Prototyping for Engineers (EE Tip #111)

Prototyping is an essential part of engineering. Whether you’re working on a complicated embedded system or a simple blinking LED project, building a prototype can save you a lot of time, money, and hassle in the long run. You can choose one of three basic styles of prototyping: solderless breadboard, perfboard, and manufactured PCB. Your project goals, your schedule, and your circuit’s complexity are variables that will influence your choice. (I am not including styles like flying leads and wire-wrapping.)PrototypeTable

Table 1 details the pros and cons associated with each of the three prototyping options. Imagine a nifty circuit caught your eye and you want to explore it. If it’s a simple circuit, you can use the solderless breadboard (“white blob”) approach. White blobs come in a variety of sizes and patterns. By “pattern” I mean the number of the solderless connectors and their layout. Each connector is a group (usually five) of tie points placed on 0.1″ centers. Photo 1 shows how these small strips are typically arranged beneath the surface.Prototype p1-4

Following the schematic, you use the tie points to connect up to five components’ leads together. Each tie point is a tiny metal pincer that grips (almost) any lead plugged into it. You can use small wires to connect multiple tie points together or to connect larger external parts (see Photo 2).

If you want something a bit more permanent, you might choose to use the perfboard (“Swiss cheese”) approach. Like the solderless breadboards, perfboards are available in many sizes and patterns; however, I prefer the one-hole/ pad variety (see Photo 3). You can often find perfboards from enclosure manufacturers that are sized to fit the enclosures (see Photo 4).

There is nothing worse than wiring a prototype PCB and finding there isn’t enough room for all your parts. So, it pays to draw a part layout before you get started just to make sure everything fits. While I’m at it, I’ll add my 2¢ about schematic and layout programs.

The staff at Circuit Cellar uses CadSoft EAGLE design software for drawing schematics. (A free version is available for limited size boards.) I use the software for creating PCB layouts, drawing schematics, and popping parts onto PCB layouts using the proper board dimensions. Then I can use the drawing for a prototype using perfboard.

The final option is to have real prototypes manufactured. This is where the CAD software becomes a necessity. If you’ve already done a layout for your hand-wired prototype, most of the work is already done (sans routing). Some engineers will hand-wire a project first to test its performance. Others will go straight to manufactured prototypes. Many prototype PCB manufacturers offer a bare-bones special—without any solder masking or silkscreen—that can save you a few dollars. However, prices have become pretty competitive. (You can get a few copies of your design manufactured for around $100.)

There are two alternatives to having a PCB house manufacture your PCBs: do-it-yourself (DIY) and routing. If you choose DIY approach, you’ll have to work with ferric chloride (or another acid) to remove unwanted copper (see Photo 5). You’ll be able to produce some PCBs quickly, but it will likely be messy (and dangerous).Prototype p5-6

Routing involves using an x-y-z table to route between copper traces to isolate them from one another (see Photo 6). You’ll need access to an x-y-z table, which can be expensive.—CC25, Jeff Bachiochi, “Electrical Engineering: Tricks and Tools for Project Success,” 2013.

This piece originally appeared in CC25 2013

Engineer Survey: Skills, Topics, & Preferences

The electrical engineers, academics, and students who read Circuit Cellar hail from a wide range locations across the globe, such as the US, Brazil, India, The Netherlands, Germany, the UK, and Japan. Despite having different languages and cultures, the readers share a common dedication to and passion for electrical engineering.

This is a portion of our survey results. Link to the full set of results below.

In late 2012, we surveyed a random sample of more than 1,000 members of our community on their technical interests and preferences. We asked questions such as the following: How often do you solder? How many milliamps have you felt? Do you know more than three programming languages? Do you use FPGAs? Which companies make the best embedded products? And more!

Check out the results.

Read CC25 for more survey information, as well as interesting essays on the past, present, and future electrical engineering by engineers, business leaders, professors, and students.

Design a Low-Power System in 2013

A few months ago, we listed the top design projects from the Renesas RL78 Green Energy Challenge. Today, we’re excited to announce that Circuit Cellar‘s upcoming 25th anniversary issue will include a mini-challenge featuring the RL78. In the issue, you’ll learn about a new opportunity to register for an RL78/G14 demonstration kit that you can use to build a low-power design.

Renesas RL78

The RL78/G14 demonstration kit (RDK) is a handy evaluation tool for the RL78/G14 microcontrollers. Several powerful compilers and sample projects will be offered either free-of-charge (e.g., the GNU compiler) or with a code-size-limited compiler evaluation license (e.g., IAR Systems).  Also featured will be user-friendly GUIs, including the Eclipse-based e2studio.


  • 32-MHz RL78/G14 MCU board with integrated debugger and huge peripheral, including Wi-Fi, E Ink display, matrix LCD, audio ports, IR ports, motor control port, FET and isolated triac interfaces
  •  256-KB On-chip flash
  • USB Debugger cable
  • Four factory demos showcasing local and cloud connectivity through Wi-Fi

The CC25 anniversary issue is now available.

CC25 Is Now Available

Ready to take a look at the past, present, and future of embedded technology, microcomputer programming, and electrical engineering? CC25 is now available.

Check out the issue preview.

We achieved three main goals by putting together this issue. One, we properly documented the history of Circuit Cellar from its launch in 1988 as a bi-monthly magazine
about microcomputer applications to the present day. Two, we gathered immediately applicable tips and tricks from professional engineers about designing, programming, and completing electronics projects. Three, we recorded the thoughts of innovative engineers, academics, and industry leaders on the future of embedded technologies ranging from
rapid prototyping platforms to 8-bit chips to FPGAs.

The issue’s content is gathered in three main sections. Each section comprises essays, project information, and interviews. In the Past section, we feature essays on the early days of Circuit Cellar, the thoughts of long-time readers about their first MCU-based projects, and more. For instance, Circuit Cellar‘s founder Steve Ciarcia writes about his early projects and the magazine’s launch in 1988. Long-time editor/contributor Dave Tweed documents some of his favorite projects from the past 25 years.

The Present section features advice from working hardware and software engineers. Examples include a review of embedded security risks and design tips for ensuring system reliability. We also include short interviews with professionals about their preferred microcontrollers, current projects, and engineering-related interests.

The Future section features essays by innovators such as Adafruit Industries founder Limor Fried, ARM engineer Simon Ford, and University of Utah professor John Regehr on topics such as the future of DIY engineering, rapid prototyping, and small-RAM devices. The section also features two different sets of interviews. In one, corporate leaders such as Microchip Technology CEO Steve Sanghi and IAR Systems CEO Stefan Skarin speculate on the future of embedded technology. In the other, engineers such as Stephen Edwards (Columbia University) offer their thoughts about the technologies that will shape our future.

As you read the issue, ask yourself the same questions we asked our contributors: What’s your take on the history of embedded technology? What can you design and program today? What do you think about the future of embedded technology? Let us know.

Electrical Engineering Tools & Preparation (CC 25th Anniversary Issue Preview)

Electrical engineering is frequently about solving problems. Success requires a smart plan of action and the proper tools. But as all designers know, getting started can be difficult. We’re here to help.

You don’t have to procrastinate or spend a fortune on tools to start building your own electronic circuits. As engineer/columnist Jeff Bachiochi has proved countless times during the past 25 years,  there are hardware and software tools that fit any budget. In Circuit Cellar‘s 25th Anniversary issue, he offers some handy tips on building a tool set for successful electrical engineering. Bachiochi writes:

In this essay, I’ll cover the “build” portion of the design process. For instance, I’ll detail various tips for prototyping, circuit wiring, enclosure preparation, and more. I’ll also describe several of the most useful parts and tools (e.g., protoboards, scopes, and design software) for working on successful electronic design projects. When you’re finished with this essay, you’ll be well on your way to completing a successful electronic design project.

The Prototyping Process

Prototyping is an essential part of engineering. Whether you’re working on a complicated embedded system or a simple blinking LED project, building a prototype can save you a lot of time, money, and hassle in the long run. You can choose one of three basic styles of prototyping: solderless breadboard, perfboard, and manufactured PCB. Your project goals, your schedule, and your circuit’s complexity are variables that will influence your choice. (I am not including styles like flying leads and wire-wrapping.)

Prototyping Tools

The building phase of a design might include wiring up your circuit design and altering an enclosure to provide access to any I/O on the PCB. Let’s begin with some tools that you will need for circuit prototyping.

The nearby photo shows a variety of small tools that I use when wiring a perfboard or assembling a manufactured PCB. The needle-nose pliers/cutter is the most useful.

These are my smallest hand tools. With them I can poke, pinch, bend, cut, smooth, clean, and trim parts, boards, and enclosures. I can use the set of special driver tips to open almost any product that uses security screws.

Don’t skimp on this; a good pair will last many years. …

Once everything seems to be in order, you can fill up the sockets. You might need to provide some stimulus if you are building something like a filter. A small waveform generator is great for this. There are even a few hand probes that will provide outputs that can stimulate your circuitry. An oscilloscope might be the first “big ticket” item in which you invest. There are some inexpensive digital scope front ends that use an app running on a PC for display and control, but I suggest a basic analog scope (20 MHz) if you can swing it (starting at less than $500).

If the circuit doesn’t perform the expected task, you should give the wiring job a quick once over. Look to see if something is missing, such as an unconnected or misconnected wire. If you don’t find something obvious, perform a complete continuity check of all the components and their connections using an ohmmeter.

I use a few different meters. One has a transistor checker. Another has a high-current probe. For years I used a small battery-powered hand drill before purchasing the Dremel and drill press. The tweezers are actually an SMT parts measurer. Many are unmarked and impossible to identify without using this device (and the magnifier).

It usually will be a stupid mistake. To do a complete troubleshooting job, you’ll need to know how the circuit is supposed to work. Without that knowledge, you can’t be expected to know where to look and what to look for.

Make a Label

You’ll likely want to label your design… Once printed, you can protect a label by carefully covering it with a single strip of packing tape.

The label for this project came straight off a printer. Using circuit-mount parts made assembling the design a breeze.

A more expensive alternative is to use a laminating machine that puts your label between two thin plastic sheets. There are a number of ways to attach your label to an enclosure. Double-sided tape and spray adhesive (available at craft stores) are viable options.”

Ready to start innovating? There’s no time like now to begin your adventure.

Check out the upcoming anniversary issue for Bachiochi’s complete essay.