CC271: Got Range?

As with wireless connectivity, when it comes to your engineering skills, range matters. The more you know about a variety of applicable topics, the more you’ll profit in your professional and personal engineering-related endeavors. Thus, it makes sense to educate yourself on a continual basis on the widest range of topics you can. It can be a daunting task. But no worries. We’re here to help. In this issue, we feature articles on topics as seemingly diverse as wireless technology to embedded programming to open-source development. Let’s take a closer look.

Consider starting with Catarina Mota and Marcin Jakubowski’s Tech the Future essay, “Open-Source Hardware for the Efficient Economy” (p. 80). They are thoughtful visionaries at the forefront of a global open-source hardware project. You’ll find their work exciting and inspirational.

Stuart Ball’s Dip Meter

On page 20, Stuart Ball describes the process of designing a digital dip meter. It’s a go-to tool for checking a device’s resonant frequency, or you can use it as a signal source to tune receivers. Ball used a microcontroller to digitize the dip meter’s display.

Interested in 3-D technology? William Meyers and Guo Jie Chin’s 3-D Paint project (p. 26) is a complete hardware and software package that uses free space as a canvas and enables you to draw in 3-D by measuring ultrasonic delays. They used a PC and MATLAB to capture movements and return them in real time.

This month we’re running the third article in Richard Lord’s series, “Digital Camera Controller” (p. 32). He covers the process of building a generic front-panel controller for the Photo-Pal flash-trigger camera controller project.

Richard Lord’s front panel CPU

Turn to page 37 for the fifth article in Bob Japenga’s series on concurrency in embedded systems. He covers the portable operating system interface (POSIX), mutex, semaphores, and more.

Check out the interview on page 41 for insight into the interests and work of electrical engineer and graduate student Colin O’Flynn. He describes some of his previous work, as well as his Binary Explorer Board, which he designed in 2012.

Colin O’Flynn’s Binary Explorer Board

In Circuit Cellar 270, George Novacek tackled the topic of failure mode and criticality analysis (FMECA). This month he focuses on fault-tree analysis (p. 46).

Arduino is clearly one of the hottest design platforms around. But how can you use it in a professional-level design? Check out Ed Nisley’s “Arduino Survival Guide” (p. 49).

Standing waves are notoriously difficult to understand. Fortunately, Robert Lacoste prepared an article on the topic that covers an experimental platform and measurements (p. 54).

This month’s article from the archives relates directly to the issue’s wireless technology theme. On page 60 is Roy Franz’s 2003 article about his WiFi SniFi design, which can locate wireless networks and then display “captured” packet information.

If you like this issue’s cover, you’ll have to check out Jeff Bachiochi’s article on QR coding (p. 68). He provides an excellent analysis of the technology from a pro engineer’s point of view.

Circuit Cellar 271 is now available.