High-Voltage Gate Driver IC

Allegro A4900 Gate Driver IC

Allegro A4900 Gate Driver IC

The A4900 is a high-voltage brushless DC (BLDC) MOSFET gate driver IC. It is designed for high-voltage motor control for hybrid, electric vehicle, and 48-V automotive battery systems (e.g., electronic power steering, A/C compressors, fans, pumps, and blowers).

The A4900’s six gate drives can drive a range of N-channel insulated-gate bipolar transistors (IGBTs) or power MOSFET switches. The gate drives are configured as three high-voltage high-side drives and three low-side drives. The high-side drives are isolated up to 600 V to enable operation with high-bridge (motor) supply voltages. The high-side drives use a bootstrap capacitor to provide the supply gate drive voltage required for N-channel FETs. A TTL logic-level input compatible with 3.3- or 5-V logic systems can be used to control each FET.

A single-supply input provides the gate drive supply and the bootstrap capacitor charge source. An internal regulator from the single supply provides the logic circuit’s lower internal voltage. The A4900’s internal monitors ensure that the high- and low-side external FET’s gate source voltage is above 9 V when active.

The control inputs to the A4900 offer a flexible solution for many motor control applications. Each driver can be driven with an independent PWM signal, which enables implementation of all motor excitation methods including trapezoidal and sinusoidal drive. The IC’s integrated diagnostics detect undervoltage, overtemperature, and power bridge faults that can be configured to protect the power switches under most short-circuit conditions. Detailed diagnostics are available as a serial data word.

The A4900 is supplied in a 44-lead QSOP package and costs $3.23 in 1,000-unit quantities.

Allegro MicroSystems, LLC

Linear Regulator with Current and Temperature Monitor Outputs

Linear Technology Corp

Linear Technology Corp

The LT3081 is a rugged 1.5-A wide input voltage range linear regulator with key usability, monitoring, and protection features. The device has an extended safe operating area (SOA) compared to existing regulators, making it well suited for high input-to-output voltage and high output current applications where older regulators limit the output.

The LT3081 uses a current source reference for single-resistor output voltage settings and output adjustability down to ”0.” A single resistor can be used to set the output current limit. This regulator architecture, combined with low-millivolt regulation, enables multiple ICs to be easily paralleled for heat spreading and higher output current. The current from the device’s current monitor can be summed with the set current for line-drop compensation, where the LT3081’s output increases with current to compensate for line drops.

The LT3081 achieves line and load regulation below 2 mV independent of output voltage and features a 1.2-to-40-V input voltage range. The device is well suited for applications requiring multiple rails. The output voltage is programmable with a single resistor from 0 to 38.5 V with a 1.2-V dropout. The on-chip trimmed 50-µA current reference is ±1% accurate. The regulation, transient response, and output noise (30 µVRMS) are independent of output voltage due to the device’s voltage follower architecture.

Two resistors are used to configure the LT3081 as a two-terminal current source. Input or output capacitors for stability are optional in either linear regulator or current-source operation mode. The LT3081 provides several monitoring and protection functions. A single resistor is used to program the current limit, which is accurate to ±10%. Monitor outputs provide a current output proportional to temperature (1 µA/°C) and output current (200 µA/A), enabling easy ground-based measurement. The current monitor can compensate for cable drops. The LT3081’s internal protection circuitry includes reverse-input protection, reverse-current protection, internal current limiting, and thermal shutdown.

A variety of grades/temperature ranges are offered including: the E and  I grades (–40°C to 125°C), the H grade (–40°C to 150°C), and the high-reliability MP grade (–55°C to 50°C). Pricing for the E-grade starts at $2.60 each in 1,000-piece quantities.

Linear Technology Corp.

DIY Cap-Touch Amp for Mobile Audio

Why buy an amp for your iPod or MP3 player when you can build your own? With the proper parts and a proven plan of action, you can craft a custom personal audio amp to suit your needs. Plus, hitting the workbench with some chips and PCB is much more exciting than ordering an amp online.

In the April 2012 issue of Circuit Cellar, Coleton Denninger and Jeremy Lichtenfeld write about a capacitive-touch, gain-controlled amplifier while studying at Camosun College in Canada. The design features a Cypress Semiconductor CY8C29466-24PXI PSoC, a Microchip Technology mTouch microcontroller, and a Texas Instruments TPA1517.

Denninger and Lichtenfeld write:

Since every kid and his dog owns an iPod, an MP3 player, or some other type of personal audio device, it made sense to build a personal audio amplifier (see Photo 1). The tough choices were how we were going to make it stand out enough to attract kids who already own high-end electronics and how we were going to do it with a budget of around $40…

The capacitive-touch stage of the personal audio amp (Source: C. Denninger & J. Lichtenfeld)

Our first concern was how we were going to mix and amplify the low-power audio input signals from iPods, microphones, and electric guitars. We decided to have a couple of different inputs, and we wanted stereo and mono outputs. After doing some extensive research, we chose to use the Cypress Semiconductors CY8C29466-24PXI programmable system-on-chip (PSoC). This enabled us to digitally mix and vary the low-power amplification using the programmable gain amplifiers and switched capacitor blocks. It also came in a convenient 28-pin DIP package that followed our design guidelines. Not only was it perfect for our design, but the product and developer online support forums for all of Cypress’s products were very helpful.
Let’s face it: mechanical switches and pots are fast becoming obsolete in the world of consumer electronics (not to mention costly when compared to other alternatives). This is why we decided to use capacitive-touch sensing to control the low-power gain. Why turn a potentiometer or push a switch when your finger comes pre-equipped with conductive electrolytes? We accomplished this capacitive touch using Microchip Technology’s mTouch Sensing Solutions series of 8-bit microcontrollers. …


The audio mixer flowchart

Who doesn’t like a little bit of a light show? We used the same aforementioned PIC, but implemented it as a voltage unit meter. This meter averaged out our output signal level and indicated via LEDs the peaks in the music played. Essentially, while you listen to your favorite beats, the amplifier will beat with you! …
This amp needed to have a bit of kick when it came to the output. We’re not talking about eardrum-bursting power, but we wanted to have decent quality with enough power to fill an average-sized room with sound. We decided to go with a Class AB audio amplifier—the TPA1517 from Texas Instruments (TI) to be exact. The TPA1517 is a stereo audio-power amplifier that contains two identical amplifiers capable of delivering 6 W per channel of continuous average power into a 4-Ω load. This quality chip is easy to implement. And at only a couple of bucks, it’s an affordable choice!


The power amplification stage of the personal audio amp (Souce: C. Denninger & J. Lichtenfeld)

The complete article—with a schematic, diagrams, and code—will appear in Circuit Cellar 261 (April 2012).








RFI Bypasssing

With GPS technology and audio radio interfaces on his personal fleet of bikes, Circuit Cellar columnist Ed Nisley’s family can communicate to each other while sending GPS location data via an automatic packet reporting system (APRS) network. In his February 2012 article, Ed describes a project for which he used a KG-UV3D radio interface rigged with SMD capacitors to suppress RF energy. He covers topics such as test-fixture measurements on isolated capacitors and bypassing beyond VHF.

Photo 2 from the Febuary article, "RFI Bypassing (Part 1)." A pair of axial-lead resistors isolate the tracking generator and spectrum analyzer from the components under test. The 47-Ω SMD resistor, standing upright just to the right of the resistor lead junction, forms an almost perfect terminator. (Source: Ed Nisley CC259)

Ed writes:

Repeatable and dependable measurements require a solid test fixture. Although the collection of parts in Photo 2 may look like a kludge, it’s an exemplar of the “ugly construction” technique that’s actually a good way to build RF circuits. “Some Thoughts on Breadboarding,” by Wes Hayword, W7ZOI, gives details and suggestions for constructing RF projects above a solid printed circuit board (PCB) ground plane.

You can read this article now in Circuit Cellar 259. If you aren’t a subscriber, you can purchase a copy of the issue here.