IoT Tool Suite Supports Bluetooth 5

Rigado has announced its Edge Connectivity Suite with full support for Bluetooth 5. Designed for large-scale commercial IoT deployments, Rigado’s Edge Connectivity solution is comprised of Bluetooth 5 end-device modules and the Vesta IoT Gateway, which includes cloud-based tools for secure deployment and updating.

The Edge Connectivity Suite actively addresses a growing need for low-power wireless within commercial IoT applications like asset tracking, smart lighting and connected retail and hospitality. The company’s Bluetooth 5-enabled solutions support the flexibility, interoperability and security demands of large-scale commercial IoT deployments. Moreover, the suite addresses the market need for Edge Computing at scale, paving a secure and cost-effective road for data from device-to-cloud.

Specifically designed for companies who need to develop, deploy and manage a large number of connected devices and gateways, the Rigado Edge Connectivity Suite provides seamless integration between IoT devices and the Cloud. It includes:

  • BMD-340 angleCertified end device modules – Rigado modules (see photo) save connected product teams six months and $200K+ in design, test and certification. Fully Bluetooth 5 enabled, Rigado modules also feature mesh networking capabilities, ideal for applications like smart lighting, asset tracking, and connected retail.
  • Edge computing gateways – Rigado Vesta gateways manage connectivity to end devices and ensure data reaches public and private cloud services. They also support custom edge applications to process data and offer local device control. Flexible wireless options and customizability mean that companies can optimize their gateway for cost-effective enterprise deployment.
  • Cloud-based tools for secure deployment and updating– Companies require a scalable solution to securely manage updates to devices in the field. With that in mind, every Rigado gateway ships with Rigado’s provisioning and release management system that integrates with existing development tools for secure updating at scale.

Rigado | www.rigado.com

A Year in the Drone Age

Input Voltage

–Jeff Child, Editor-in-Chief

JeffHeadShot

When you’re trying to keep tabs on any young, fast-growing technology, it’s tempting to say “this is the big year” for that technology. Problem is that odds are the following year could be just as significant. Such is the case with commercial drones. Drone technology fascinates me partly because it represents one of the clearest examples of an application that wouldn’t exist without today’s level of chip integration driven by Moore’s law. That integration has enabled 4k HD video capture, image stabilization, new levels of autonomy and even highly compact supercomputing to fly aboard today’s commercial and consumer drones.

Beyond the technology side, drones make for a rich topic of discussion because of the many safety, privacy and regulatory issues surrounding them. And then there are the wide-open questions on what new applications will drones be used for?

For its part, the Federal Aviation Administration has had its hands full this year regarding drones. In the spring, for example, the FAA completed its fifth and final field evaluation of potential drone detection systems at Dallas/Fort Worth International Airport. The evaluation was the latest in a series of detection system evaluations that began in February 2016 at several airports. For the DFW test, the FAA teamed with Gryphon Sensors as its industry partner. The company’s drone detection technologies include radar, radio frequency and electro-optical systems. The FAA intends to use the information gathered during these kinds of evaluations to craft performance standards for any drone detection technology that may be deployed in or around U.S. airports.

In early summer, the FAA set up a new Aviation Rulemaking Committee tasked to help the agency create standards for remotely identifying and tracking unmanned aircraft during operations. The rulemaking committee will examine what technology is available or needs to be created to identify and track unmanned aircraft in flight.

This year as also saw vivid examples of the transformative role drones are playing. A perfect example was the role drones played in August during the flooding in Texas after Hurricane Harvey. In his keynote speech at this year’s InterDrone show, FAA Administrator Michael Huerta described how drones made an incredible impact. “After the floodwaters had inundated homes, businesses, roadways and industries, a wide variety of agencies sought FAA authorization to fly drones in airspace covered by Temporary Flight Restrictions,” said Huerta. “We recognized that we needed to move fast—faster than we have ever moved before. In most cases, we were able to approve individual operations within minutes of receiving a request.”

Huerta went on to described some of the ways drones were used. A railroad company used drones to survey damage to a rail line that cuts through Houston. Oil and energy companies flew drones to spot damage to their flooded infrastructure. Drones helped a fire department and county emergency management officials check for damage to roads, bridges, underpasses and water treatment plants that could require immediate repair. Meanwhile, cell tower companies flew them to assess damage to their towers and associated ground equipment and insurance companies began assessing damage to neighborhoods. In many of those situations, drones were able to conduct low-level operations more efficiently—and more safely—than could have been done with manned aircraft.

“I don’t think it’s an exaggeration to say that the hurricane response will be looked back upon as a landmark in the evolution of drone usage in this country,” said Huerta. “And I believe the drone industry itself deserves a lot of credit for enabling this to happen. That’s because the pace of innovation in the drone industry is like nothing we have seen before. If people can dream up a new use for drones, they’re transforming it into reality.”

Clearly, it’s been significant year for drone technology. And I’m excited for Circuit Cellar to go deeper with our drone embedded technology coverage in 2018. But I don’t think I’ll dare say that “this was the big year” for drones. I have a feeling it’s just one of many to come.

This appears in the December (329) issue of Circuit Cellar magazine

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

Hop on the Moving Train

Input Voltage

–Jeff Child, Editor-in-Chief

JeffHeadShot

We work pretty far in advance to get Circuit Cellar produced and in your hands on-time and at the level of quality you expect and deserve. Given that timing, as we go to press on this issue we’re getting into the early days of fall. In my 27 years in the technology magazine business, this part of the year has always included time set aside to finalize next year’s editorial calendar. The process for me over years has run the gamut from elaborate multi-day summer meetings to small one-on-one conversations with a handful of staff. But in every case, the purpose has never been only about choosing the monthly section topics. It’s also a deeper and broader discussion about “directions.” By that I mean the direction embedded systems technologies are going in—and how it’s impacting you our readers. Because these technologies change so rapidly, getting a handle on it is a bit like jumping onto a moving train.

A well thought out editorial calendar helps us plan out and select which article topics are most important—for both staff-written and contributed articles. And because we want to include all of the most insightful, in-depth stories we can, we will continue to include a mix of feature articles beyond the monthly calendar topics. Beyond its role for article planning, a magazine’s editorial calendar also makes a statement on what the magazine’s priorities are in terms of technology, application segments and product areas. In our case, it speaks to the kind of magazine that Circuit Cellar is—and what it isn’t.

An awareness of what types of product areas are critical to today’s developers is important. But because Circuit Cellar is not just a generic product magazine, we’re always looking at how various chips, boards and software solutions fit together in a systems context. This applies to our technology trend features as well as our detailed project-based articles that explore a microcontroller-based design in all its interesting detail. On the other hand, Circuit Cellar isn’t an academic style technical journal that’s divorced from any discussion of commercial products. In contrast, we embrace the commercial world enthusiastically. The deluge of new chip, board and software products often help inspire engineers to take a new direction in their system designs. New products serve as key milestones illustrating where technology is trending and at what rate of change.

Part of the discussion—for 2018 especially—is looking at how the definition of a “system” is changing. Driven by Moore’s Law, chip integration has shifted the level of system functionally at the IC, board and box level. We see an FPGA, SoC or microcontroller of today doing what used to require a whole embedded board. In turn, embedded boards can do what once required a box full of slot-card boards. Meanwhile, the high-speed interconnects between those new “system” blocks constantly have to keep those processing elements fed. The new levels of compute density, functionality and networking available today are opening up new options for embedded applications. Highly integrated FPGAs, comprehensive software development tools, high-speed fabric interconnects and turnkey box-level systems are just a few of the players in this story of embedded system evolution.

Finally, one of the most important new realities in embedded design is the emergence of intelligent systems. Using this term in a fairly broad sense, it’s basically now easier than ever to apply high-levels of embedded intelligence into any device or system. In some cases, this means adding a 32-bit MCU to an application that never used such technology. At the other extreme are full supercomputing-level AI technologies installed in a small drone or a vehicle. Such systems can meet immense throughput and processing requirements in space-constrained applications handling huge amounts of real-time incoming data. And at both those extremes, there’s connectivity to cloud-based computing analytics that exemplifies the cutting edge of the IoT. In fact, the IoT phenomenon is so important and opportunity rich that we plan to hit it from a variety of angles in 2018.

Those are the kinds of technology discussions that informed our creation of Circuit Cellar’s 2018 Ed Cal. Available now on www.circuitcellar.com, the structure of the calendar has been expanded for 2018 to ensure we cover all the critical embedded technology topics important to today’s engineering professional. Technology changes rapidly, so we invite you to hop on this moving train and ride along with us.

This appears in the November (328) issue of Circuit Cellar magazine

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

Embedded Analytics Firm Makes ‘Self-Aware Chip’ Push

UltraSoC has announced a significant global expansion to address the increasing demand for more sophisticated, ‘self-aware’ silicon chips in a range of electronic products, from lightweight sensors to the server farms that power the Internet. The company’s growth plans are centering on shifts in applications such as server optimization, the IoT, and UltraSoC_EmbeddedAnalyticsautomotive safety and security, all of which demand significant improvements in the intelligence embedded inside chips.

UltraSoC’s semiconductor intellectual property (SIP) simplifies development and provides valuable embedded analytic features for designers of SoCs (systems on chip). UltraSoC has developed its technology—originally designed as a chip development tool to help developers make better products—to now fulfill much wider, pressing needs in an array of applications: safety and security in the automotive industry, where the move towards autonomous vehicles is creating unprecedented change and risk; optimization in big data applications, from Internet search to data centers; and security for the Internet of Things.

These developments will be accelerated by the addition of a new facility in Bristol, UK, which will be home to an engineering and innovation team headed by Marcin Hlond, newly appointed as Director of System Engineering. Hlond will oversee UltraSoC’s embedded analytics and visualization products, and lead product development and innovation. He has over two decades of experience as system architect and developer, most recently at Blu Wireless, NVidia and Icera. He will focus on fulfilling customers’ needs for more capable analytics and rich information to enable more efficient development of SoCs, and to enhance the reliability and security of a broad range of electronic products. At the same time, the company will continue to expand engineering headcount at its headquarters in Cambridge, UK.

UltraSoC | www.ultrasoc.com

Fresenius Taps Eurotech Gear for Medical IoT Project

Eurotech announced that Fresenius Medical Care has chosen Eurotech’s IoT Gateways, IoT device middleware ESF and integration platform Everyware Cloud as the hardware and software building blocks for their IoT project to connect globally deployed medical everyware_server_M2M_clouddevices. Given the confidentiality agreements in force, no further financial details were disclosed. Fresenius Medical Care and Eurotech have been collaborating closely to integrate Eurotech’s IoT technologies with both Fresenius Medical Cares’ products on the field and Fresenius Medical Cares’ software applications on the IT side, with the goal of zero changes on both the products and the applications.

According to  Eurotech, the successful result is a solution that enables, in a very secure and effective way, to carry out technical services of Fresenius Medical Care medical devices installed in dialysis clinics worldwide. The challenges associated with the global deployment and servicing of intelligent medical devices are manifold and require the highest levels of flexibility when it comes to the software at the edge. A IoT architecture for distributed medical devices has to offer solid end-to-end security and has to provide local processing capabilities to enable functionality like access to technical data of medical devices and their configuration management. This is achieved by leveraging both ESF andEveryware Cloud in combination with Eurotech’s ReliaGATE Multi-service IoT Gateway.

The IoT device application framework ESF (Everyware Software Framework), speeds up the development and deployment of the specific application or business logic on the IoT edge device. ESF is a commercial, enterprise-ready edition of Eclipse Kura, the popular open source Java/ OSGi middleware for IoT multi-service gateways and smart devices.

Everyware Cloud, the IoT/M2M integration platform interfaces easily with existing enterprise IT infrastructures, offering simple access through standard APIs to real-time and historical data from devices. In addition, this IoT Integration Platform also enables effective remote device management as well as the device life cycle features that ensure a smooth deployment and management of these devices in the field. This IoT/M2M integration platform is also available for on-premises and private cloud deployment.

Eurotech | www.eurotech.com

Declaration of Embedded Independence

Input Voltage

–Jeff Child, Editor-in-Chief

JeffHeadShot

There’s no doubt that we’re living in an exciting era for embedded systems developers. Readers like you that design and develop embedded systems no longer have to compromise. Most of you probably remember when the processor or microcontroller you chose dictated both the development tools and embedded operating system (OS) you had to use. Today more than ever, there are all kinds of resources available to help you develop prototypes—everything from tools to chips to information resources on-line. There’s inexpensive computing modules available aimed at makers and DIY experts that are also useful for professional engineers working on high-volume end products.

The embedded operating systems market is one particular area where customers no longer have to compromise. That wasn’t always the case. Most people identify the late 90s with the dot.com bubble … and that bubble bursting. But closer to our industry was the embedded Linux start-up bubble. The embedded operating systems market began to see numerous start-ups appearing as “embedded Linux” companies. Since Linux is a free, open-source OS, these companies didn’t sell Linux, but rather provided services to help customers create and support implementations of open-source Linux. But, as often happens with disruptive technology, the establishment then pushed back. The establishment in that case were the commercial “non-open” embedded OS vendors. I recall a lot of great spirited debates at the time—both in print and live during panel discussions at industry trade shows—arguing for and against the very idea of embedded Linux. For my part, I can’t help remembering, having both written some of those articles and having sat on those panels myself.

Coinciding with the dot-com bubble bursting, the embedded Linux bubble burst as well. That’s not to say that embedded Linux lost any luster. It continued its upward rise, and remains an incredibly important technology today. Case in point: The Android OS is based on the Linux kernel. What burst was the bubble of embedded Linux start-up companies, from which only a handful of firms survived. What’s interesting is that all the major embedded OS companies shifted to a “let’s not beat them, let’s join them” approach to Linux. In other words, they now provide support for users to develop systems that use Linux alongside their commercial embedded operating systems.

The freedom not to have to compromise in your choices of tools, OSes and systems architectures—all that is a positive evolution for embedded system developers like you. But in my opinion, I think it’s possible to misinterpret the user-centric model and perhaps declare victory too soon. When you’re developing an embedded system aimed at a professional, commercial application, not everything can be done in DIY mode. There’s value in having the support of sophisticated technology vendors to help you develop and integrate your system. Today’s embedded systems routinely use millions of lines of code, and in most systems these days software running on a processor is what provides most of the functionality. If you develop that software in-house, you need high quality tools to makes sure it’s running error free. And if you out-source some of that embedded software, you have to be sure the vendor of that embedded software is providing a product you can rely on.

The situation is similar on the embedded board-level computing side. Yes, there’s a huge crop of low-cost embedded computer modules available to purchase these days. But not all embedded computing modules are created equal. If you’re developing a system with a long shelf life, what happens when the DRAMs, processors or I/O chips go end-of-life? Is it your problem? Or does the board vendor take on that burden? Have the boards been tested for vibration or temperature so that they can be used in the environment your application requires? You have to weigh the costs versus the kinds of support a vendor provides.

All in all, the trend toward a ”no compromises” situation for embedded systems developers is a huge win. But when you get beyond the DIY project level of development, it’s important to keep in mind that the vendor-customer relationship is still a critical part of the system design process. With all that in mind, it’s cool that we can today make a declaration of independence for embedded systems technology. But I’d rather think of it as a declaration of interdependence.

This appears in the October (327) issue of Circuit Cellar magazine

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

CENTRI Demos Chip-to-Cloud IoT Security on ST MCUs

CENTRI has announced compatibility of its IoTAS platform with the STMicroelectronics STM32 microcontroller family based on ARM Cortex-M processor cores. CENTRI successfully completed and demonstrated two proofs of concept on the STM32 platform DJDTab0VoAAB_sKto protect all application data in motion from chipset to public Cloud using CENTRI IoTAS. CENTRI Internet of Things Advanced Security (IoTAS) for secure communications was used in an application on an STM32L476RC device with connected server applications running on both Microsoft Azure and Amazon Elastic Compute Cloud (Amazon EC2) Clouds. The proofs of concept used wireless connections to showcase the real-world applicability of IoT device communications in the field and to highlight the value of IoTAS compression and encryption.

IoTAS uses hardware-based ID to establish secure device authentication on the initial connection. The solution features patented single-pass data encryption and optimization to ensure maximum security while providing optimal efficiency and speed of data transmissions. The small footprint of IoTAS combined with the flexibility and compute power of the STM32 platform with seamless interoperability into the world’s most popular Cloud services provides device makers a complete, secure chip-to-Cloud IoT platform. CENTRI demonstrated IoTAS capabilities at the ST Developers Conference, September 6, 2017 at the Santa Clara Convention Center.

STMicroelectronics | www.st.com

Don’t Wait for IoT Standards

Input Voltage

–Jeff Child, Editor-in-Chief

JeffHeadShot

I’ll admit it. When the phrase “Internet-of-Things” started to gain momentum some years ago, I was pretty dismissive of it. In the world of embedded systems technology that I’ve been covering for decades, the idea of network-connected embedded devices was far from new. At that point, I’d seen numerous catch phrases come and go—few of them ever sticking around. Fast forward to today, and boy was my skepticism misplaced! Market analysts vary in how they slice up the IoT market, but the general thinking puts the gowth range at several trillion dollars by the year 2020. IoT cuts across several market areas with industrial, transportation, smart homes and energy segments growing fastest. Even when you exclude PCs, phones, servers and tablets—concentrating on embedded devices using processors, microcontrollers, connectivity and high-level operating systems—we’re still talking billions of units.

Now that I’m sold that the hype around IoT is justified, I’m intrigued with this question: What specific IoT standards and protocols are really necessary to get started building an IoT implementation? From my point of view, I think there’s perhaps been too much hesitation on that score. I think there’s a false perception among some that joining the IoT game is some future possibility—a possibility waiting for standards.

Over the past couple years, major players like Google, GE, Qualcomm and others have scrambled to come up with standards suited for broad and narrow types of IoT devices. And those efforts have all helped move IoT forward. But in reality, all the pieces—from sensors to connectivity standards to gateway technologies to cloud infrastructures—all exist today. Businesses and organizations can move forward today to build highly efficient and scalable IoT infrastructures. They can make use of the key connectivity technologies that are usable today, rather than get too caught up with “future” thinking based on nascent industry standards.

In terms of the basic connectivity technologies for IoT, the industry is rich with choices. It’s actually rather rare that an IoT system can be completely hardwired end-to-end. As a result, most IoT systems of any large scale depend on a variety of wireless technologies including everything from device-level technologies to Wi-Fi to cellular networking. At the device-level, the ISM 802.15.4 is a popular standard for low power kinds of gear. 802.15.4 is the basis for established industrial network schemes like ZigBee, and can be used with protocols like 6LoWPAN to add higher layer functions using IP technology. Where power is less of a constraint, the standard Wi-Fi 802.11 is also a good method of IoT activity—whether leveraging off of existing Wi-Fi infrastructures or just using Wi-Fi hubs and routers in a purpose-built network implementation.

Another attractive IoT edge connectivity technology is Bluetooth LE (low energy) or BLE. While it was created for applications in healthcare, fitness, security and home entertainment, Bluetooth LE offers connectivity for any low power device. It’s especially useful in devices that need to operate for more than a year without recharging. If cellular networks make sense as a part of your IoT architecture, virtual networking platforms are available via all the major carriers—AT&T, Sprint, T-Mobile and Verizon Wireless.

IoT is definitely having an impact in the microcontroller-based embedded design space that’s at the heart of Circuit Cellar’s coverage. Not to overstate the matter, IoT systems today make up less than a tenth of the microcontroller application market. MCUs are used in a myriad of non-IoT systems. But, according to market research done by IHS in 2015, IoT is growing at a rate of 11% in the MCU space, while the overall MCU market is expected to grow at just 4% through 2019.

IoT requires the integration of edge technologies where data is created, connectivity technologies that move and share data using Internet and related technologies and then finally aggregating data where it can be processed by applications using Cloud-based gateways and servers. While that sounds complex, all the building blocks to implement such IoT installations are not future technologies. They are simply an integration of hardware, software and service elements that are readily available today. In the spirit of Circuit Cellar’s tag line “Inspiring the Evolution of Embedded Design,” get inspired and start building your IoT system today.

This appears in the September (326) issue of Circuit Cellar magazine

The Future of IoT Security

By Haydn Povey

Unlimited opportunity. That’s what comes to mind when I think about the future of the Internet of Things (IoT). And, that is both a blessing and a curse.

As the IoT proliferates, billions of cloud-connected devices are expected to be designed, manufactured, and deployed over the next decade. Our increasingly connected world will become hyper-connected, transforming our lives in ways we likely never thought possible. We will see smarter cities where the commuter is automatically guided, smarter farming where livestock health is individually monitored with on-call veterinary services, smarter healthcare to reduce the spiraling costs, integration between smart white goods and utilities to manage grid loading, and the integration of smart retail and personal assistant AI to provide a “curated” shopping experience. That future is limitless and exciting. But it is also frightening. We have already seen the headlines of how attacks have impacted businesses and people with valuable data being stolen or ransomed. It is widely believed the attacks are just starting.

Devices—not often seen as likely hacking targets—now have the potential to be weaponized. No one wants a device or application that is prone to hacking or theft. Hacks, malware, and IP theft have a significant dollar cost and can destroy corporate brands and reputations. And these devices may have extended lifecycles of decades. And a “secure” connected device does not guarantee a secure system. All too often, security has been an after-thought in the development of systems.

Hardware, software, communications, and communications protocol, device commissioning, applications layers, and other systems considerations all could impact security of a device and its data. The future of IoT must see security become an integral part of the design and deployment process, not merely an after-thought or add-on.

Delivering security-orientated embedded systems is a major challenge today. It will take a strong ecosystem and the development of a “supply chain of trust” to deliver truly secure product creation, deployment, and lifecycle management for the rapidly evolving IoT marketplace.

Security needs to be architected into devices from the moment of inception. In addition, it needs to be extended across the supply chain, from security-orientated chips through to manufacturing and management for the lifecycle of the product.

To deliver secure manufacturing and ensure no malware can be injected, cold and hard cryptography principles must be relied upon to ensure solutions are secured. Security principles should be embedded in every aspect of the system from the delivery of secure foundations in the silicon device, through to the secure mastering and encryption of the OEM codebase to ensure it is protected. The programming and manufacturing stages may then freely handle the encrypted code base, but the utilization of secure appliances, which integrate high-integrity and high-availability hardware security modules, enables secure enclaves to be integrated into the process to manage and orchestrate all key material. Furthermore, the ability to encrypt applications within the development process and subsequently decrypt the images in place within the device is a critical to securing the intellectual property.

While simple in theory, there are multiple aspects of a system that must be secured, encompassing the device, the mastering of the application, the handling and sharing of the keys, and the loading of the application on to the device. The only real solution is to develop a “zero trust” approach across the supply chain to minimize vulnerabilities and continually authenticate and individualize deliverables as far as possible.

While this integrated approach cannot resolve all aspects of counterfeiting, it does mark a key rallying point for the industry, and finally enables the industry to start to draw a line under the mass counterfeiting and over-production of devices. And all stakeholders in the process—including device platform providers, OEMs, programming centers, contract manufacturers, end users, security experts, and standards bodies—must do their parts to make cyber-secure programming and manufacturing ubiquitous, easy to use, and easily adoptable.

As I said, the future of IoT holds limitless opportunity, and that will drive new solutions. There will be new business models and new ecosystems. The threats are real, and the cost of failure could be astronomical. So, for the future of IoT to be bright, it must start with security.

This article appears in Circuit Cellar 324.

Haydn Povey [Headshot - Colour]Haydn Povey is the Founder/CEO of Secure Thingz, a company focused on developing and delivering next-generation security technology into the Internet of Things (IoT) and other connected systems. He also currently sits on the Executive Steering Board of the IoT Security Foundation. Haydn has been in senior management at leading global technology companies for more than 20 years, including 10 years in senior marketing and business development roles at ARM.