Open-Spec, i.MX6 UL-Based SBC Boasts DAQ and Wireless Features

By Eric Brown

Technologic Systems has announced an engineering sampling program for a wireless- and data acquisition focused SBC with open specifications that runs Debian Linux on NXP’s low-power i.MX6 UL SoC. The -40°C to 85°C tolerant TS-7180 is designed for industrial applications such as industrial control automation and remote monitoring management, including unmanned control room, industrial automation, automatic asset management and asset tracking.


 
TS-7180, front and back
(click images to enlarge)
Like Technologic’s i.MX6-based TS-7970, the TS-7180 has a 122 mm x 112 mm footprint. Like its 119 x 94mm TS-7553-V2 SBC and sandwich-style, 75 mm x 55 mm TS-4100, it features the low power Cortex-A7 based i.MX6 UL, enabling the board to run at a typical 0.91 W.

Like the TS-4100, the new SBC includes an FPGA. On the TS-4100 this was described as a Lattice MachX02 FPGA with an open source, programmable ZPU soft core for controlling GPIO, SPI, I2C and daughtercards. Here, the manual mentions only that the unnamed FPGA enables the optional, 3x 16-bit wide quadrature counters, which are accessible via I2C registers. The “quadrature and edge-counter inputs provide access to” dual, optional tachometers, says Technologic.


 
TS-7180 (left) and block diagram
(click images to enlarge)
The quadrature counters and tachometers are part of a DAQ subsystem with screw terminal interfaces that is not available on its other i.MX6 UL boards. The digital acquisition features also include analog and digital inputs, DIO, and PWM.

Technologic boards typically have a lot of wireless options, but the TS-7180 goes even further by adding a cellular modem socket that supports either MultiTech or NimbeLink wireless modules. You also get Wi-Fi/BT, optional GPS, and a socket for Digi’s XBee modules, which include modems for RF, 802.15.4, DigiMesh, and more. There are also dual 10/100 Ethernet port with an optional Power-over-Ethernet daughtercard.


 
TS-7180 with cellular socket populated with NimbeLink wireless module (left) and with populated XBee socket
(click images to enlarge)
The TS-7180 ships with up to 1 GB RAM and 2 KB FRAM (Cypress 16 kbit FM25L16B), which “provides reliable data retention while eliminating the complexities, overhead, and system level reliability problems caused by EEPROM and other nonvolatile memories,” says Technologic. You also get a microSD slot and 4GB eMMC, which is “configurable as 2 GB pSLC mode for additional system integrity.”

The SBC provides a USB 2.0 host port, as well as micro-USB OTG and serial console ports. There’a also mention of a “coming soon” internal USB interface. Five serial interfaces, including TTL and RS485 ports, are available on screw terminals along with a CAN port.

Other features include an RTC and an optional enclosure and 9-axis IMU. The board runs on an 8-30V input with optional external power supply and Technologic’s TS-SILO SuperCap for 30 seconds of battery backup.

As usual, the board is backed up with open schematics and comprehensive documentation. If it wasn’t over our $200 limit, it would be included in our new catalog of 122 open-spec hacker boards. Two SKUs are available: a basic $315 model with 512MB RAM and a $381 model with 1GB RAM that adds GPS and IMU.

Specifications listed for the TS-7180 include:

  • Processor — NXP i.MX6UL (1x Cortex-A7 core @ up to 696MHz); FPGA
  • Memory/storage:
    • 512MB or 1GB DDR3 RAM
    • 2KB FRAM
    • 4GB MLC eMMC; opt. standard eMMC up to 64GB (special request)
    • MicroSD slot
  • Wireless:
    • 802.11b/g/n with antenna
    • Bluetooth 4.0 BLE
    • Cell modem socket (MultiTech or NimbeLink)
    • Optional GPS
    • XBee interface
  • Networking – 2x 10/100 Ethernet ports with optional PoE via daughtercard
  • Other I/O:
    • USB 2.0 host port
    • Micro-USB OTG port
    • Micro-USB serial console device port
    • 4x serial (1x TTL UART, 3x RS-232) via screw terminals
    • RS-485 (via screw terminal)
    • CAN (via screw terminal)
    • SPI, I2C headers
  • DAQ I/O:
    • 7x DIO (30 VDC tolerant) via screw terminal
    • 4x analog inputs (10V or 4-20 mA) via screw terminal
    • 4x digital inputs via screw terminal
    • PWM header
    • 2x optional quadrature counters
    • 2x Optional tachometers
  • Other features — battery backed RTC; temp. sensor; optional 9-axis accelerometer/gyro; TS-SILO Super Capacitor; optional enclosure
  • Power — 8-30 DC input; 0.91W typical consumption (0.59 min to 6.37 max); optional 24V external DIN-rail mountable “PS-MDR-20-24” power supply
  • Operating temperature — -40 to 85°C
  • Dimensions — 122 x 112mm
  • Operating system — Linux 4.1.15 kernel with Debian image

Further information

The TS-7180 is available in an engineering sampling program for $315 with 512 MB RAM or $381 model with 1GB RAM, GPS, and IMU. 100-unit pricing is $254 and $320. More information may be found in Technologic’s TS-7180 announcement and product page.

This article originally appeared on LinuxGizmos.com on January 4.

Technologic Systems | www.embeddedarm.com

 

Raspberry Pi DAQ HAT Can Stack Eight High

By Eric Brown

In August, Measurement Computing Corp. (MCC) launched its MCC 118 voltage measurement DAQ HAT for the Raspberry Pi with eight ±10 V inputs and sample rates up to 100 kS/s. It has now released a promised MCC 152 voltage output and digital I/O HAT that can be stacked along with the MCC 118 and future MCC HATs in configurations of up to eight boards.

 
MCC 152 with Raspberry Pi (left) and stacked with other MCC 152 boards
(click images to enlarge)
The $99 MCC 152 is equipped with two 12-bit, 0-5 V analog outputs with update rates up to 5 kS/s. There are also 8x bidirectional digital I/O lines with 3.3 V and 5 V support that can be “configured as input or output on a bit by bit basis,” says MCC. Each output bit can source 10 mA and sink 25 mA, and can be individually disabled.

Screw terminal connections are available for all I/O, and power is provided via the Raspberry Pi’s 40-pin GPIO connector. The 65 mm × 56.5 mm × 12mm HAT supports 0 to 55°C temperatures.

HAT configuration parameters are stored in an on-board EEPROM so you can set up the GPIO pins via the Pi when the HAT is connected. When stacking boards, onboard jumpers identify each board in the stack.



MCC 152 block diagram
(click image to enlarge)
MCC provides an open-source MCC DAQ HAT Library in C/C++ and Python hosted on GitHub. The library includes console-based example programs with descriptions and lists of demonstrated functions. A MCC DAQ HAT Manager utility program offers an MCC 152 App to verify functionality. The utility requires the Raspbian desktop interface. API and hardware documentation are also provided.

Further information

The MCC 152 HAT is available for $99. More information may be found at the MCC 152 announcement and product page.

This article originally appeared on LinuxGizmos.com on January 10.

Measurement Computing | www.mccdaq.com

Accel32 for Linux Software Supports 4.xx Kernel

Microstar Laboratories recently released version 3.00 of the Accel32 for Linux software. The software compiles a Loadable Kernel Module (LKM) for the GNU/Linux system, extending capabilities for control of the Data Acquisition Processor (DAP) boards to systems using GNU/Linux operating systems with kernel versions in the 4.xx series.

Photo caption: Real time acquisition on generic platforms: Accel32 for Linux v.3.0 supports GNU/Linux 4.xx kernels. Penguin: Julien Tromeur/Shutterstock.com

Real-time acquisition on generic platforms: Accel32 for Linux v.3.0 supports GNU/Linux 4.xx kernels. Penguin: Julien Tromeur/Shutterstock.com

Accel32 for Linux is offered under the BSD license for free download. DAP boards provide an Intel x86-family embedded processor to support operation of the embedded DAPL 2000 system and data acquisition hardware devices. The DAPL 2000 system is part of the DAPtools software, which Microstar Laboratories provides for free for operating the DAP boards. The DAPL 2000 system provides the configuration scripting and the multitasking real-time control of data acquisition hardware devices. A host system must provide PCI or PCI-X (extended) I/O bus slots to host the DAP boards. This software runs under 32-bit versions of the GNU/Linux system, which you can install on 32- or 64-bit hardware platforms.

Source: Microstar Laboratories

Advanced Data-Logging Application

Measurement Computing Corp. (MCC) recently announced the release of DAQami, an advanced data-logging application that enables you to acquire, view, and log data from MCC USB DAQ devices.

DAQami currently supports over 40 MCC hardware devices

DAQami currently supports over 40 MCC hardware devices

In less than 5 minutes after installing DAQami and plugging in a DAQ device, you can create an automatic configuration and acquire live data, MCC noted in a release.

Data can be acquired in volts and degrees, as well as custom units with linear scaling. Channels can be viewed on any combination of scalar, strip, and block displays. Once data is acquired and logged, you can use DAQami to review the saved data file.

The DAQami user interface is flexible and provides the ability to customize display size and location, zoom factor, and channel/trace colors. You can configure MCC DAQ hardware within the application, selecting sam­pling rate, start and stop triggers, and sample count.

DAQami currently supports over 40 MCC hardware devices including the $99 100-ksps USB-201 DAQ device.

DAQami costs $49 when purchased with MCC DAQ hardware.

Source: Measurement Computing Corp.

USB-230 Series: New Low-Cost 16-Bit DAQ

Measurement Computing Corporation recently announced the release of two, 16-bit, multifunction USB DAQ devices with sample rates up to 100 ksps.

Source: Measurement Computing

Source: Measurement Computing

The USB-230 Series are the lowest priced 16-bit multifunction USB devices available from MCC. They feature eight single-ended/four differential analog inputs, eight digital I/O, one counter input, and two, 16-bit analog outputs. Removable screw-terminal connectors make signal connections easy.

The USB-231 costs $249 and has a 50 ksps sample rate.  The USB-234 offers a 100 ksps sample rate and is available for $424.

Included software options for the USB-230 Series include out-of-the-box TracerDAQ for quick-and-easy logging and displaying of data, along with comprehensive support for C, C++, C#, Visual Basic, and Visual Basic .NET. Drivers are also included for DASYLab and NI LabVIEW.

Source: Measurement Computing