Anker Selects Cypress’ USB-C Controller for New Charger Family

Cypress Semiconductor has announced that its USB-C controller with USB Power Delivery (PD) was selected by Anker for integration into Anker’s new family of USB-C chargers. With the integration of Cypress’ EZ-PD CCG3PA with USB PD, Anker’s new family of PowerPort PD chargers deliver up to 2.5x faster charging times than standard USB-C power adapters, according to Cypress. The EZ-PD CCG3PA controller is compact with a highly-integrated architecture, which helped enable Anker to reduce its own charger dimensions by up to 40%.

USB-C is gaining rapid support with top-tier electronics manufacturers by enabling slim industrial designs, easy-to-use connectors and cables, the ability to transmit multiple protocols, and provide up to 100 W of power. The USB-C standard’s 2.4-mm-high connector plug is also significantly smaller than the current 4.5-mm USB Standard-A connector, enabling easier integration for a wider range of devices.

Cypress Semiconductor | www.cypress.com

 

CompactPCI Serial Board Delivers Four Gbit Ethernet Channels

MEN Micro has announced the G211X Ethernet interface card. It ensures fast data transmission with four X-coded M12 connectors connected to the backplane via an x4 link. The G211X is a new quad Ethernet card based on CompactPCI Serial. It can be used in combination with a CompactPCI Serial or CompactPCI PlusIO CPU board in a CompactPCI Serial or hybrid system. The four Gigabit Ethernet interfaces on the front panel are accessible via robust, X-coded M12 connectors.

All four interfaces are controlled by an Ethernet controller connected to the backplane via an x4 PCI Express connection. Each interface also supports a data transmission rate of 1 Gbit/s—even if all four channels are used simultaneously. For better control, two LEDs each indicate the connection and activity status of the interfaces. The G211X is designed for the extended operating temperature and prepared for conformal coating for use in harsh and mobile environments, in particular for rolling stock applications.

  • Four 10/100/1000BASE-T Ethernet channels
  • Intel i350 Server chipset with support for 8 virtual machines
  • Full-duplex or half-duplex
  • X-coded M12 connectors
  • 500 V insulation voltage
  • -40°C to +85°C operating temperature
  • Based on PICMG CPCI-S.0 CompactPCI Serial

MEN Micro | www.menmicro.com

3D Tool Strengthens Marriage of PCB Design with Mechanical Design

Cadence Design Systems has announced its Cadence Sigrity 2018 release, which includes new 3D capabilities that enable PCB design teams to accelerate design cycles while optimizing cost and performance. According to the company, a 3D design and 3D analysis environment integrating Sigrity tools with Cadence Allegro technology provides a more efficient and less error-prone solution than current alternatives using third-party modeling tools, saving days of design cycle time and reducing risk.

In addition, a new 3D Workbench methodology bridges the gap between the mechanical and electrical domains, allowing product development teams to analyze signals that cross multiple boards quickly and accurately.

Since many high-speed signals cross PCB boundaries, effective signal integrity analysis must encompass the signal source and destination die, as well as the intervening interconnect and return path including connectors, cables, sockets and other mechanical structures.

Traditional analysis techniques utilize a separate model for each piece of interconnect and cascade these models together in a circuit simulation tool, which can be an error-prone process due to the 3D nature of the transition from the PCB to the connector. In addition, since the 3D transition can make or break signal integrity, at very high speeds designers also want to optimize the transition from the connector to the PCB or the socket to the PCB.

According to the company, the Sigrity 2018 release enables designers to take a holistic view of their system, extending design and analysis beyond the package and board to also include connectors and cables. An integrated 3D design and 3D analysis environment lets PCB design teams optimize the high-speed interconnect of PCBs and IC packages in the Sigrity tool and automatically implement the optimized PCB and IC package interconnect in Allegro PCB, Allegro Package Designer or Allegro SiP Layout without the need to redraw.
Until now, this has been an error-prone, manual effort requiring careful validation. By automating this process, the Sigrity 2018 release reduces risk, saves designers hours of re-drawing and re-editing and can save days of design cycle time by eliminating editing errors not found until the prototype reaches the lab. This reduces prototype iterations and potentially saves hundreds of thousands of dollars by avoiding re-spins and schedule delays.

A new 3D Workbench utility available with the Sigrity 2018 release bridges the mechanical components and the electronic design of PCB and IC packages, allowing connectors, cables, sockets and the PCB breakout to be modeled as one with no double counting of any of the routing on the board. Interconnect models are divided at a point where the signals are more 2D in nature and predictable. By allowing 3D extraction to be performed only when needed and fast, accurate 2D hybrid-solver extraction to be performed on the remaining structures before all the interconnect models are stitched back together, full end-to-end channel analysis can be performed efficiently and accurately of signals crossing multiple boards.

In addition, the Sigrity 2018 release offers Rigid-Flex support for field solvers such as the Sigrity PowerSI technology, enabling robust analysis of high-speed signals that pass from rigid PCB materials to flexible materials. Design teams developing Rigid-Flex designs can now use the same techniques previously used only on rigid PCB designs, creating continuity in analysis practices while PCB manufacturing and material processes continue to evolve.

Cadence | www.cadence.com

Don’t Trust Connectors, Solder, or Wires (EE Tip #138)

Engineer Robert Lacoste is one of our go-to resources for engineering tips and tricks. When we asked him for a few bits of general engineering advice, he responded with a list of more than 20 invaluable electrical engineering-related insights. One our team’s favorite “Lacoste tips” is this: don’t trust connectors, solder, or wires. Read on to learn more.

One of my colleagues used to say that 90% of design problems are linked either to power supplies or to connector-related issues. It’s often the case. Never trust a wire or a connector. If you don’t understand what’s going on, use your ohmmeter to check if the connections are as planned. (Do this even if you are sure they are.) A connector might have a broken pin, a wire might have an internal cut, a solder joint might be dry and not conductive, or you might simply have a faulty wiring scheme. (See the nearby photo.)

Using the wrong pinout for a connector is a common error, especially on RS-232 ports where it’s approximately 50% probable that you’ll have the wrong RX/TX mapping. Swapping the rows of a connector (as you see here) is also quite common.

Using the wrong pinout for a connector is a common error, especially on RS-232 ports where it’s approximately 50% probable that you’ll have the wrong RX/TX mapping. Swapping the rows of a connector (as you see here) is also quite common.

Another common error is to spend time on a nonworking prototype only to discover after a few hours that the prototype was working like a charm but the test cable was faulty. This should not be a surprise: test cables are used and stressed daily, so they’re bound to be damaged over time. This can be even more problematic with RF cables, which might seem perfect when checked with an ohmmeter but have degraded RF performance. As a general rule, if you find that a test cable shows signs of fatigue (e.g., it exhibits intermittent problems), just toss it out and buy a new one!—Robert Lacoste, CC25, 2013

 

Low-Power Remote-Control Transceivers

LinxThe TT Series remote-control transceiver is designed for bidirectional, long-range, remote-control applications. The module includes an optimized frequency-hopping spread spectrum (FHSS) RF transceiver and an integrated remote-control transcoder.

The FHSS is capable of reaching more than 2 miles in typical line-of-sight environments with 0-dB gain antennas. An amplified version increases the output power from 12.5 to 23.5 dBm, boosting the range to more than 8 miles in line-of-sight environments with 0-dB antennas.

The TT Series transceiver features best-in-class receive sensitivity (up to −111 dBm) and low power consumption (only 19.2 mA in receive mode and 36 mA in transmit mode at 12.5 dBm). The initial version operates in the 902-to-928-Hz frequency band for North and South America.

The transceiver is housed in a compact reflow-compatible surface-mount technology (SMT) package. It doesn’t require any external RF components except an antenna, which simplifies integration and reduces assembly costs.

Programming is not required for basic operation. The transceiver’s primary settings are hardware-selectable, which eliminates the need for an external microcontroller or other digital interface. Eight status lines can be set up in any combination of inputs and outputs to transfer button or contact states. A selectable acknowledgement indicates that the transmission was successfully received. For advanced features, a UART interface provides optional software configuration.

A simple pairing operation configures two modules to operate together. A single button press on each side causes the modules to automatically swap their 32-bit addresses and store them in nonvolatile memory. It can be configured to automatically send an acknowledgement to the transmitting unit either after receiving a command or with external circuitry when an action has taken place. An optional external processor can send two data bytes with the acknowledgement.

The TT Series transceiver module is available as part of Linx Technologies’s master development system that comes with two development boards for benchmarking and prototyping. Each board is populated with a transceiver, two remote-control development boards, and programming boards. The system also includes antennas, a daughterboard with a USB interface, demonstration software, extra modules, and connectors.

Contact Linx Technologies for pricing.

Linx Technologies
www.linxtechnologies.com