Low-Power Micromodule

The ECM-DX2 is a highly integrated, low-power consumption micromodule. Its fanless operation and extended temperature are supported by the DMP Vortex86DX2 system-on-a-chip (SoC) CPU. The micromodule is targeted for industrial automation, transportation/vehicle construction, and aviation applications.
The ECM-DX2 withstands industrial operation environments for –40-to-75°C temperatures and supports 12-to-26-V voltage input. Multiple OSes, including Windows 2000/XP and Linux, can be used in a variety of embedded designs.

AvalueThe micromodule includes on-board DDR2 memory that supports up to 32-bit, 1-GB, and single-channel 24-bit low-voltage differential signaling (LVDS) as well as video graphics array (VGA) + LVDS or VGA + TTL multi-display configurations. The I/O deployment includes one SATA II interface, four COM ports, two USB 2.0 ports, 8-bit general-purpose input/output (GPIOs), two Ethernet ports, and one PS/2 connector for a keyboard and a mouse. The ECM-DX2 also provides a PC/104 expansion slot and one MiniPCIe card slot.

Contact Avalue Technology for pricing.

Avalue Technology, Inc.
www.avalue.com.tw

Multi-Zone Home Audio System

Dave Erickson built his first multi-zone audio system in the early 1990s using C microprocessor code he developed on Freescale MC68HC11 microprocessors. The system has been an important part of his home.

“I used this system for more than 15 years and was satisfied with its ability to send different sounds to the different rooms in my house as well as the basement and the deck,” he says. “But the system needed an upgrade.”

In Circuit Cellar’s January and February issues, Erickson describes how he upgraded the eight-zone system, which uses microprocessor-controlled analog circuitry. In the end, his project not only improved his home audio experience, it also won second place in a 2011 STMicroelectronics design contest.

Several system components needed updating, including the IR remote, graphic LCD, and microprocessor. “IR remotes went obsolete, so the IR codes needed to change,” Erickson says. “The system was 90% hand-wired and pretty messy. The LCD and several other parts became obsolete and the C development tools had expired. Processors had evolved to include flash memory and development tools evolved beyond the old burn-and-pray method.”

“My goal was to build a modern, smaller, cleaner, and more efficient system,” he says. “I decided to upgrade it with a recent processor and LCD and to use real PC boards.”

Photo 1: Clockwise from the upper left, the whole-house system includes the crosspoint board, two quad preamplifiers, two two-zone stereo amplifiers, an AC transformer, power supplies, and the CPU board with the STMicroelectronics STM32VLDISCOVERY board.

Photo 1: Clockwise from the upper left, the whole-house system includes the crosspoint board, two quad preamplifiers, two two-zone stereo amplifiers, an AC transformer, power supplies, and the CPU board with the STMicroelectronics STM32VLDISCOVERY board.

Erickson chose the STMicroelectronics STM32F100 microprocessor and the work incentive of a design contest deadline (see Photo 1).

“STMicroelectronics’s excellent libraries and examples helped me get the complex ARM Cortex-M3 peripherals working quickly,” he says. “Choosing the STM32F100 processor was a bit of overkill, but I hoped to later use it to add future capabilities (e.g., a web page and Ethernet control) and possibly even a simple music server and audio streaming.”

In Part 1 of the series, Erickson explains the design’s audio sections, including the crosspoint board, quad preamplifiers, modular audio amplifiers, and packaging. He also addresses challenges along the way.

Erickson’s Part 1 provides the following overview of the system, including its “analog heart”—the crosspoint board:

Figure 1 shows the system design including the power supplies, front-panel controls, and the audio and CPU boards. The system is modular, so there is flexibility in the front-panel controls and the number of channels and amplifiers. My goal was to fit it all into one 19”, 2U (3.5”) high rack enclosure.

The CPU board is based on a STM32F100 module containing a Cortex-M3-based processor and a USB programming interface. The CPU receives commands from a front-panel keypad, an IR remote control, an encoder knob, RS-232, and external keypads for each zone. It displays its status on a graphic LCD and controls the audio circuitry on the crosspoint and two quad preamplifier boards.

The system block diagram shows the boards, controls, amplifiers, and power supplies.

The system block diagram shows the boards, controls, amplifiers, and power supplies.


Photo 2 shows the crosspoint board, which is the analog heart of the system. It receives line-level audio signals from up to eight stereo sources via RCA jacks and routes audio to the eight preamplifier channels located on two quad preamplifier boards. It also distributes digital control and power to the preamplifiers. The preamplifier boards can either send line-level outputs or drive stereo amplifiers, either internal or external to the system.

My current system uses four line-level outputs to drive PCs or powered speakers in four of the zones. It also contains internal 40-W stereo amplifiers to directly drive speakers in the four other zones. Up to six stereo amplifiers can reside in the enclosure.

Photo 2: The crosspoint board shows the RCA input jacks (top), ribbon cable connections to the quad preamplifiers (right), and control and power cable from the CPU (bottom). Rev0 has a few black wires (lower center).

Photo 2: The crosspoint board shows the RCA input jacks (top), ribbon cable connections to the quad preamplifiers (right), and control and power cable from the CPU (bottom). Rev0 has a few black wires (lower center).

DIYers dealing with signal leakage issues in their projects may learn something from Erickson’s approach to achieving low channel-to-channel crosstalk and no audible digital crosstalk. “The low crosstalk requirement is to prevent loud music in one zone from disturbing quiet passages in another,” he says.

In Part 1, Erickson explains the crosspoint and his “grounding/guarding” approach to transmitting high-quality audio, power, and logic control signals on the same cable:

The crosspoint receives digital control from the CPU board, receives external audio signals, and distributes audio signals to the preamplifier boards and then on to the amplifiers. It was convenient to use this board to distribute the control signals and the power supply voltages to the preamplifier channels. I used 0.1” dual-row ribbon cables to simplify the wiring. These are low-cost and easy to build.

To transmit high-quality audio along with power and logic control signals on the same cable, it is important to use a lot of grounds. Two 34-pin cables each connect to a quad preamplifier board. In each of these cables, four channels of stereo audio are sent with alternating signals and grounds. The alternating grounds act as electric field “guards” to reduce crosstalk. There are just two active logic signals: I2C clock and data. Power supply voltages (±12 and 5 V) are also sent to the preamplifiers with multiple grounds to carry the return currents.

I used a similar grounding/guarding approach throughout the design to minimize crosstalk, both from channel to channel and from digital to analog. On the two-layer boards, I used ground planes on the bottom layer. Grounded guard traces or ground planes are used on the top layer. These measures minimize the capacitance between analog traces and thus minimize crosstalk. The digital and I2C signals are physically separated from analog signals. Where they need to be run nearby, they are separated by ground planes or guard traces.

To find out more about how Erickson upgraded his audio system, download the January issue (now available online) and the upcoming February issue. In Part 2, Erickson focuses on his improved system’s digital CPU, the controls, and future plans.

Q&A: Marilyn Wolf, Embedded Computing Expert

Marilyn Wolf has created embedded computing techniques, co-founded two companies, and received several Institute of Electrical and Electronics Engineers (IEEE) distinctions. She is currently teaching at Georgia Institute of Technology’s School of Electrical and Computer Engineering and researching smart-energy grids.—Nan Price, Associate Editor

NAN: Do you remember your first computer engineering project?

MARILYN: My dad is an inventor. One of his stories was about using copper sewer pipe as a drum memory. In elementary school, my friend and I tried to build a computer and bought a PCB fabrication kit from RadioShack. We carefully made the switch features using masking tape and etched the board. Then we tried to solder it and found that our patterning technology outpaced our soldering technology.

NAN: You have developed many embedded computing techniques—from hardware/software co-design algorithms and real-time scheduling algorithms to distributed smart cameras and code compression. Can you provide some information about these techniques?

Marilyn Wolf

Marilyn Wolf

MARILYN: I was inspired to work on co-design by my boss at Bell Labs, Al Dunlop. I was working on very-large-scale integration (VLSI) CAD at the time and he brought in someone who designed consumer telephones. Those designers didn’t care a bit about our fancy VLSI because it was too expensive. They wanted help designing software for microprocessors.

Microprocessors in the 1980s were pretty small, so I started on simple problems, such as partitioning a specification into software plus a hardware accelerator. Around the turn of the millennium, we started to see some very powerful processors (e.g., the Philips Trimedia). I decided to pick up on one of my earliest interests, photography, and look at smart cameras for real-time computer vision.

That work eventually led us to form Verificon, which developed smart camera systems. We closed the company because the market for surveillance systems is very competitive.
We have started a new company, SVT Analytics, to pursue customer analytics for retail using smart camera technologies. I also continued to look at methodologies and tools for bigger software systems, yet another interest I inherited from my dad.

NAN: Tell us a little more about SVT Analytics. What services does the company provide and how does it utilize smart-camera technology?

MARILYN: We started SVT Analytics to develop customer analytics for software. Our goal is to do for bricks-and-mortar retailers what web retailers can do to learn about their customers.

On the web, retailers can track the pages customers visit, how long they stay at a page, what page they visit next, and all sorts of other statistics. Retailers use that information to suggest other things to buy, for example.

Bricks-and-mortar stores know what sells but they don’t know why. Using computer vision, we can determine how long people stay in a particular area of the store, where they came from, where they go to, or whether employees are interacting with customers.

Our experience with embedded computer vision helps us develop algorithms that are accurate but also run on inexpensive platforms. Bad data leads to bad decisions, but these systems need to be inexpensive enough to be sprinkled all around the store so they can capture a lot of data.

NAN: Can you provide a more detailed overview of the impact of IC technology on surveillance in recent years? What do you see as the most active areas for research and advancements in this field?

MARILYN: Moore’s law has advanced to the point that we can provide a huge amount of computational power on a single chip. We explored two different architectures: an FPGA accelerator with a CPU and a programmable video processor.

We were able to provide highly accurate computer vision on inexpensive platforms, about $500 per channel. Even so, we had to design our algorithms very carefully to make the best use of the compute horsepower available to us.

Computer vision can soak up as much computation as you can throw at it. Over the years, we have developed some secret sauce for reducing computational cost while maintaining sufficient accuracy.

NAN: You wrote several books, including Computers as Components: Principles of Embedded Computing System Design and Embedded Software Design and Programming of Multiprocessor System-on-Chip: Simulink and System C Case Studies. What can readers expect to gain from reading your books?

MARILYN: Computers as Components is an undergraduate text. I tried to hit the fundamentals (e.g., real-time scheduling theory, software performance analysis, and low-power computing) but wrap around real-world examples and systems.

Embedded Software Design is a research monograph that primarily came out of Katalin Popovici’s work in Ahmed Jerraya’s group. Ahmed is an old friend and collaborator.

NAN: When did you transition from engineering to teaching? What prompted this change?

MARILYN: Actually, being a professor and teaching in a classroom have surprisingly little to do with each other. I spend a lot of time funding research, writing proposals, and dealing with students.

I spent five years at Bell Labs before moving to Princeton, NJ. I thought moving to a new environment would challenge me, which is always good. And although we were very well supported at Bell Labs, ultimately we had only one customer for our ideas. At a university, you can shop around to find someone interested in what you want to do.

NAN: How long have you been at Georgia Institute of Technology’s School of Electrical and Computer Engineering? What courses do you currently teach and what do you enjoy most about instructing?

MARILYN: I recently designed a new course, Physics of Computing, which is a very different take on an introduction to computer engineering. Instead of directly focusing on logic design and computer organization, we discuss the physical basis of delay and energy consumption.

You can talk about an amazingly large number of problems involving just inverters and RC circuits. We relate these basic physical phenomena to systems. For example, we figure out why dynamic RAM (DRAM) gets bigger but not faster, then see how that has driven computer architecture as DRAM has hit the memory wall.

NAN: As an engineering professor, you have some insight into what excites future engineers. With respect to electrical engineering and embedded design/programming, what are some “hot topics” your students are currently attracted to?

MARILYN: Embedded software—real-time, low-power—is everywhere. The more general term today is “cyber-physical systems,” which are systems that interact with the physical world. I am moving slowly into control-oriented software from signal/image processing. Closing the loop in a control system makes things very interesting.

My Georgia Tech colleague Eric Feron and I have a small project on jet engine control. His engine test room has a 6” thick blast window. You don’t get much more exciting than that.

NAN: That does sound exciting. Tell us more about the project and what you are exploring with it in terms of embedded software and closed-loop control systems.

MARILYN: Jet engine designers are under the same pressures now that have faced car engine designers for years: better fuel efficiency, lower emissions, lower maintenance cost, and lower noise. In the car world, CPU-based engine controllers were the critical factor that enabled car manufacturers to simultaneously improve fuel efficiency and reduce emissions.

Jet engines need to incorporate more sensors and more computers to use those sensors to crunch the data in real time and figure out how to control the engine. Jet engine designers are also looking at more complex engine designs with more flaps and controls to make the best use of that sensor data.

One challenge of jet engines is the high temperatures. Jet engines are so hot that some parts of the engine would melt without careful design. We need to provide more computational power while living with the restrictions of high-temperature electronics.

NAN: Your research interests include embedded computing, smart devices, VLSI systems, and biochips. What types of projects are you currently working on?

MARILYN: I’m working on with Santiago Grivalga of Georgia Tech on smart-energy grids, which are really huge systems that would span entire countries or continents. I continue to work on VLSI-related topics, such as the work on error-aware computing that I pursued with Saibal Mukopodhyay.

I also work with my friend Shuvra Bhattacharyya on architectures for signal-processing systems. As for more unusual things, I’m working on a medical device project that is at the early stages, so I can’t say too much specifically about it.

NAN: Can you provide more specifics about your research into smart energy grids?

MARILYN: Smart-energy grids are also driven by the push for greater efficiency. In addition, renewable energy sources have different characteristics than traditional coal-fired generators. For example, because winds are so variable, the energy produced by wind generators can quickly change.

The uses of electricity are also more complex, and we see increasing opportunities to shift demand to level out generation needs. For example, electric cars need to be recharged, but that can happen during off-peak hours. But energy systems are huge. A single grid covers the eastern US from Florida to Minnesota.

To make all these improvements requires sophisticated software and careful design to ensure that the grid is highly reliable. Smart-energy grids are a prime example of Internet-based control.

We have so many devices on the grid that need to coordinate that the Internet is the only way to connect them. But the Internet isn’t very good at real-time control, so we have to be careful.

We also have to worry about security Internet-enabled devices enable smart grid operations but they also provide opportunities for tampering.

NAN: You’ve earned several distinctions. You were the recipient of the Institute of Electrical and Electronics Engineers (IEEE) Circuits and Systems Society Education Award and the IEEE Computer Society Golden Core Award. Tell us about these experiences.

MARILYN: These awards are presented at conferences. The presentation is a very warm, happy experience. Everyone is happy. These things are time to celebrate the field and the many friends I’ve made through my work.