboratively and published openly. This enables anyone to study, modify, improve, and produce the design—for one’s own use or for sale. Open-source hardware gives users full control over the products they use while unleashing innovation—compared to the limits of proprietary research and development.

This practice is transforming passive consumers of “black box” technologies into a new breed of user-producers. For consumers, open-source hardware translates into better products at a lower cost, while providing more relevant, directly applicable solutions compared to a one-size-fits-all approach. For producers, it means lower barriers to entry and a consequent democratization of production. The bottom line is a more efficient economy—one that bypasses the artificial scarcity created by exclusive rights—and instead focuses on better and faster development of appropriate technologies.

Open-source hardware is less than a decade old. It started as an informal practice in the early 2000s with fragmented cells of developers sharing instructions for producing physical objects in the spirit of open-source software. It has now become a movement with a recognized definition, specific licenses, an annual conference, and several organizations to support open practices. The expansion of open-source hardware is also visible in a proliferation of open-source plans for making just about anything, from 3-D printers, microcontrollers, and scientific equipment, to industrial machines, cars, tractors, and solar-power generators.

As the movement takes shape, the next major milestone is the development of standards for efficient development and quality documentation. The aim here is to deliver on the potential of open-source products to meet or exceed industry standards—at a much lower cost—while scaling the impact of collaborative development practices.

The Internet brought about the information revolution, but an accompanying revolution in open-source product development has yet to happen. The major blocks are the absence of uniform standards for design, documentation, and development process; accessible collaborative design platforms (CAD); and a unifying set of interface standards for module-based design—such that electronics, mechanical devices, controllers, power units, and many other types of modules could easily interface with one another.

Can unleashed collaboration catapult open-source hardware from its current multimillion dollar scale to the next trillion dollar economy?

One of the most promising scenarios for the future of open source hardware is a global supply chain made up of thousands of interlinked organizations in which collaboration and complementarity are the norm. In this scenario, producers at all levels—from hobbyists to commercial manufacturers—have access to transparent fabrication tools, and digital plans circulate freely, enabling them to build on each other quickly and efficiently.

The true game changers are the fabrication machines that transform designs into objects. While equipment such as laser cutters, CNC machine tools, and 3-D printers has been around for decades, the breakthrough comes from the drastically reduced cost and increased access to these tools. For example, online factories enable anyone to upload a design and receive the material object in the mail a few days later. A proliferation of open-source digital fabrication tools, hackerspaces, membership-based shops, fab labs, micro factories, and other collaborative production facilities are drastically increasing access and reducing the cost of production. It has become commonplace for a novice to gain ready access to state-of-art productive power.

On the design side, it’s now possible for 70 engineers to work in parallel with a collaborative CAD package to design the airplane wing for a Boeing 767 in 1 hour. This is a real-world proof of concept of taking development to warp speed—though achieved with proprietary tools and highly paid engineers. With a widely available, open-source collaborative CAD package and digital libraries of design for customization, it would be possible for even a novice to create advanced machines—and for a large group of novices to create advanced machines at warp speed. Complex devices, such as cars, can be modeled with an inviting set of Lego-like building blocks in a module-based CAD package. Thereafter, CNC equipment can be used to produce these designs from off-the-shelf parts and locally available materials. Efficient industrial production could soon be at anyone’s fingertips.

Sharing instructions for making things is not a novel idea. However, the formal establishment of an open-source approach to the development and production of critical technologies is a disruptive force. The potential lies in the emergence of many significant and scalable enterprises built on top of this model. If such entities collaborate openly, it becomes possible to unleash the efficiency of global development based on free information flows. This implies a shift from “business as usual” to an efficient economy in which environmental and social justice are part of the equation.

 

Catarina Mota is a New York City-based Portuguese maker and open-source advocate who cofounded the openMaterials (openMaterials.org) research project, which is focused on open-source and DIY experimentation with smart materials. She is both a PhD candidate at FCSHUNL and a visiting scholar at NYU, and she has taught workshops on topics such as hi-tech materials and simple circuitry. Catarina is a fellow of the National Science and Technology Foundation of Portugal, co-chair of the Open Hardware Summit, a TEDGlobal 2012 fellow, and member of NYC Resistor.

Marcin Jakubowski graduated from Princeton and earned a PhD Fusion Physics from the University of Wisconsin. In 2003 Marcin founded the Open Source Ecology (OpenSourceEcology.org) network of engineers, farmers, and supporters. The group is working on the Global Village Construction Set (GVCS), which is an open-source, DIY toolset of 50 different industrial machines intended for the construction of a modern civilization (http://vimeo.com/16106427).

This essay appears in Circuit Cellar 271, February 2013.

Open-Source Hardware for the Efficient Economy

In the open-source hardware development and distribution model, designs are created collaboratively and published openly. This enables anyone to study, modify, improve, and produce the design—for one’s own use or for sale. Open-source hardware gives users full control over the products they use while unleashing innovation—compared to the limits of proprietary research and development.

This practice is transforming passive consumers of “black box” technologies into a new breed of user-producers. For consumers, open-source hardware translates into better products at a lower cost, while providing more relevant, directly applicable solutions compared to a one-size-fits-all approach. For producers, it means lower barriers to entry and a consequent democratization of production. The bottom line is a more efficient economy—one that bypasses the artificial scarcity created by exclusive rights—and instead focuses on better and faster development of appropriate technologies.

Open-source hardware is less than a decade old. It started as an informal practice in the early 2000s with fragmented cells of developers sharing instructions for producing physical objects in the spirit of open-source software. It has now become a movement with a recognized definition, specific licenses, an annual conference, and several organizations to support open practices. The expansion of open-source hardware is also visible in a proliferation of open-source plans for making just about anything, from 3-D printers, microcontrollers, and scientific equipment, to industrial machines, cars, tractors, and solar-power generators.

As the movement takes shape, the next major milestone is the development of standards for efficient development and quality documentation. The aim here is to deliver on the potential of open-source products to meet or exceed industry standards—at a much lower cost—while scaling the impact of collaborative development practices.

The Internet brought about the information revolution, but an accompanying revolution in open-source product development has yet to happen. The major blocks are the absence of uniform standards for design, documentation, and development process; accessible collaborative design platforms (CAD); and a unifying set of interface standards for module-based design—such that electronics, mechanical devices, controllers, power units, and many other types of modules could easily interface with one another.

Can unleashed collaboration catapult open-source hardware from its current multimillion dollar scale to the next trillion dollar economy?

One of the most promising scenarios for the future of open source hardware is a glocal supply chain made up of thousands of interlinked organizations in which collaboration and complementarity are the norm. In this scenario, producers at all levels—from hobbyists to commercial manufacturers—have access to transparent fabrication tools, and digital plans circulate freely, enabling them to build on each other quickly and efficiently.

The true game changers are the fabrication machines that transform designs into objects. While equipment such as laser cutters, CNC machine tools, and 3-D printers has been around for decades, the breakthrough comes from the drastically reduced cost and increased access to these tools. For example, online factories enable anyone to upload a design and receive the material object in the mail a few days later. A proliferation of open-source digital fabrication tools, hackerspaces, membership-based shops, fab labs, micro factories, and other collaborative production facilities are drastically increasing access and reducing the cost of production. It has become commonplace for a novice to gain ready access to state-of-art productive power.

On the design side, it’s now possible for 70 engineers to work in parallel with a collaborative CAD package to design the airplane wing for a Boeing 767 in 1 hour. This is a real-world proof of concept of taking development to warp speed—though achieved with proprietary tools and highly paid engineers. With a widely available, open-source collaborative CAD package and digital libraries of design for customization, it would be possible for even a novice to create advanced machines—and for a large group of novices to create advanced machines at warp speed. Complex devices, such as cars, can be modeled with an inviting set of Lego-like building blocks in a module-based CAD package. Thereafter, CNC equipment can be used to produce these designs from off-the-shelf parts and locally available materials. Efficient industrial production could soon be at anyone’s fingertips.

Sharing instructions for making things is not a novel idea. However, the formal establishment of an open-source approach to the development and production of critical technologies is a disruptive force. The potential lies in the emergence of many significant and scalable enterprises built on top of this model. If such entities collaborate openly, it becomes possible to unleash the efficiency of global development based on free information flows. This implies a shift from “business as usual” to an efficient economy in which environmental and social justice are part of the equation.

 

Catarina Mota is a New York City-based Portuguese maker and open-source advocate who cofounded the openMaterials (openMaterials.org) research project, which is focused on open-source and DIY experimentation with smart materials. She is both a PhD candidate at FCSHUNL and a visiting scholar at NYU, and she has taught workshops on topics such as hi-tech materials and simple circuitry. Catarina is a fellow of the National Science and Technology Foundation of Portugal, co-chair of the Open Hardware Summit, a TEDGlobal 2012 fellow, and member of NYC Resistor.

Marcin Jakubowski graduated from Princeton and earned a PhD Fusion Physics from the University of Wisconsin. In 2003 Marcin founded the Open Source Ecology (OpenSourceEcology.org) network of engineers, farmers, and supporters. The group is working on the Global Village Construction Set (GVCS), which is an open-source, DIY toolset of 50 different industrial machines intended for the construction of a modern civilization (http://vimeo.com/16106427).

This essay appears in Circuit Cellar 271, February 2013.

Microcontroller-Based Markov Music Box

Check out the spectrogram for two FM notes produced by FM modulation. Red indicates higher energy at a given time and frequency.

Cornell University senior lecturer Bruce Land had two reasons for developing an Atmel AVR micrcontroller-based music box. One, he wanted to present synthesis/sequencing algorithms to his students. And two, he wanted the challenge of creating an interactive music box. Interactive audio is becoming an increasingly popular topic among engineers and designers, as we recently reported.

Land writes:

Traditional music boxes play one or two tunes very well, but are not very interactive. Put differently, they have a high quality of synthesis, but a fixed-pattern note sequencer and fixed tonal quality. I wanted to build a device which would play an interesting music-like note sequence, which constantly changed and evolved, with settable timbre, tempo, and beat… To synthesize nice sounding musical notes you need to control spectral content of the note, the rise time (attack), fall time (decay), and the change in spectral content during attack and decay.  Also it is nice to have at least two independent musical voices. And all of this has to be done using the modest arithmetic capability of an 8-bit microcontroller.

Land’s students subsequently used the music box for other projects, such as an auto-composing piano, as shown in the following video.

In early 2013 Circuit Cellar will run Land’s in-depth article on the Markov music box project. Stay tuned for more information.

Prevent Embedded Design Errors (CC 25th Anniversary Preview)

Attention, electrical engineers and programmers! Our upcoming 25th Anniversary Issue (available in early 2013) isn’t solely a look back at the history of this publication. Sure, we cover a bit of history. But the issue also features design tips, projects, interviews, and essays on topics ranging from user interface (UI) tips for designers to the future of small RAM devices, FPGAs, and 8-bit chips.

Circuit Cellar’s 25th Anniversary issue … coming in early 2013

Circuit Cellar columnist Robert Lacoste is one of the engineers whose essay will focus on present-day design tips. He explains that electrical engineering projects such as mixed-signal designs can be tedious, tricky, and exhausting. In his essay, Lacoste details 25 errors that once made will surely complicate (at best) or ruin (at worst) an embedded design project. Below are some examples and tips.

Thinking about bringing an electronics design to market? Lacoste highlights a common error many designers make.

Error 3: Not Anticipating Regulatory Constraints

Another common error is forgetting to plan for regulatory requirements from day one. Unless you’re working on a prototype that won’t ever leave your lab, there is a high probability that you will need to comply with some regulations. FCC and CE are the most common, but you’ll also find local regulations as well as product-class requirements for a broad range of products, from toys to safety devices to motor-based machines. (Refer to my article, “CE Marking in a Nutshell,” in Circuit Cellar 257 for more information.)

Let’s say you design a wireless gizmo with the U.S. market and later find that your customers want to use it in Europe. This means you lose years of work, as well as profits, because you overlooked your customers’ needs and the regulations in place in different locals.

When designing a wireless gizmo that will be used outside the U.S., having adequate information from the start will help you make good decisions. An example would be selecting a worldwide-enabled band like the ubiquitous 2.4 GHz. Similarly, don’t forget that EMC/ESD regulations require that nearly all inputs and outputs should be protected against surge transients. If you forget this, your beautiful, expensive prototype may not survive its first day at the test lab.

Watch out for errors

Here’s another common error that could derail a project. Lacoste writes:

Error 10: You Order Only One Set of Parts Before PCB Design

I love this one because I’ve done it plenty of times even though I knew the risk.

Let’s say you design your schematic, route your PCB, manufacture or order the PCB, and then order the parts to populate it. But soon thereafter you discover one of the following situations: You find that some of the required parts aren’t available. (Perhaps no distributor has them. Or maybe they’re available but you must make a minimum order of 10,000 parts and wait six months.) You learn the parts are tagged as obsolete by its manufacturer, which may not be known in advance especially if you are a small customer.

If you are serious about efficiency, you won’t have this problem because you’ll order the required parts for your prototypes in advance. But even then you might have the same issue when you need to order components for the first production batch. This one is tricky to solve, but only two solutions work. Either use only very common parts that are widely available from several sources or early on buy enough parts for a couple of years of production. Unfortunately, the latter is the only reasonable option for certain components like LCDs.

Ok, how about one more? You’ll have to check out the Anniversary Issue for the list of the other 22 errors and tips. Lacoste writes:

Error 12: You Forget About Crosstalk Between Digital and Analog Signals

Full analog designs are rare, so you have probably some noisy digital signals around your sensor input or other low-noise analog lines. Of course, you know that you must separate them as much as possible, but you can be sure that you will forget it more than once.

Let’s consider a real-world example. Some years ago, my company designed a high-tech Hi-Fi audio device. It included an on-board I2C bus linking a remote user interface. Do you know what happened? Of course, we got some audible glitches on the loudspeaker every time there was an I2C transfer. We redesigned the PCB—moving tracks and adding plenty of grounded copper pour and vias between sensitive lines and the problem was resolved. Of course we lost some weeks in between. We knew the risk, but underestimated it because nothing is as sensitive as a pair of ears. Check twice and always put guard-grounded planes between sensitive tracks and noisy ones.

Circuit Cellar’s Circuit Cellar 25th Anniversary Issue will be available in early 2013. Stay tuned for more updates on the issue’s content.

 

 

 

 

DIY 10.1˝ Touchscreen Home Control System

Domotics (home automation) control systems are among the most innovative and rewarding design projects creative electrical engineers can undertake. Let’s take a look at an innovative Beagle Board-based control system that enables a user to control lights with a 10.1˝ capacitive touchscreen.

Domotics control system

The design features the following modules:

• An I/O board for testing purposes
• An LED strip board for controlling an RGB LED strip
• A relay board for switching 230-VAC devices
• An energy meter for measuring on/off (and also for logging)

ELektor editor and engineer Clemens Valens recently interviewed Koen van Dongen about the design. Van Dongen describes the system’s electronics and then demonstrates how to use the touchscreen to control a light and LED strip.

As Valens explains suggests, it would be a worthwhile endeavor to incorporate a Wi-Fi connection to enable cellphone and tablet control. If you build such system, be sure to share it with our staff. Good luck!

CircuitCellar.com is an Elektor International Media website.