Three Workspaces, Countless Projects

Clive “Max” Maxfield, who received his BSc in Control Engineering from Sheffield Hallam University in England in 1980, began his career designing CPUs for mainframe computers. But he has branched out far beyond that, becoming a prolific writer of engineering books, an EE Times editor, a blogger, and a designer of “interesting stuff,” from silicon chips to Steampunk “Display-O-Meters,” according to his website.

Max, who now lives in Huntsville, AL, recently shared with Circuit Cellar photos and descriptions of some of his ongoing projects and creative workspaces:

I would say that I have three personal workspaces. But before we talk about my workspaces, it might be appropriate to first mention two of my several projects, which vary from artistic to technological.

This is the future home of the Prognostication Engine.

This is the future home of the Prognostication Engine.

One of my projects that is currently in full swing is my Pedagogical and Phantasmagorical Inamorata Prognostication Engine. What do you mean “What’s that when it’s at home?” Isn’t it obvious?

Pedagogical = Educational
Phantasmagorical = It’s pretty darned fantastic
Inamorata = The woman with whom one is in love
Prognostication = Predicting the future
Engine = Machine

The Prognostication Engine is intended to help me predict my wife’s mood. Will the radiance of her smile fall upon me when I return home from work in the evening?

My Prognostication Engine is going to be housed in a beautiful wooden radio cabinet circa 1929. This is going to feature two brass control panels, both of which are going to be festooned with antique knobs and buttons and switches and analog meters (the ones with the black Bakelite bezels). I’m aiming at a Steampunk “look-and-feel” that would not look out of place in a Victorian setting.

One of the tricks I use when working on this type of project is to first create to-scale Visio drawings of all of the knobs, switches, meter, and so forth, and then I create a full-sized card-and-paper mockup as shown below. This makes it much easier to move things around and experiment with different placements so as to decide on the final layout.

The paper and card mockup of the Prognostication Engine's upper and low control panels

The paper and card mockup of the Prognostication Engine’s upper and low control panels

Observe the two small pink dots at the top and bottom of each of the vertically-oriented switches and on either side of the horizontally oriented switches and buttons; also the 16 pink dots around each of the five potentiometers. These are going to be faux mother-of-pearl dots, behind which will be tri-colored LEDs implemented using Adafruit’s individual Flora NeoPixels and NeoPixel Rings, respectively.

Everything is going to be controlled using an Arduino Mega microcontroller development board. Speaking of control, the potentiometers are going to be motorized, so that if an unauthorized operator tries to modify any of the settings, the other potentiometers will automatically change to compensate (later they will all surreptitiously return to their original settings).

Now observe the three black momentary push-buttons located on the lower panel, just under the modestly sized red button (do not press the red button). These equate to gifts of chocolates and flowers and hugs. Judicious use of these buttons increases the chances of happy times; overusing them, however, may trigger the “suspicion of wrongdoing” algorithm. In reality, there’s far too much “stuff” to go into here. Suffice it to say that the large meter in the top right-hand corner of the upper panel will reflect the full range of female emotion, from “Extremely Disgruntled” to “Fully Gruntled” (LOL).

Max has another project, dubbed “BADASS Display,” which was inspired by an item he saw in an electronics boutique-type store—a “really cool 9″ tall, cylindrical Bluetooth loudspeaker, whose outer surface was covered with tri-colored LEDs implementing a sort of spectrum analyzer display.”

While Max wasn’t interested in the $199.95 price, the “seed had been sown,” he says.

Thus was conceived my Bodacious Acoustic Diagnostic Astoundingly Superior Spectromatic (BADASS) display. First of all, I took a look around YouTube to get some ideas. It turns out that there are many different ways to present spectrographic data. For example, check out Gavin Curtis’ “My Big Blue 32 Band Audio Spectrum Analyzer Lady Gaga,”  RGB Styles’s “Coffee Table,” and Techmoan’s “Giant LED Graphic Music Display (DJ Spectrum Analyzer).”

I decided that the first incarnation of my display would boast a 16 x 16 array of tri-colored LEDs. I decided to use Adafruit’s NeoPixel Strips. Once again, I started by creating a cardboard and paper mockup as shown below.

Cardboard and paper mockup of the BADASS Display

Cardboard and paper mockup of the BADASS Display

The NeoPixel strips I’m using have 30 pixels per meter. I’m mounting these vertically, which means the vertical separation between adjacent pixels is 33.33 mm. To provide some visual interest, I decided to make the horizontal spacing between columns 50 mm, which is 1.5 times the vertical spacing.

In the real version, the cardboard will be replaced by plywood stained to look like expensive old wood. Meanwhile, the main display panel and the smaller control panel will be formed from hardboard painted to look like antique brass. In front of each pixel will be a 1″-diameter brass bezel accompanied by a 1/2″-diameter clear Fresnel lens in the center. The hardboard panels are going to be attached to the plywood panel using brass acorn nuts. Once again, the finished unit is intended to have a Steampunk look and feel.

I’m planning on using an Arduino Mega microcontroller development board to drive the display itself. This will be accompanied by a chipKIT Max32 microcontroller board that will be used to process the stereo audio stream and extract the spectrum data.

Max’s three project work areas include his office, his kitchen table, and his garage:

I would say that my first personal workspace is the Pleasure Dome (my office). Why do I think of this as a personal workspace? Theoretically I work out of a home office. In reality, however, I prefer to rent a room in a building belonging to an engineering company called MaxVision (no relation).

When you cross the office threshold, you enter a small corner of “Max’s World” (where the colors are brighter, the butterflies are bigger, the birds sing sweeter, and the beer is plentiful and cold). One of the walls is lined with wooden bookshelves containing an eclectic mix of science books, technical books, comics, and science fiction and fantasy books and graphic novels.

Welcome to the Pleasure Dome (Max's office)

Welcome to the Pleasure Dome (Max’s office)

My office is also the repository for all of the antique knobs and switches and analog meters and large vacuum tubes and such that I collect on my travels for use in my projects. Also, I can store (and present) larger objects in the bay outside my office.

My second personal workspace is the kitchen table in the breakfast nook at our home. This is where I tend to implement the electronics portions of my projects. At the far end of the table in the image below we see the jig I constructed to hold the two brass control panels for my Inamorata Prognostication Engine project. On the floor in the right-hand side of the image is the tool box that contains my electronics tools including screwdrivers, snip, and suchlike. It also contains my test equipment in the form of a cheap-and-cheerful multimeter from Amazon, along with an iPad-based oscilloscope and an iPad-based logic analyzer, both from Oscium.

Max's kitchen table

Max’s kitchen table

Observe the plastic storage box on the nearside of the table. I have a separate storage box for each of my projects. Anything associated with a project that’s currently under construction is stored in that project’s box, including any notes I’ve made, any electronic components and their datasheets, and any mechanical parts such as nuts and bolts.

I tend to gather everything associated with a particular function or sub-unit together into smaller boxes or plastic Ziploc bags. In the case of my motorized potentiometers, for example, I have the potentiometers along with the appropriate nuts, washers, antique knobs and suchlike all gathered together. I cannot tell you how much time and frustration a bit of organization like this saves you in the long run. It also make it much easier to pack everything up when my wife, Gina, informs me that she needs the table cleared.

Below we see another view of the test jig I constructed to hold the two brass panels for the Prognostication Engine. Creating this jig only took an hour or so, but it makes life so much easier with regard to assembling the electronics and accessing everything while I’m in the prototyping and software experimentation phase of the project.

The test jig for the Prognostication Engine on the kitchen table

The test jig for the Prognostication Engine on the kitchen table

Max’s third personal workspace is his garage. When his family’s three vehicles are parked inside, his projects are packed away in a corner, including tools and tiles for a mosaic he is creating that will feature ceramic tiles fired in his recently purchased kiln.

Everything tucked away

Everything tucked away

The shelves covered in plastic sheet to the right are where I place my freshly-rolled clay tiles to gradually dry without cracking. The low-down rolling cabinet in the foreground contains all of my handheld ceramic equipment (shapers and scrapers and rolling pins whatnot) along with general protective gear like face masks and safety goggles. Each of the plastic boxes on top of this cabinet is associated with a currently in-progress project. Behind this cabinet is a red rolling tool cabinet, which contains any smaller power tools, clamps, screwdrivers, wrenches and spanners, and also my soldering station and magnifying lens with helping hands and suchlike. To the right of that tool cabinet is a door (not visible in this picture) to a built-in closet, where I keep my larger power tools such as a diamond saw, desktop grinder, router, and so forth.

On the weekends, Max’s garage space opens up as his stepson drives out in his truck and Max’s wife leaves for her real estate agent’s job. “As soon as she has left, I leap into action,” Max says. “I roll out my tool boxes, set up a folding table and chair, and start work on whatever it is I’m currently working on.”

Another little corner of Max's garage work area

Another little corner of Max’s garage work area

As he works on projects in his garage, Max says he is “happily listening to stuff like Led Zeppelin, Genesis, Pink Floyd, Yes, Supertramp, Gentle Giant, The Moody Blues…”

The image below shows a close-up of the current state-of-play with regard to my BADASS Display. A week ago, I routed out the areas in the big plywood panel that will accommodate the hardboard display and control panels. In this image, I’m poised to mark out the hardboard panels and start drilling the mounting holes along with the 256 holes for the tri-state LEDs.

The BADASS Display

The BADASS Display

What can I say? Working on my hobby projects is a great way to wind down after a hard day at work, and being in any of my three personal workspaces makes me happy.

Max poised to give a presentation at the EELive! Conference in San Jose, CA, earlier this year

Max poised to give a presentation at the EELive! Conference in San Jose, CA, earlier this year

Editor’s Note: To find out more about Clive “Max” Maxfield, read his 2013 interview in Circuit Cellar. You can follow Max on Twitter @MaxMaxfield.

Q&A: Robotics Mentor and Champion

Peter Matteson, a Senior Project Engineer at Pratt & Whitney in East Hartford, CT, has a passion for robotics. We recently discussed how he became involved with mentoring a high school robotics team, the types of robots the team designs, and the team’s success.—Nan Price, Associate Editor

 

NAN: You mentor a FIRST (For Inspiration and Recognition of Science and Technology) robotics team for a local high school. How did you become involved?

Peter Matteson

Peter Matteson

PETER: I became involved in FIRST in late 2002 when one of my fraternity brothers who I worked with at the time mentioned that FIRST was looking for new mentors to help the team the company sponsored. I was working at what was then known as UTC Power (sold off to ClearEdge Power Systems last year) and the company had sponsored Team 177 Bobcat Robotics since 1995.

After my first year mentoring the kids and experiencing the competition, I got hooked. I loved the competition and strategy of solving a new game each year and designing and building a robot. I enjoyed working with the kids, teaching them how to design and build mechanisms and strategize the games.

The FIRST team’s 2010 robot is shown.

The FIRST team’s 2010 robot is shown.

A robot’s articulating drive train is tested  on an obstacle (bump) at the 2010 competition.

A robot’s articulating drive train is tested on an obstacle (bump) at the 2010 competition.

NAN: What types of robots has your team built?

A temporary control board was used to test the drive base at the 2010 competition.

A temporary control board was used to test the drive base at the 2010 competition.

PETER: Every robot we make is purposely built for a specific game the year we build it. The robots have varied from arm robots with a 15’ reach to catapults that launch a 40” diameter ball, to Frisbee throwers, to Nerf ball shooters.

They have varied in drive train from 4 × 4 to 6 × 6 to articulating 8 × 8. Their speeds have varied from 6 to 16 fps.

NAN: What types of products do you use to build the robots? Do you have any favorites?

PETER: We use a variant of the Texas Instruments (TI) cRIO electronics kit for the controller, as is required per the FIRST competition rules. The motors and motor controllers we use are also mandated to a few choices. We prefer VEX Robotics VEXPro Victors, but we also design with the TI Jaguar motor controllers. For the last few years, we used a SparkFun CMUcam webcam for the vision system. We build with Grayhill encoders, various inexpensive limit switches, and gyro chips.

The team designed a prototype minibot.

The team designed a prototype minibot.

For pneumatics we utilize compressors from Thomas and VIAIR. Our cylinders are primarily from Bimba, but we also use Parker and SMC. For valves we use SMC and Festo. We usually design with clipart plastic or stainless accumulator tanks. Our gears and transmissions come from AndyMark, VEX Robotics’s VEXPro, and BaneBots.

The AndyMark shifter transmissions were a mainstay of ours until last year when we tried the VEXPro transmissions for the first time. Over the years, we have utilized many of the planetary transmissions from AndyMark, VEX Robotics, and BaneBots. We have had good experience with all the manufacturers. BaneBots had a shaky start, but it has vastly improved its products.

We have many other odds and ends we’ve discovered over the years for specific needs of the games. Those are a little harder to describe because they tend to be very specific, but urethane belting is useful in many ways.

NAN: Has your team won any competitions?

Peter’s FIRST team is pictured at the 2009 championship at the Georgia Dome in Atlanta, GA. (Peter is standing fourth from the right.)

Peter’s FIRST team is pictured at the 2009 championship at the Georgia Dome in Atlanta, GA. (Peter is standing fourth from the right.)

PETER: My team is considered one of the most successful in FIRST. We have won four regional-level competitions. We have always shined at the competition’s championship level when the 400 teams from the nine-plus countries that qualify vie for the championship.

In my years on the team, we have won the championship twice (2007 and 2010), been the championship finalist once (2011), won our division, made the final four a total of six times (2006–2011), and were division finalists in 2004.

A FIRST team member works on a robot “in the pits” at the 2011 Hartford, CT, regional competition.

A FIRST team member works on a robot “in the pits” at the 2011 Hartford, CT, regional competition.

Team 177 was the only team to make the final four more than three years in a row, setting the bar at six consecutive trips. It was also the only team to make seven trips to the final four, including in 2001.

NAN: What is your current occupation?

PETER: I am a Senior Project Engineer at Pratt & Whitney. I oversee and direct a team of engineers designing components for commercial aircraft propulsion systems.

NAN: How and when did you become interested in robotics?

PETER: I have been interested in robotics for as long as I can remember. The tipping point was probably when I took an industrial robotics course in college. That was when I really developed a curiosity about what I could do with robots.

The industrial robots course started with basic programming robots for tasks. We had a welding robot we taught the weld path and it determined on its own how to get between points.

We also worked with programming a robot to install light bulbs and then determine if the bulbs were working properly.

In addition to practical labs such as those, we also had to design the optimal robot for painting a car and figure out how to program it. We basically had to come up with a proposal for how to design and build the robot from scratch.

This robot from the 2008 competition holds a 40” diameter ball for size reference.

This robot from the 2008 competition holds a 40” diameter ball for size reference.

NAN: What advice do you have for engineers or students who are designing robots or robotic systems?

PETER: My advice is to clearly set your requirements at the beginning of the project and then do some research into how other people have accomplished them. Use that inspiration as a stepping-off point. From there, you need to build a prototype. I like to use wood, cardboard, and other materials to build prototypes. After this you can iterate to improve your design until it performs exactly as expected.

A Quiet Place for Soldering and Software Design

Senior software engineer Carlo Tauraso, of Trieste, Italy, has designed his home workspace to be “a distraction-free area where tools, manuals, and computer are at your fingertips.”

Tauraso, who wrote his first Assembler code in the 1980s for the Sinclair Research ZX Spectrum PC, now works on developing firmware for network devices and microinterfaces for a variety of European companies. Several of his articles and programming courses have been published in Italy, France, Spain, and the US. Three of his articles have appeared in Circuit Cellar since 2008.

Photo 1: This workstation is neatly divided into a soldering/assembling area on the left and developing/programming area on the right.

Photo 1: This workstation is neatly divided into a soldering/assembling area on the left and a developing/programming area on the right.

Tauraso keeps an orderly and, most importantly, quiet work area that helps him stay focused on his designs.

This is my “magic” designer workspace. It’s not simple to make an environment that’s perfectly suited to you. When I work and study I need silence.

I am a software engineer, so during designing I always divide the work into two main parts: the analysis and the implementation. I decided, therefore, to separate my workspace into two areas: the developing/programming area on the right and the soldering/assembling area on the left (see Photo 1). When I do one or the other activity, I move physically in one of the two areas of the table. Assembling and soldering are manual activities that relax me. On the other hand, programming often is a rather complex activity that requires a lot more concentration.

Photo 2: The marble slab at the right of Tauraso’s assembling/soldering area protects the table surface and the optical inspection camera nearby helps him work with tiny ICs.

Photo 2: The marble slab at the right of Tauraso’s assembling/soldering area protects the table surface. The optical inspection camera nearby helps him work with tiny ICs.

The assembling/soldering area is carefully set up to keep all of Tauraso’s tools within easy reach.

I fixed a marble slab square on the table to solder without fear of ruining the wood surface (see Photo 2). As you can see, I use a hot-air solder station and the usual iron welder. Today’s ICs are very small, so I also installed a camera for optical inspection (the black cylinder with the blue stripe). On the right, there are 12 outlets, each with its own switch. Everything is ready and at your fingertips!

Photo 3: This developing and programming space, with its three small computers, is called “the little Hydra.”

Photo 3: This developing and programming space, with its three small computers, is called “the little Hydra.”

The workspace’s developing and programming area makes it easy to multitask (see Photo 3).

In the foreground you can see a network of three small computers that I call “the little Hydra” in honor of the object-based OS developed at Carnegie Mellon University in Pittsburgh, PA, during the ’70s. The HYDRA project sought to demonstrate the cost-performance advantages of multiprocessors based on an inexpensive minicomputer. I used the same philosophy, so I have connected three Mini-ITX motherboards. Here I can test network programming with real hardware—one as a server, one as a client, one as a network sniffer or an attacker—while, on the other hand, I can front-end develop Windows and the [Microchip Technology] PIC firmware while chatting with my girlfriend.

This senior software designer has created a quiet work area with all his tools close at hand.

Senior software engineer Tauraso has created a quiet work area with all his tools close at hand.

Circuit Cellar will be publishing Tauraso’s article about a wireless thermal monitoring system based on the ANT+ protocol in an upcoming issue. In the meantime, you can follow Tauraso on Twitter @CarloTauraso.

System Safety Assessment

System safety assessment provides a standard, generic method to identify, classify, and mitigate hazards. It is an extension of failure mode effects and criticality analysis and fault-tree analysis that is necessary for embedded controller specification.

System safety assessment was originally called ”system hazard analysis.” The name change was probably due to the system safety assessment’s positive-sounding connotation.

George Novacek (gnovacek@nexicom.net) is a professional engineer with a degree in Cybernetics and Closed-Loop Control. Now retired, he was most recently president of a multinational manufacturer of embedded control systems for aerospace applications. George wrote 26 feature articles for Circuit Cellar between 1999 and 2004.

Columnist George Novacek (gnovacek@nexicom.net), who wrote this article published in Circuit Cellar’s January 2014 issue, is a professional engineer with a degree in Cybernetics and Closed-Loop Control. Now retired, he was most recently president of a multinational manufacturer of embedded control systems for aerospace applications. George wrote 26 feature articles for Circuit Cellar between 1999 and 2004.

I participated in design reviews where failure effect classification (e.g., hazardous, catastrophic, etc.) had to be expunged from our engineering presentations and replaced with something more positive (e.g., “issues“ instead of “problems”), lest we wanted to risk the wrath of buyers and program managers.

System safety assessment is in many ways similar to a failure mode effects and criticality analysis (FMECA) and fault-tree analysis (FTA), which I described in “Failure Mode and Criticality Analysis” (Circuit Cellar 270, 2013). However, with safety assessment, all possible system faults—including human error, electrical and mechanical subsystems’ faults, materials, and even manuals—should be analyzed. The impact of their faults and errors on the system safety must also be considered. The system hazard analysis then becomes a basis for subsystems’ specifications.

Fault Identification

Performing FMECA and FTA on your subsystem ensures all its potential faults become detected and identified. The faults’ signatures can be stored in a nonvolatile memory or communicated to a display console, but you cannot choose how the controller should respond to any one of those faults. You need the system hazard analysis to tell you what corrective action to take. The subsystem may have to revert to manual control, switch to another control channel, or enter a degraded performance mode. If you are not the system designer, you have little or no visibility of the faults’ potential impact on the system safety.
For example, an automobile consists of many subsystems (e.g., propulsion, steering, braking, entertainment, etc.). The propulsion subsystem comprises engine, transmission, fuel delivery, and possibly other subsystems. A part of the engine subsystem may include a full-authority digital engine controller (FADEC).

Do you have an electrical engineering tip you’d like to share? Send it to us here and we may publish it as part of our ongoing EE Tips series.

Engine controllers were originally mainly mechanical devices, but with the arrival of the microprocessor, they have become highly sophisticated electronic controllers. Currently, most engines—including aircraft, marine, automotive, or utility (e.g., portable electrical generator turbines)—are controlled by some sort of a FADEC to achieve best performance and safety. A FADEC monitors the engine performance and controls the fuel flow via servomotor valves or stepper motors in response to the commanded thrust plus numerous operating conditions (e.g., atmospheric and internal pressures, external and internal engine temperatures in several locations, speed, load, etc.).

The safety assessment mostly depends on where and how essentially identical systems are being used. A car’s engine failure, for example, may be nothing more than a nuisance with little safety impact, while an aircraft engine failure could be catastrophic. Conversely, an aircraft nosewheel steer-by-wire can be automatically disconnected upon a fault. And, with a little increase of the pilots’ workload, it may be substituted by differential braking or thrust to control the plane on the ground. A similar failure of an automotive steer-by-wire system could be catastrophic for a car barreling down the freeway at 70 mph.

Analysis

System safety analysis comprises the following steps: identify and classify potential hazards and associated avoidance requirements, translate safety requirements into engineering requirements, design assessment and trade-off support to the ongoing design, assess the design’s relative compliance to requirements and document findings, direct and monitor specialized safety testing, and monitor and review test and field issues for safety trends.

The first step in hazard analysis is to identify and classify all the potential system failures. FMECA and FTA provide the necessary data. Table 1 shows an example and explains how the failure class is determined.

TABLE 1
This table shows the identification and severity classification of all potential system-level failures.
Eliminated Negligible Marginal Critical Catastrophic
No safety impact. Does not significantly reduce system safety. Required actions are within the operator’s capabilities. Reduces the capability of the system or operators to cope with adverse operating conditions. Can cause major illness, injury, or property damage. Significantly reduces the capability of the system or the operator’s ability to cope with adverse conditions to the extent of causing serious or fatal injury to several people. Total loss of system control resulting in equipment loss and/or multiple fatalities.

The next step determines each system-level failure’s frequency occurrence (see Table 2). This data comes from the failure rates calculated in the course of the reliability prediction, which I covered in my two-part article “Product Reliability” (Circuit Cellar 268–269, 2012) and in “Quality and Reliability in Design” (Circuit Cellar 272, 2013).

TABLE 2
Use this information to determine the likelihood of each individual system-level failure.
Frequent Probability of occurrence per operation is equal or greater than 1 × 10–3
Probable Probability of occurrence per operation is less than 1 × 10–3 or greater than 1 × 10–5
Occasional Probability of occurrence per operation is less than 1 × 10–5 or greater than 1 × 10–7
Remote Probability of occurrence per operation is less than 1 × 10–7 or greater than 1 × 10–9
Improbable Probability of occurrence per operation is less than 1 × 10–9

Based on the two tables, the predictive risk assessment matrix for every hazardous situation is created (see Table 3). The matrix is a composite of severity and likelihood and can be subsequently classified as low, medium, serious, or high. It is the system designer’s responsibility to evaluate the potential risk—usually with regard to some regulatory requirements—to specify the maximum hazard levels acceptable for every subsystem. The subsystems’ developers must comply with and satisfy their respective specifications. Electronic controllers in safety-critical applications must present low risk due to their subsystem fault.

TABLE 3
The risk assessment matrix is based on information from Table 1 and Table 2.
Probability / Severity Catastrophic (1) Critical (2) Marginal (3) Negligible (4)
Frequent (A) High High Serious Medium
Probable (B) High High Serious Medium
Occasional (C) High Serious Medium Low
Remote (D) Serious Medium Medium Low
Improbable (E) Medium Medium Medium Low
Eliminated (F) Eliminated

The system safety assessment includes both software and hardware. For aircraft systems, the required risk level determines the development and quality assurance processes as anchored in DO-178 Software Considerations in Airborne Systems and Equipment Certification and DO-254 Design Assurance Guidance for Airborne Electronic Hardware.

Some non-aerospace industries also use these two standards; others may have their own. Figure 1 shows a typical system development process to achieve system safety.
The common automobile power steering is, by design, inherently low risk, as it continues to steer even if the hydraulics fail. Similarly, some aircraft controls continue to be the old-fashioned cables but, like the car steering, with power augmentation. If the power fails, you just need more muscle. This is not the case with the more prevalent drive- or fly-by-wire systems.

FIGURE 1: The actions in this system-development process help ensure system safety.

FIGURE 1: The actions in this system-development process help ensure system safety.

Redundancy

How can the risk be mitigated to at least 109 probability for catastrophic events? The answer is redundancy. A well-designed electronic control channel can achieve about 105 probability of a single fault. That’s it. However, the FTA shows that by ANDing two such processing channels, the resulting failure probability will decrease to 1010, thus mitigating the risk to an acceptable level. An event with 109 probability of occurring is, for many systems, acceptable as just about “never happening,” but there are requirements for 1014 or even lower probability. Increasing redundancy will enable you to satisfy the specification.
Once I saw a controller comprising three independent redundant computers, with each computer also being triple redundant. Increasing safety by redundancy is why there are at least two engines on every commercial passenger carrying aircraft, two pilots, two independent hydraulic systems, two or more redundant controllers, power supplies, and so forth.

Human Engineering

Human engineering, to use military terminology, is not the least important for safety and sometimes not given sufficient attention. MIL-STD-1472F, the US Department of Defense’s Design Criteria Standard: Human Engineering, spells out many requirements and design constraints to make equipment operation and handling safe. This applies to everything, not just electrical devices.

For example, it defines the minimum size of controls if they may be operated with gloves, the maximum weight of equipment to be located above a certain height, the connectors’ location, and so forth. In my view, every engineer should look at this interesting standard.
Non-military equipment that requires some type of certification (e.g., most electrical appliances) is usually fine in terms of human engineering. Although there may not be a specific standard guiding its design in this respect, experienced certificating examiners will point out many shortcomings. But there are more than enough fancy and expensive products on the market, which makes you wonder if the designer ever tried to use the product himself.

By putting a little thought beyond just the functional design, you can make your product attractive, easy to operate, and safe. It may be as simple as asking a few people who are not involved with your design to use the product before you release it to production.

Test Pixel 1

Client Profile: Digi International, Inc

Contact: Elizabeth Presson
elizabeth.presson@digi.com

Featured Product: The XBee product family (www.digi.com/xbee) is a series of modular products that make adding wireless technology easy and cost-effective. Whether you need a ZigBee module or a fast multipoint solution, 2.4 GHz or long-range 900 MHz—there’s an XBee to meet your specific requirements.

XBee Cloud Kit

Digi International XBee Cloud Kit

Product information: Digi now offers the XBee Wi-Fi Cloud Kit (www.digi.com/xbeewificloudkit) for those who want to try the XBee Wi-Fi (XB2B-WFUT-001) with seamless cloud connectivity. The Cloud Kit brings the Internet of Things (IoT) to the popular XBee platform. Built around Digi’s new XBee Wi-Fi
module, which fully integrates into the Device Cloud by Etherios, the kit is a simple way for anyone with an interest in M2M and the IoT to build a hardware prototype and integrate it into an Internet-based application. This kit is suitable for electronics engineers, software designers, educators, and innovators.

Exclusive Offer: The XBee Wi-Fi Cloud Kit includes an XBee Wi-Fi module; a development board with a variety of sensors and actuators; loose electronic prototyping parts to make circuits of your own; a free subscription to Device Cloud; fully customizable widgets to monitor and control connected devices; an open-source application that enables two-way communication and control with the development board over the Internet; and cables, accessories, and everything needed to connect to the web. The Cloud Kit costs $149.

Member Profile: Scott Weber

Scott Weber

Scott Weber

LOCATION:
Arlington, Texas, USA

MEMBER STATUS:
Scott said he started his Circuit Cellar subscription late in the last century. He chose the magazine because it had the right mix of MCU programming and electronics.

TECH INTERESTS:
He has always enjoyed mixing discrete electronic projects with MCUs. In the early 1980s, he built a MCU board based on an RCA CDP1802 with wirewrap and programmed it with eight switches and a load button.

Back in the 1990s, Scott purchased a Microchip Technology PICStart Plus. “I was thrilled at how powerful and comprehensive the chip and tools were compared to the i8085 and CDP1802 devices I tinkered with years before,” he said.

RECENT EMBEDDED TECH ACQUISITION:
Scott said he recently treated himself to a brand-new Fluke 77-IV multimeter.

CURRENT PROJECTS:
Scott is building devices that can communicate through USB to MS Windows programs. “I don’t have in mind any specific system to control, it is something to learn and have fun with,” he said. “This means learning not only an embedded USB software framework, but also Microsoft Windows device drivers.”

THOUGHTS ON THE FUTURE OF EMBEDDED TECH:
“Embedded devices are popping up everywhere—in places most people don’t even realize they are being used. It’s fun discovering where they are being applied. It is so much easier to change the microcode of an MCU or FPGA as the unit is coming off the assembly line than it is to rewire a complex circuit design,” Scott said.

“I also like Member Profile Joe Pfeiffer’s final comment in Circuit Cellar 276: Surface-mount and ASIC devices are making a ‘barrier to entry’ for the hobbyist. You can’t breadboard those things! I gotta learn a good way to make my own PCBs!”

Client Profile: Pololu Robotics

Pololu Robotics
www.pololu.com
920 Pilot Road
Las Vegas, NV 89119

Contact: inbox@pololu.com

Pololu Robotics Zumo

Pololu Robotics Zumo

Embedded Products/Services: Pololu designs, manufactures, and distributes a variety of robotic and electronic parts. Get the building blocks for your next project at Pololu, where you can find wheels, motors, motion controllers, basic prototyping supplies, sensors, complete robot kits, and more. Pololu also offers a custom laser cutting service starting at $25.

Product information: The Pololu Zumo robot is an Arduino-controllable tracked robot platform that measures less than 10 cm × 10 cm, which is small enough to qualify for Mini Sumo. The Zumo includes two micro-metal gearmotors coupled to a pair of silicone tracks, a stainless steel bulldozer-style blade, six infrared reflectance sensors for line following or edge detection, a three-axis accelerometer and magnetometer, and a buzzer for simple sounds and music. A kit version is also available.

Exclusive offer: Use coupon code ZUMOCC20 for 20% off any one item in Pololu’s Zumo category (www.pololu.com/zumo).

Q&A: Jack Ganssle, Electronics Entrepreneur

Jack Ganssle is a well-known engineer, author, lecturer, and consultant. After learning about oscilloscopes, transistors, and capacitors in his father’s engineering lab, Jack went on to write hundreds of articles and several books about embedded development-related topics. He also started and sold three electronics companies, worked on classified government projects, and founded The Ganssle Group, based in Reisterstown, MD. I recently spoke with Jack about some of his career highlights, his current work, and what’s next in the embedded design industry.—Nan Price, Associate Editor

NAN: You’ve been interested in electronics since the age of 9. Give us a little background information. What was your first project?

Jack Ganssle

Jack Ganssle

JACK: My first project was a crystal radio with the inductor wound on the quintessential Quaker oatmeal box! It was really exciting to get AM reception over that. Back then, pretty much no one had FM. AM was it.

Later I learned to repair TVs and made pocket money doing that. Those sets were all vacuum tubes. Usually there was just a bad tube or dried out capacitor. But from there, my friends and I learned to design amplifiers (the Beatles were very hot and everyone was starting a band). For graduation from eighth grade, my dad gave me an old oscilloscope he had built from a kit years earlier.

He was part of a startup when I was in my early teens. We kids were coerced into being the (unpaid) janitors for the place. That was annoying at first. But, we were allowed to keep anything we swept up. The engineering lab’s floor was always covered in resistors, capacitors, transistors, and the like, so my parts collection grew. (ICs existed then, but were rare.)

When I was 16 I got a ham license, built  various transmitters, and used WWII surplus receivers. One day an angry letter arrived from the Federal Communications Commission (FCC). They had picked me up on my second harmonic clear across the country. I was really proud of that contact.

But it wasn’t long before some resistor-transistor logic (RTL) digital ICs came my way. Projects included controls for tube transmitters, Estes model rocket telemetry, and even a crude TV camera that used a photomultiplier tube to scan a spiral set of holes in a spinning disk. A couple of us worked on a ham radio moon bounce, but I accidentally shorted out a resistor and my only hydrogen thyratron (sort of a tube version of an SCR) blew up. There was no money for a replacement, so that project died. The transmitter used a little lighthouse tube that had a maximum rating of a couple of watts, but it worked OK when pulsing it for a few microseconds at 1 kW.

Senior year of high school a friend and I hitchhiked from Maryland to Boston to go to a surplus store. I bought a core memory plane that was 13,000 bits in a 6 in2 cube. Long hair didn’t help. We were picked up on the New Jersey Turnpike and strip searched. The cops never believed my explanation that the thing was computer memory.

A few years later, I had a 6501 microprocessor in the glove compartment of my Volkswagen bus (which I lived in for a year while saving for a sailboat). Coming into a sleepy Maine town from Canada that event was repeated when the border cops searched the bus and found the chip. They didn’t believe in computers on a chip. But the PC was years away and computers were mostly seen in science fiction films.

Freshman year of college, I designed and built a 12-bit computer using hundreds of TTL chips soldered together using phone company wire on vectorboards. For I/O there was an old Model 15 teletype using 5-bit Baudot codes that my software drove via bit banging. The OS, such as it was, lived in a pair of 1702 EPROMs, which each held 256 bytes. The computer worked great! And then the 8008, the first 8-bit microcontroller, came out and the thing was obsolete. I junked it, and now I wish I had saved at least the schematics.

But by then I had been working part-time as an electronics technician for a few years and the company needed to update its analog products to digital. No one knew anything about computers, so they promoted me to engineer. Eventually I ran the digital group there. We designed one of the first floppy disk controllers, insanely high-resolution graphics controllers, and a lot of other products. We also integrated minicomputers (Data General Novas and DEC PDP-11s) into systems with microprocessors. We bought a 5-MB disk drive for a Nova. It cost $5,000 (back when that was a lot of money) and weighed 500 lb. How things have changed.

NAN: Tell us about The Ganssle Group (www.ganssle.com). When and why did you start the company? What types of services do you provide?

JACK:  I formed The Ganssle Group in 1997 after 15 years of running an in-circuit emulator company. Working 70 h a week was getting old and I wanted more time with my kids. So my objective was to reverse the usual model. Instead of fitting life around a job, I wanted to fit the job into life.

Goal 1: Four months of vacation a year. It turns out that is elusive, in no small part due to the cool stuff going on around here, but most years we do manage two to three months off. My wife, Marybeth, works with me. She takes care of all of the administrative/travel and the like.

Goal 2: No commute. So we work out of the house (for the first few years, we worked out of the houseboat where we raised two kids).

Now the kids are grown, so there’s a Goal 3: Have as much fun as possible with Marybeth, so when I travel to new or interesting places she often accompanies me. There’s a lot more to life than work. Some of my side projects are available at www.ganssle.com/jack.

I’m not really sure what I do. I write—a lot. Readers are incredibly smart and vocal. The dialogue with them is a highlight of my day. I also give one- and two-day seminars on pretty much every continent (except Antarctica—so far!) about ways to get better firmware done faster. Sometimes I do an expert witness gig. Those are always fascinating as one gets to dig deeply into products and learn about the law. On rare occasions, I’ll do a day or three of consulting if the problem is particularly interesting. And there’s always some experiment I’m working on, which sometimes gets written up as an article.

NAN: Speaking of articles, you’ve written hundreds—including nine for Circuit Cellar magazine—on topics ranging from the history of the embedded systems programming industry, to memory management, to using programmable logic devices (PLDs). You also write a column for Embedded (www.embedded.com) and you are editor of the biweekly newsletter The Embedded Muse. Tell us about the types of projects you enjoy constructing and writing about.

The breadboard is discharging batteries. To the left, a battery is soldered to some coax. Using the waveform generator in the oscilloscope I’m measuring the battery's reactance (which, it turns out, is entirely capacitive). The IAR tool is profiling current consumption of an evaluation board.

The breadboard is discharging batteries. To the left, a battery is soldered to some coax. Using the waveform generator in the oscilloscope I’m measuring the battery’s reactance (which, it turns out, is entirely capacitive). The IAR tool is profiling current consumption of an evaluation board.

JACK: I have one experiment that’s running right now. For the last four months I’ve been discharging coin cells. It sounds dull, but some microcontroller vendors are making outrageous claims about battery life that are on the surface true but irrelevant in real circuits. This circuit runs a complex profile on the batteries, tossing different loads on for a few milliseconds, and an ARM microcontroller samples the batteries’ voltage (as well as the transistors, VCE drop) into a log file. That data goes into a spreadsheet for further analysis. I’m making a much bigger version of this now, which will handle far more batteries at a time. I recently gave some preliminary results at a talk in Asilomar, CA, which garnered a lot of interest. More results will be forthcoming soon…I promise!

Another aspect of this is leakage. Does handling a battery leave finger oils that can affect the decades-long life claimed by the vendors? To test this, I built a femtoammeter. A polypropylene capacitor is charged and feeds a super-low bias current op-amp. Another ARM board monitors the op-amp voltage to watch the capacitor discharge as various contaminants are electrically connected to the capacitor. With no contaminants connected, even after 48 h, the cap discharged less than 1 mV. The thing resolves to better than 10 fA. (One fA is a millionth of a nanoamp, or about 6,000 electrons/second).

In fact, the ADC’s transfer function is a proxy for temperature. We heat the house with wood and you could see a perfect correlation of op-amp output and temperature throughout the day. (It’s lowest in the morning as the fire burns out overnight.)

NAN: You wrote the two-part Circuit Cellar article series, “Writing a Real-Time Operating System” (Issue 7 and 8, 1989) about the Hitachi HD64180 Z80-based embedded microprocessor nearly 15 years ago. Circuit Cellar also featured another HD64180-based article, “Huge Arrays on the HD64180: Taking Advantage of Memory Management” (Issue 16, 1990). What was your fascination with the HD64180? Also, is either of these projects still current? Have you changed any of the design components?

JACK: Gee, I have no idea. I wrote those using Microsoft Works, but the file format has changed and Works can no longer open those articles. Alas, the HD64180 is quite obsolete. It was a grown-up version of the Z80 and very popular in its day.

In 1974, Intel introduced the 8080, which was the first really decent 8-bit microprocessor. But it needed two clocks and three power supplies. The folks at Zilog came out with the Z80 a year later. It could run 8080 code, but had one clock, a single 5-V supply, and it offered additional instructions that massively improved code density. Intel responded with the 8085, but it was really an 8080 in drag. The couple of new instructions added just couldn’t give the Z80 a run for its money. Eventually Zilog came out with the Z180, and Hitachi the 64180 clone, which included on-board peripherals and a memory management unit to address 1 MB using standard Z80 instructions. It was a great idea, but since there was no on-board memory, it couldn’t compete with microcontrollers such as the ancient, and still-going-strong, 8051.

NAN: In addition to writing, you lecture and teach at conferences and symposiums worldwide. Tell us about your one-day “Better Firmware Faster” seminar. How did it begin? What can attendees expect to gain from it?

JACK: I’m completely frustrated with the state of firmware. It’s inevitably late and buggy. While there’s no doubt that crafting firmware is extremely difficult—after all, software is the most complex engineered product ever invented—we can and must do better. It’s astonishing that so few groups keep even the simplest metrics, yet engineering is all about numbers.

The seminar is a fast-paced event that shows developers better ways to get their code to market. It covers process issues, as well as a lot of technology areas unique to embedded systems, such as managing memory and dealing with tough real-time problems.

What can attendees get from it? It varies from very little to a lot. Some groups refuse to change anything, so will always maintain the status quo. Others do better. Some report 40% improvements to the schedule and up to an order of magnitude of reduction in shipped bugs.

NAN: You started three high-tech companies prior to The Ganssle Group. Tell us about your work experience. Any highlights?

JACK: Well, there was one instrument that used infrared light to measure protein in cow poop. Though it was interesting technology, it’s hard to call that a highlight. The design I’m most proud of was my first emulator, which had only 17 ICs and used insanely complex code. Eventually we offered emulators that required hundreds of chips, but those cost $7,000, while the first one sold for $600.

Some of the government work I’ve done was very interesting and used extremely sophisticated electronics. But I can’t talk about those projects. A buddy and I did the White House security system during the Reagan administration. It was fun to work in the basement there, but the bureaucracy was stifling. We lost our White House passes the same day Oliver North did, but he got more press.

NAN: What do you consider to be the “next big thing” in the embedded design industry? Is there a particular technology that you’ve used or seen that will change the way engineers design in the coming months and years?

JACK: Everything is going to change for us over the next five to 10 years. We will have tools that automatically find lots of bugs. Everyone is familiar (and has a love/hate relationship) with lint. But static analyzers can today find lots of runtime bugs. These are currently expensive and frustrating, but they demonstrate that such products can, and will, exist. When the issues are resolved, I expect they’ll be as common as IDEs. Debugging manually is hugely expensive.

Another tool is slowly gaining acceptance: so-called virtualization products (e.g., from Wind River and others). These are not the hypervisors people think about when using the word “virtualization.” Rather, they are complete software models of a target system. You can run all—and I mean all—of your code on the model. The hardware is always late. These tools will permit debugging to start at the beginning of the project. The tools are also expensive and somewhat clumsy, but will get better over time.

A modern smartphone has more than 10 million lines of code. Automobiles often have more. One thing is certain: Firmware will continue to grow in size and complexity. The current techniques we use to develop code will change as well.

 

Elektor’s Electronics Lab

Want to share electronics projects? Looking for a design community that will help you reach your project goals? Need feedback on your electronic system-related ideas, applications, and design plans?

ELektor.LABS is for you!

Current projects in Elektor.LABS:

  • PLµX: Programmable Logic Microcontroller on Linux
  • Wireless Batter Charger
  • LPC810 as NE555 or as Capacitance Meter
  • FPGA Development Board
  • USB-IO24 Cable
  • Wi-Fi RGB LED Strip
  • And many more!

Want to know more? Check out this video.

CircuitCellar.com is an Elektor International Media publication.

DIY Surface-Mount Circuit Boards

James Lyman, an engineer with degrees in Aerospace, Electrical Engineering, and Systems Design, has more than 35 years of design experience but says he was “dragged” over the past decade into using surface-mount devices (SMD) in his prototypes. He had a preference for using through-hole technology whenever possible.

“The reasons are simple,” he says in an article appearing in the June issue of Circuit Cellar magazine. “It’s much easier to use traditional components for building and reworking prototype circuits than it is to use wire to make the connections. Plus, the devices are large and easy to handle. But time and technology don’t leave anyone at peace, so my projects have gradually drifted toward surface-mount design.”

In his article, Lyman shares the techniques he developed for designing prototypes using SMD components. He thought sharing what he learned would make the transition less daunting for other designers.

This accompanying photo shows one of his completed circuit board designs.

Lyman’s techniques developed out of trial and error. One trial involved keeping small components in place during the building of his prototype.

“When I built my first few surface-mount boards, I did what so many amateurs and technicians do. I carefully placed each minute component on the circuit board in its correct position, and then spent several minutes playing ‘SMD hockey,’ ” Lyman says. “With nothing holding the component in place, I’d take my soldering iron and heat the pad component while touching the solder to the junction. Just as the solder was about to melt, that little component would turn into a ‘puck’ and scoot away. Using the soldering iron’s tip as a ‘hockey stick,’ I’d chase the little puck back to its pads and try again, which was maddening. Finally, I’d get a drop of solder holding one end of the puck in place, usually with the other end sticking away from its pad. Then I could reheat the solder joint while holding the puck and position it correctly. I would have to start over with the next component, all the while yearning for that wonderful old through-hole technology.

“It slowly occurred to me that I needed something to hold each part in place while soldering—something that would glue them in place. Commercial houses glue the components down on the boards and then use a wave soldering machine, which does all the soldering at once. That’s exactly what I started doing. I use J-B Weld, a common off-the-shelf epoxy.”

Using an easy-to-get epoxy is just one of the tips in Lyman’s article. For the rest, check out his full article in the June issue of Circuit Cellar.

 

Open-Source Hardware for the Efficient Economy

In the open-source hardware development and distribution model, designs are created collaboratively and published openly. This enables anyone to study, modify, improve, and produce the design—for one’s own use or for sale. Open-source hardware gives users full control over the products they use while unleashing innovation—compared to the limits of proprietary research and development.

This practice is transforming passive consumers of “black box” technologies into a new breed of user-producers. For consumers, open-source hardware translates into better products at a lower cost, while providing more relevant, directly applicable solutions compared to a one-size-fits-all approach. For producers, it means lower barriers to entry and a consequent democratization of production. The bottom line is a more efficient economy—one that bypasses the artificial scarcity created by exclusive rights—and instead focuses on better and faster development of appropriate technologies.

Open-source hardware is less than a decade old. It started as an informal practice in the early 2000s with fragmented cells of developers sharing instructions for producing physical objects in the spirit of open-source software. It has now become a movement with a recognized definition, specific licenses, an annual conference, and several organizations to support open practices. The expansion of open-source hardware is also visible in a proliferation of open-source plans for making just about anything, from 3-D printers, microcontrollers, and scientific equipment, to industrial machines, cars, tractors, and solar-power generators.

As the movement takes shape, the next major milestone is the development of standards for efficient development and quality documentation. The aim here is to deliver on the potential of open-source products to meet or exceed industry standards—at a much lower cost—while scaling the impact of collaborative development practices.

The Internet brought about the information revolution, but an accompanying revolution in open-source product development has yet to happen. The major blocks are the absence of uniform standards for design, documentation, and development process; accessible collaborative design platforms (CAD); and a unifying set of interface standards for module-based design—such that electronics, mechanical devices, controllers, power units, and many other types of modules could easily interface with one another.

Can unleashed collaboration catapult open-source hardware from its current multimillion dollar scale to the next trillion dollar economy?

One of the most promising scenarios for the future of open source hardware is a global supply chain made up of thousands of interlinked organizations in which collaboration and complementarity are the norm. In this scenario, producers at all levels—from hobbyists to commercial manufacturers—have access to transparent fabrication tools, and digital plans circulate freely, enabling them to build on each other quickly and efficiently.

The true game changers are the fabrication machines that transform designs into objects. While equipment such as laser cutters, CNC machine tools, and 3-D printers has been around for decades, the breakthrough comes from the drastically reduced cost and increased access to these tools. For example, online factories enable anyone to upload a design and receive the material object in the mail a few days later. A proliferation of open-source digital fabrication tools, hackerspaces, membership-based shops, fab labs, micro factories, and other collaborative production facilities are drastically increasing access and reducing the cost of production. It has become commonplace for a novice to gain ready access to state-of-art productive power.

On the design side, it’s now possible for 70 engineers to work in parallel with a collaborative CAD package to design the airplane wing for a Boeing 767 in 1 hour. This is a real-world proof of concept of taking development to warp speed—though achieved with proprietary tools and highly paid engineers. With a widely available, open-source collaborative CAD package and digital libraries of design for customization, it would be possible for even a novice to create advanced machines—and for a large group of novices to create advanced machines at warp speed. Complex devices, such as cars, can be modeled with an inviting set of Lego-like building blocks in a module-based CAD package. Thereafter, CNC equipment can be used to produce these designs from off-the-shelf parts and locally available materials. Efficient industrial production could soon be at anyone’s fingertips.

Sharing instructions for making things is not a novel idea. However, the formal establishment of an open-source approach to the development and production of critical technologies is a disruptive force. The potential lies in the emergence of many significant and scalable enterprises built on top of this model. If such entities collaborate openly, it becomes possible to unleash the efficiency of global development based on free information flows. This implies a shift from “business as usual” to an efficient economy in which environmental and social justice are part of the equation.

 

Catarina Mota is a New York City-based Portuguese maker and open-source advocate who cofounded the openMaterials (openMaterials.org) research project, which is focused on open-source and DIY experimentation with smart materials. She is both a PhD candidate at FCSHUNL and a visiting scholar at NYU, and she has taught workshops on topics such as hi-tech materials and simple circuitry. Catarina is a fellow of the National Science and Technology Foundation of Portugal, co-chair of the Open Hardware Summit, a TEDGlobal 2012 fellow, and member of NYC Resistor.

Marcin Jakubowski graduated from Princeton and earned a PhD Fusion Physics from the University of Wisconsin. In 2003 Marcin founded the Open Source Ecology (OpenSourceEcology.org) network of engineers, farmers, and supporters. The group is working on the Global Village Construction Set (GVCS), which is an open-source, DIY toolset of 50 different industrial machines intended for the construction of a modern civilization (http://vimeo.com/16106427).

This essay appears in Circuit Cellar 271, February 2013.

Open-Source Hardware for the Efficient Economy

In the open-source hardware development and distribution model, designs are created collaboratively and published openly. This enables anyone to study, modify, improve, and produce the design—for one’s own use or for sale. Open-source hardware gives users full control over the products they use while unleashing innovation—compared to the limits of proprietary research and development.

This practice is transforming passive consumers of “black box” technologies into a new breed of user-producers. For consumers, open-source hardware translates into better products at a lower cost, while providing more relevant, directly applicable solutions compared to a one-size-fits-all approach. For producers, it means lower barriers to entry and a consequent democratization of production. The bottom line is a more efficient economy—one that bypasses the artificial scarcity created by exclusive rights—and instead focuses on better and faster development of appropriate technologies.

Open-source hardware is less than a decade old. It started as an informal practice in the early 2000s with fragmented cells of developers sharing instructions for producing physical objects in the spirit of open-source software. It has now become a movement with a recognized definition, specific licenses, an annual conference, and several organizations to support open practices. The expansion of open-source hardware is also visible in a proliferation of open-source plans for making just about anything, from 3-D printers, microcontrollers, and scientific equipment, to industrial machines, cars, tractors, and solar-power generators.

As the movement takes shape, the next major milestone is the development of standards for efficient development and quality documentation. The aim here is to deliver on the potential of open-source products to meet or exceed industry standards—at a much lower cost—while scaling the impact of collaborative development practices.

The Internet brought about the information revolution, but an accompanying revolution in open-source product development has yet to happen. The major blocks are the absence of uniform standards for design, documentation, and development process; accessible collaborative design platforms (CAD); and a unifying set of interface standards for module-based design—such that electronics, mechanical devices, controllers, power units, and many other types of modules could easily interface with one another.

Can unleashed collaboration catapult open-source hardware from its current multimillion dollar scale to the next trillion dollar economy?

One of the most promising scenarios for the future of open source hardware is a glocal supply chain made up of thousands of interlinked organizations in which collaboration and complementarity are the norm. In this scenario, producers at all levels—from hobbyists to commercial manufacturers—have access to transparent fabrication tools, and digital plans circulate freely, enabling them to build on each other quickly and efficiently.

The true game changers are the fabrication machines that transform designs into objects. While equipment such as laser cutters, CNC machine tools, and 3-D printers has been around for decades, the breakthrough comes from the drastically reduced cost and increased access to these tools. For example, online factories enable anyone to upload a design and receive the material object in the mail a few days later. A proliferation of open-source digital fabrication tools, hackerspaces, membership-based shops, fab labs, micro factories, and other collaborative production facilities are drastically increasing access and reducing the cost of production. It has become commonplace for a novice to gain ready access to state-of-art productive power.

On the design side, it’s now possible for 70 engineers to work in parallel with a collaborative CAD package to design the airplane wing for a Boeing 767 in 1 hour. This is a real-world proof of concept of taking development to warp speed—though achieved with proprietary tools and highly paid engineers. With a widely available, open-source collaborative CAD package and digital libraries of design for customization, it would be possible for even a novice to create advanced machines—and for a large group of novices to create advanced machines at warp speed. Complex devices, such as cars, can be modeled with an inviting set of Lego-like building blocks in a module-based CAD package. Thereafter, CNC equipment can be used to produce these designs from off-the-shelf parts and locally available materials. Efficient industrial production could soon be at anyone’s fingertips.

Sharing instructions for making things is not a novel idea. However, the formal establishment of an open-source approach to the development and production of critical technologies is a disruptive force. The potential lies in the emergence of many significant and scalable enterprises built on top of this model. If such entities collaborate openly, it becomes possible to unleash the efficiency of global development based on free information flows. This implies a shift from “business as usual” to an efficient economy in which environmental and social justice are part of the equation.

 

Catarina Mota is a New York City-based Portuguese maker and open-source advocate who cofounded the openMaterials (openMaterials.org) research project, which is focused on open-source and DIY experimentation with smart materials. She is both a PhD candidate at FCSHUNL and a visiting scholar at NYU, and she has taught workshops on topics such as hi-tech materials and simple circuitry. Catarina is a fellow of the National Science and Technology Foundation of Portugal, co-chair of the Open Hardware Summit, a TEDGlobal 2012 fellow, and member of NYC Resistor.

Marcin Jakubowski graduated from Princeton and earned a PhD Fusion Physics from the University of Wisconsin. In 2003 Marcin founded the Open Source Ecology (OpenSourceEcology.org) network of engineers, farmers, and supporters. The group is working on the Global Village Construction Set (GVCS), which is an open-source, DIY toolset of 50 different industrial machines intended for the construction of a modern civilization (http://vimeo.com/16106427).

This essay appears in Circuit Cellar 271, February 2013.

Microcontroller-Based Markov Music Box

Check out the spectrogram for two FM notes produced by FM modulation. Red indicates higher energy at a given time and frequency.

Cornell University senior lecturer Bruce Land had two reasons for developing an Atmel AVR micrcontroller-based music box. One, he wanted to present synthesis/sequencing algorithms to his students. And two, he wanted the challenge of creating an interactive music box. Interactive audio is becoming an increasingly popular topic among engineers and designers, as we recently reported.

Land writes:

Traditional music boxes play one or two tunes very well, but are not very interactive. Put differently, they have a high quality of synthesis, but a fixed-pattern note sequencer and fixed tonal quality. I wanted to build a device which would play an interesting music-like note sequence, which constantly changed and evolved, with settable timbre, tempo, and beat… To synthesize nice sounding musical notes you need to control spectral content of the note, the rise time (attack), fall time (decay), and the change in spectral content during attack and decay.  Also it is nice to have at least two independent musical voices. And all of this has to be done using the modest arithmetic capability of an 8-bit microcontroller.

Land’s students subsequently used the music box for other projects, such as an auto-composing piano, as shown in the following video.

In early 2013 Circuit Cellar will run Land’s in-depth article on the Markov music box project. Stay tuned for more information.

Prevent Embedded Design Errors (CC 25th Anniversary Preview)

Attention, electrical engineers and programmers! Our upcoming 25th Anniversary Issue (available in early 2013) isn’t solely a look back at the history of this publication. Sure, we cover a bit of history. But the issue also features design tips, projects, interviews, and essays on topics ranging from user interface (UI) tips for designers to the future of small RAM devices, FPGAs, and 8-bit chips.

Circuit Cellar’s 25th Anniversary issue … coming in early 2013

Circuit Cellar columnist Robert Lacoste is one of the engineers whose essay will focus on present-day design tips. He explains that electrical engineering projects such as mixed-signal designs can be tedious, tricky, and exhausting. In his essay, Lacoste details 25 errors that once made will surely complicate (at best) or ruin (at worst) an embedded design project. Below are some examples and tips.

Thinking about bringing an electronics design to market? Lacoste highlights a common error many designers make.

Error 3: Not Anticipating Regulatory Constraints

Another common error is forgetting to plan for regulatory requirements from day one. Unless you’re working on a prototype that won’t ever leave your lab, there is a high probability that you will need to comply with some regulations. FCC and CE are the most common, but you’ll also find local regulations as well as product-class requirements for a broad range of products, from toys to safety devices to motor-based machines. (Refer to my article, “CE Marking in a Nutshell,” in Circuit Cellar 257 for more information.)

Let’s say you design a wireless gizmo with the U.S. market and later find that your customers want to use it in Europe. This means you lose years of work, as well as profits, because you overlooked your customers’ needs and the regulations in place in different locals.

When designing a wireless gizmo that will be used outside the U.S., having adequate information from the start will help you make good decisions. An example would be selecting a worldwide-enabled band like the ubiquitous 2.4 GHz. Similarly, don’t forget that EMC/ESD regulations require that nearly all inputs and outputs should be protected against surge transients. If you forget this, your beautiful, expensive prototype may not survive its first day at the test lab.

Watch out for errors

Here’s another common error that could derail a project. Lacoste writes:

Error 10: You Order Only One Set of Parts Before PCB Design

I love this one because I’ve done it plenty of times even though I knew the risk.

Let’s say you design your schematic, route your PCB, manufacture or order the PCB, and then order the parts to populate it. But soon thereafter you discover one of the following situations: You find that some of the required parts aren’t available. (Perhaps no distributor has them. Or maybe they’re available but you must make a minimum order of 10,000 parts and wait six months.) You learn the parts are tagged as obsolete by its manufacturer, which may not be known in advance especially if you are a small customer.

If you are serious about efficiency, you won’t have this problem because you’ll order the required parts for your prototypes in advance. But even then you might have the same issue when you need to order components for the first production batch. This one is tricky to solve, but only two solutions work. Either use only very common parts that are widely available from several sources or early on buy enough parts for a couple of years of production. Unfortunately, the latter is the only reasonable option for certain components like LCDs.

Ok, how about one more? You’ll have to check out the Anniversary Issue for the list of the other 22 errors and tips. Lacoste writes:

Error 12: You Forget About Crosstalk Between Digital and Analog Signals

Full analog designs are rare, so you have probably some noisy digital signals around your sensor input or other low-noise analog lines. Of course, you know that you must separate them as much as possible, but you can be sure that you will forget it more than once.

Let’s consider a real-world example. Some years ago, my company designed a high-tech Hi-Fi audio device. It included an on-board I2C bus linking a remote user interface. Do you know what happened? Of course, we got some audible glitches on the loudspeaker every time there was an I2C transfer. We redesigned the PCB—moving tracks and adding plenty of grounded copper pour and vias between sensitive lines and the problem was resolved. Of course we lost some weeks in between. We knew the risk, but underestimated it because nothing is as sensitive as a pair of ears. Check twice and always put guard-grounded planes between sensitive tracks and noisy ones.

Circuit Cellar’s Circuit Cellar 25th Anniversary Issue will be available in early 2013. Stay tuned for more updates on the issue’s content.

 

 

 

 

DIY 10.1˝ Touchscreen Home Control System

Domotics (home automation) control systems are among the most innovative and rewarding design projects creative electrical engineers can undertake. Let’s take a look at an innovative Beagle Board-based control system that enables a user to control lights with a 10.1˝ capacitive touchscreen.

Domotics control system

The design features the following modules:

• An I/O board for testing purposes
• An LED strip board for controlling an RGB LED strip
• A relay board for switching 230-VAC devices
• An energy meter for measuring on/off (and also for logging)

ELektor editor and engineer Clemens Valens recently interviewed Koen van Dongen about the design. Van Dongen describes the system’s electronics and then demonstrates how to use the touchscreen to control a light and LED strip.

As Valens explains suggests, it would be a worthwhile endeavor to incorporate a Wi-Fi connection to enable cellphone and tablet control. If you build such system, be sure to share it with our staff. Good luck!

CircuitCellar.com is an Elektor International Media website.