Accurate Measurement Power Analyzer

The PA4000 power analyzer provides accurate power measurements. It offers one to four input modules, built-in test modes, and standard PC interfaces.

The analyzer features innovative Spiral Shunt technology that enables you to lock onto complex signals. The Spiral Shunt design ensures stable, linear response over a range of input current levels, ambient temperatures, crest factors, and other variables. The spiral construction minimizes stray inductance (for optimum high-frequency performance) and provides high overload capability and improved thermal stability.

The PA4000’s additional features include 0.04% basic voltage and current accuracy, dual internal current shunts for optimal resolution, frequency detection algorithms for noisy waveform tracking, application-specific test modes to simplify setup. The analyzer  easily exports data to a USB flash drive or PC software. Harmonic analysis and communications ports are included as standard features.

Contact Tektronix for pricing.

Tektronix, Inc.
www.tek.com

Multiband 4G LTE-Only Modules

The TOBY-L1 series is u-blox’s latest line of ultra-compact long-term evolution (LTE) modules. The TOBY-L100 and its European version, the TOBY-L110, are suitable for tablets, mobile routers, set-top boxes, and high-speed machine-to-machine (M2M) applications (e.g., digital signage, mobile health, and security systems).

Compared with multi-mode modules, LTE-only modules offer cost advantages. Therefore, the TOBY-L1 works well in networks with advanced LTE deployment applications.

The LTE modules are available in two versions: the TOBY-L100 for the US (bands 4 and 13 for Verizon) and the TOBY-L110 for Europe (bands 3, 7, and 20 for EU operators). Contained in a compact 152-pin LGA module, the TOBY-L1 series is layout-compatible with u-blox’s SARA Global System for Mobile (GSM) and LISA Universal Mobile Telecommunications System/Code Division Multiple Access (UMTS/CDMA) module series to facilitate easy product migration and low-cost regional end-device adaptation.

The TOBY-L1 modules are based on u-blox’s LTE protocol stack. The modules support smooth migration between 2G, 3G, and 4G technologies and feature small packaging and comprehensive support tools. The TOBY-L1 LGA modules measure 2.8 mm × 24.8 mm × 35.6 mm, which enables them to easily mount on any application board.

The modules support USB 2.0 and firmware update over the air (FOTA) technology. The TOBY-L1 series delivers ultra-fast data rates and operates from –40°C to 85°C. USB drivers for Windows XP and 7 plus Radio Interface Layer (RIL) software for Android 4.0 and 4.2 are available free of charge.

Contact u-blox for pricing.

u-blox
www.u-blox.com

Embedded Wireless Made Simple

Last week at the 2013 Sensors Expo in Chicago, Anaren had interesting wireless embedded control systems on display. The message was straightforward: add an Anaren Integrated Radio (AIR) module to an embedded system and you’re ready to go wireless.

Bob Frankel demos embedded mobile control

Bob Frankel of Emmoco provided a embedded mobile control demonstration. By adding an AIR module to a light control system, he was able to use a tablet as a user interface.

The Anaren 2530 module in a light control system (Source: Anaren)

In a separate demonstration, Anaren electrical engineer Mihir Dani showed me how to achieve effective light control with an Anaren 2530 module and TI technology. The module is embedded within the light and compact remote enables him to manipulate variables such as light color and saturation.

Visit Anaren’s website for more information.

Data Communication Between “Smart” Pendants

As head of the Computer Science and Software  Engineering department at Penn State Erie, The Behrend College, Chris Coulston is busy.

But not too busy to surf the ‘Net for design inspiration.

And one of his latest projects may earn him the title of “social jewelry designer,” along with college professor and department chair.

In the June issue of Circuit Cellar, Coulston writes about his design and construction of an RGB LED pendant that “cycles through a color sequence, detects when another pendant is brought into its proximity, and communicates color sequence information to the other pendant through its LED.” The heart of the design is a Seoul Semiconductor SFT722 RGB LED.

Coulston was online a few years ago when he ran across the first half of his project inspiration—a Mitsubishi Electric Research Laboratories technical report titled “Very Low-Cost Sensing and Communication Using Bi-directional LEDs.” The report, Coulston says, “describes how an ordinary LED with no additional circuitry can act as a full-duplex communication channel.”

Pendant’s two boards

His remaining inspiration came from an article he recalled appearing in Circuit Cellar a decade ago.

The Mitsubishi labs technical report “got me thinking about Jeff Bachiochi’s article ‘Designing with RGB LEDs’ (Circuit Cellar 159, 2003), in which the challenges associated with designing a piece of LED jewelry are described,” Coulston says. “The fusion of these two ideas was the inspiration for my social jewelry design.”

Coulston’s design includes a pair of circuit boards, the upper containing the LED and analog circuitry and the lower containing the microcontroller.

“The prototype pendant is mainly controlled through a USB-to-USART bridge,” Couston says. “Its power is supplied by the same connection.”

He invites anyone who is  “curious how an LED can be used as a transceiver and how it’s used to build a piece of social jewelry” to read his article. You’ll find it in next month’s issue of Circuit Cellar.

Infrared Communications for Atmel Microcontrollers

Are you planning an IR communications project? Do you need to choose a microcontroller? Check out the information Cornell University Senior Lecturer Bruce Land sent us about inexpensive IR communication with Atmel ATmega microcontrollers. It’s another example of the sort of indispensable information covered in Cornell’s excellent ECE4760 course.

Land informed us:

I designed a basic packet communication scheme using cheap remote control IR receivers and LED transmitters. The scheme supports 4800 baud transmission,
with transmitter ID and checksum. Throughput is about twenty 20-character packets/sec. The range is at least 3 meters with 99.9% packet receive and moderate (<30 mA) IR LED drive current.

On the ECE4760 project page, Land writes:

I improved Remin’s protocol by setting up the link software so that timing constraints on the IR receiver AGC were guaranteed to be met. It turns out that there are several types of IR reciever, some of which are better at short data bursts, while others are better for sustained data. I chose a Vishay TSOP34156 for its good sustained data characteristics, minimal burst timing requirements, and reasonable data rate. The system I build works solidly at 4800 baud over IR with 5 characters of overhead/packet (start token, transmitter number, 2 char checksum , end token). It works with increasing packet loss up to 9000 baud.

Here is the receiver circuit.

The receiver circuit (Source: B. Land, Cornell University ECE4760 Infrared Communications
for Atmel Mega644/1284 Microcontrollers)

Land explains:

The RC circuit acts a low-pass filter on the power to surpress spike noise and improve receiver performance. The RC circuit should be close to the receiver. The range with a 100 ohm resistor is at least 3 meters with the transmitter roughly pointing at the receiver, and a packet loss of less then 0.1 percent. To manage burst length limitations there is a short pause between characters, and only 7-bit characters are sent, with two stop bits. The 7-bit limit means that you can send all of the printing characters on the US keyboard, but no extended ASCII. All data is therefore sent as printable strings, NOT as raw hexidecimal.

Land’s writeup also includes a list of programs and packet format information.