Solar Cells Explained (EE Tip #104)

All solar cells are made from at least two different materials, often in the form of two thin, adjacent layers. One of the materials must act as an electron donor under illumination, while the other material must act as an electron acceptor. If there is some sort of electron barrier between the two materials, the result is an electrical potential. If each of these materials is now provided with an electrode made from an electrically conductive material and the two electrodes are connected to an external load, the electrons will follow this path.

Source: Jens Nickels, Elektor, 070798-I, 6/2009

Source: Jens Nickels, Elektor, 070798-I, 6/2009

The most commonly used solar cells are made from thin wafers of polycrystalline silicon (polycrystalline cells have a typical “frosty” appearance after sawing and polishing). The silicon is very pure, but it contains an extremely small amount of boron as a dopant (an intentionally introduced impurity), and it has a thin surface layer doped with phosphorus. This creates a PN junction in the cell, exactly the same as in a diode. When the cell is exposed to light, electrons are released and holes (positive charge carriers) are generated. The holes can recombine with the electrons. The charge carriers are kept apart by the electrical field of the PN junction, which partially prevents the direct recombination of electrons and holes.

The electrical potential between the electrodes on the top and bottom of the cell is approximately 0.6 V. The maximum current (short-circuit current) is proportional to the surface area of the cell, the impinging light energy, and the efficiency. Higher voltages and currents are obtained by connecting cells in series to form strings and connecting these strings of cells in parallel to form modules.

The maximum efficiency achieved by polycrystalline cells is 17%, while monocrystalline cells can achieve up to 22%, although the overall efficiency is lower if the total module area is taken into account. On a sunny day in central Europe, the available solar energy is approximately 1000 W/m2, and around 150 W/m2 of this can be converted into electrical energy with currently available solar cells.

Source: Jens Nickels, Elektor, 070798-I, 6/2009

Source: Jens Nickels, Elektor, 070798-I, 6/2009

Cells made from selenium, gallium arsenide, or other compounds can achieve even higher efficiency, but they are more expensive and are only used in special applications, such as space travel. There are also other approaches that are aimed primarily at reducing costs instead of increasing efficiency. The objective of such approaches is to considerably reduce the amount of pure silicon that has to be used or eliminate its use entirely. One example is thin-film solar cells made from amorphous silicon, which have an efficiency of 8 to 10% and a good price/performance ratio. The silicon can be applied to a glass sheet or plastic film in the form of a thin layer. This thin-film technology is quite suitable for the production of robust, flexible modules, such as the examples described in this article.

Battery Charging

From an electrical viewpoint, an ideal solar cell consists of a pure current source in parallel with a diode (the outlined components in the accompanying schematic diagram). When the solar cell is illuminated, the typical U/I characteristic of the diode shifts downward (see the drawing, which also shows the opencircuit voltage UOC and the short-circuit current ISC). The panel supplies maximum power when the load corresponds to the points marked “MPP” (maximum power point) in the drawing. The power rating of a cell or panel specified by the manufacturer usually refers to operation at the MPP with a light intensity of 100,000 lux and a temperature of 25°C. The power decreases by approximately 0.2 to 0.5 %/°C as the temperature increases.

A battery can be charged directly from a panel without any problems if the open-circuit voltage of the panel is higher than the nominal voltage of the battery. No voltage divider is necessary, even if the battery voltage is only 3 V and the nominal voltage of the solar panel is 12 V. This is because a solar cell always acts as a current source instead of a voltage source.

If the battery is connected directly to the solar panel, a small leakage current will flow through the solar panel when it is not illuminated. The can be prevented by adding a blocking diode to the circuit (see the schematic). Many portable solar modules have a built-in blocking diode (check the manufacturer’s specifications).

This simple arrangement is adequate if the maximum current from the solar panel is less than the maximum allowable overcharging current of the battery. NiMH cells can be overcharged for up to 100 hours if the charging current (in A) is less than one-tenth of their rated capacity in Ah. This means that a panel with a rated current of 2 A can be connected directly to a 20-Ah battery without any problems. However, under these conditions the battery must be fully discharged by a load from time to time.

Practical Matters

When positioning a solar panel, you should ensure that no part of the panel is in the shade, as otherwise the voltage will decrease markedly, with a good chance that no current will flow into the connected battery.

Most modules have integrated bypass diodes connected in reverse parallel with the solar cells. These diodes prevent reverse polarization of any cells that are not exposed to sunlight, so the current from the other cells flows through the diodes, which can cause overheating and damage to the cells. To reduce costs, it is common practice to fit only one diode to a group of cells instead of providing a separate diode for each cell.

—Jens Nickels, Elektor, 070798-I, 6/2009

Linear Regulator with Current and Temperature Monitor Outputs

Linear Technology Corp

Linear Technology Corp

The LT3081 is a rugged 1.5-A wide input voltage range linear regulator with key usability, monitoring, and protection features. The device has an extended safe operating area (SOA) compared to existing regulators, making it well suited for high input-to-output voltage and high output current applications where older regulators limit the output.

The LT3081 uses a current source reference for single-resistor output voltage settings and output adjustability down to ”0.” A single resistor can be used to set the output current limit. This regulator architecture, combined with low-millivolt regulation, enables multiple ICs to be easily paralleled for heat spreading and higher output current. The current from the device’s current monitor can be summed with the set current for line-drop compensation, where the LT3081’s output increases with current to compensate for line drops.

The LT3081 achieves line and load regulation below 2 mV independent of output voltage and features a 1.2-to-40-V input voltage range. The device is well suited for applications requiring multiple rails. The output voltage is programmable with a single resistor from 0 to 38.5 V with a 1.2-V dropout. The on-chip trimmed 50-µA current reference is ±1% accurate. The regulation, transient response, and output noise (30 µVRMS) are independent of output voltage due to the device’s voltage follower architecture.

Two resistors are used to configure the LT3081 as a two-terminal current source. Input or output capacitors for stability are optional in either linear regulator or current-source operation mode. The LT3081 provides several monitoring and protection functions. A single resistor is used to program the current limit, which is accurate to ±10%. Monitor outputs provide a current output proportional to temperature (1 µA/°C) and output current (200 µA/A), enabling easy ground-based measurement. The current monitor can compensate for cable drops. The LT3081’s internal protection circuitry includes reverse-input protection, reverse-current protection, internal current limiting, and thermal shutdown.

A variety of grades/temperature ranges are offered including: the E and  I grades (–40°C to 125°C), the H grade (–40°C to 150°C), and the high-reliability MP grade (–55°C to 50°C). Pricing for the E-grade starts at $2.60 each in 1,000-piece quantities.

Linear Technology Corp.
www.linear.com

Dual-Display Digital Multimeter

The DM3058E digital multimeter (DMM) is designed with 5.5-digit resolution and dual display. The DMM can enable system integration and is suitable for high-precision, multifunction, and automatic measurement applications.

The DM3058E is capable of measuring up to 123 readings per second. It can quickly save or recall up to 10 preset configurations, including built-in cold terminal compensation for thermocouples.

The DMM provides a convenient and flexible platform with an easy-to-use design and a built-in help system for information acquisition. In addition, it supports 10 different measurement types including DC voltage (200 mV to approximately 1,000 V), AC voltage (200 mV to approximately 750 V), DC current (200 µA to approximately
10 A), AC current (20 mA to approximately 10 A), frequency measurement (20 Hz to approximately 1 MHz), 2-Wire and 4-Wire resistance (200 O to approximately 100 MO), and diode, continuity, and capacitance.

The DM3058 is ideal for research and development labs and educational applications, as well as low-end detection, maintenance, and quality tests where automation combined with capability and value are needed.

The DM3058E digital multimeter costs $449.

Rigol Technologies, Inc.
www.rigolna.com

Two-Channel CW Laser Diode Driver with an MCU Interface

The iC-HT laser diode driver enables microcontroller-based activation of laser diodes in Continuous Wave mode. With this device, laser diodes can be driven by the optical output power (using APC), the laser diode current (using ACC), or a full controller-based power control unit.

The maximum laser diode current per channel is 750 mA. Both channels can be switched in parallel for high laser diode currents of up to 1.5 A. A current limit can also be configured for each channel.

Internal operating points and voltages can be output through ADCs. The integrated temperature sensor enables the system temperature to be monitored and can also be used to analyze control circuit feedback. Logarithmic DACs enable optimum power regulation across a large dynamic range. Therefore, a variety of laser diodes can be used.

The relevant configuration is stored in two equivalent memory areas. Internal current limits, a supply-voltage monitor, channel-specific interrupt-switching inputs, and a watchdog safeguard the laser diodes’ operation through iC-HT.

The device can be also operated by pin configuration in place of the SPI or I2C interface, where external resistors define the APC performance targets. An external supply voltage can be controlled through current output device configuration overlay (DCO) to reduce the system power dissipation (e.g., in battery-operated devices or systems).

The iC-HT operates on 2.8 to 8 V and can drive both blue and green laser diodes. The diode driver has a –40°C-to-125°C operating temperature range and is housed in a 5-mm × 5-mm, 28-pin QFN package.

The iC-HT costs $13.20 in 1,000-unit quantities.

iC-Haus GmbH
www.ichaus.com

Low-Power, High-Efficiency Boost Regulator

The TS3300 is an ultra-low-power, load-independent, high-efficiency boost regulator. It operates from supply voltages as low as 0.6 up to 4.5 V and can deliver at least 75 mA of continuous output current.

The TS3300 can be powered from a variety of power sources including single- or multiple-cell alkaline or single Li-chemistry batteries. The boost regulator’s output voltage range can be user-specified from 1.8 to 5.25 V to simultaneously power a range of low-power analog circuits, microcontrollers, and low-energy Bluetooth radios. The TS3300 produces a 3-V output from a 1.2-V input source. Its efficiency performance is constant over a 100:1 span in output current. To power low-energy radios, the TS3300’s internal, low-dropout linear regulator can deliver up to 100 mA output current while reducing boost-converter-generated output voltage ripple.

Drawing only 3.5 µA no-load supply current, the TS3300 is ideal for “always on” and other battery-powered or portable applications where an extended battery run-time is required. The TS3300 operates from low power sources (e.g., photovoltaic cells to three alkaline cells) and is ideally suited for handheld/portable applications (e.g., wireless remote sensors, RFID tags, wireless microphones, solar cell post-regulator/chargers, post-regulators for energy harvesting, blood glucose meters, and personal health-monitoring devices).

The TS3300 is fully specified over the –40°C-to-85°C temperature range and is available in a low-profile, thermally-enhanced 16-pin 3mm × 3mm TQFN package with an exposed backside paddle. The TS3300 costs $0.85 in 1,000-unit quantities.

Touchstone Semiconductor
http://touchstonesemi.com