Embedded Sensor Innovation at MIT

During his June 5 keynote address at they 2013 Sensors Expo in Chicago, Joseph Paradiso presented details about some of the innovative embedded sensor-related projects at the MIT Media Lab, where he is the  Director of the Responsive Environments Group. The projects he described ranged from innovative ubiquitous computing installations for monitoring building utilities to a small sensor network that transmits real-time data from a peat bog in rural Massachusetts. Below I detail a few of the projects Paradiso covered in his speech.


Managed by the Responsive Enviroments group, the DoppelLab is a virtual environment that uses Unity 3D to present real-time data from numerous sensors in MIT Media Lab complex.

The MIT Responsive Environments Group’s DoppleLab

Paradiso explained that the system gathers real-time information and presents it via an interactive browser. Users can monitor room temperature, humidity data, RFID badge movement, and even someone’s Tweets has he moves throughout the complex.

Living Observatory

Paradiso demoed the Living Observatory project, which comprises numerous sensor nodes installed in a peat bog near Plymouth, MA. In addition to transmitting audio from the bog, the installation also logs data such as temperature, humidity, light, barometric pressure, and radio signal strength. The data logs are posted on the project site, where you can also listen to the audio transmission.

The Living Observatory (Source: http://tidmarsh.media.mit.edu/)


The GesturesEverywhere project provides a real-time data stream about human activity levels within the MIT Media Lab. It provides the following data and more:

  • Activity Level: you can see the Media Labs activity level over a seven-day period.
  • Presence Data: you can see the location of ID tags as people move in the building

The following video is a tracking demo posted on the project site.

The aforementioned projects are just a few of the many cutting-edge developments at the MIT Media Lab. Paradiso said the projects show how far ubiquitous computing technology has come. And they provide a glimpse into the future. For instance, these technologies lend themselves to a variety of building-, environment-, and comfort-related applications.

“In the early days of ubiquitous computing, it was all healthcare,” Paradiso said. “The next frontier is obviously energy.”

Microcontroller-Based Heating System Monitor

Checking a heating system’s consumption is simple enough.

Heating system monitor

Determining a heating system’s output can be much more difficult, unless you have this nifty design. This Atmel ATmega microcontroller-based project enables you to measure heat output as well as control a circulation pump.

Heating bills often present unpleasant surprises. Despite your best efforts to economise on heating, they list tidy sums for electricity or gas consumption. In this article we describe a relatively easy way to check these values and monitor your consumption almost continuously. All you need in order to determine how much heat your system delivers is four temperature sensors, a bit of wiring, and a microcontroller. There’s no need to delve into the electrical or hydraulic components of your system or modify any of them.

A bit of theory
As many readers probably remember from their physics lessons, it’s easy to calculate the amount of heat transferred to a medium such as water. It is given by the product of the temperature change ΔT, the volume V of the medium, and the specific heat capacity CV of the medium. The power P, which is amount of energy transferred per unit time, is:

P= ΔT × CV × V // Δt

With a fluid medium, the term V // Δt can be interpreted as a volumetric flow Vt. This value can be calculated directly from the flow velocity v of the medium and the inner diameter r of the pipe. In a central heating system, the temperature difference ΔT is simply the difference between the supply (S) and return (R) temperatures. This yields the formula:

P = (TS – TR) × CV × v × pr2

The temperatures can easily be measured with suitable sensors. Flow transducers are available for measuring the flow velocity, but installing a flow transducer always requires drilling a hole in a pipe or opening up the piping to insert a fitting.

Measuring principle
Here we used a different method to determine the flow velocity. We make use of the fact that the supply and return temperatures always vary by at least one to two degrees due to the operation of the control system. If pairs of temperature sensors separated by a few metres are mounted on the supply and return lines, the flow velocity can be determined from the time offset of the variations measured by the two sensors…

As the water flows through the pipe with a speed of only a few metres per second, the temperature at sensor position S2 rises somewhat later than the temperature at sensor position S, which is closer to the boiler.

An ATmega microcontroller constantly acquires temperature data from the two sensors. The time delay between the signals from a pair of sensors is determined by a correlation algorithm in the signal processing software, which shifts the signal waveforms from the two supply line sensors relative to each other until they virtually overlap.The temperature signals from the sensors on the return line are correlated in the same manner, and ideally the time offsets obtained for the supply and return lines should be the same.

To increase the sensitivity of the system, the return line sensor signals are applied to the inputs of a differential amplifier, and the resulting difference signal is amplified. This difference signal is also logged as a function of time. The area under the curve of the difference signal is a measure of the time offset of the temperature variations…

Hot water please
If the heating system is also used to supply hot water for domestic use, additional pipes are used for this purpose. For this reason, the PCB designed by the author includes inputs for additional temperature sensors. It also has a switched output for driving a relay that can control a circulation pump.

Under certain conditions, controlling the circulation pump can save you a lot of money and significantly reduce CO2 emissions. This is because some systems have constant hot water circulation so users can draw hot water from the tap immediately. This costs electricity to power the pump, and energy is also lost through the pipe walls. This can be remedied by the author’s circuit, which switches on the circulation pump for only a short time after the hot water tap is opened. This is detected by the temperature difference between the hot water and cold water supply lines…

Circuit description
The easiest way to understand the schematic diagram is to follow the signal path. It starts at the temperature sensors connected to the circuit board, which are NTC silicon devices.

Heating system monitor schematic

Their resistance varies by around 0.7–0.8% per degree K change in temperature. For example, the resistance of a KT110 sensor is approximately 1.7 kΩ at 5 °C and approximately 2.8 kΩ at 70 °C.

The sensor for supply temperature S forms a voltage divider with resistor R37. This is followed by a simple low-pass filter formed by R36 and C20, which filters out induced AC hum. U4a amplifies the sensor signal by a factor of approximately 8. The TL2264 used here is a rail-to-rail opamp, so the output voltage can assume almost any value within the supply voltage range. This increases the absolute measurement accuracy, since the full output signal amplitude is used. U4a naturally needs a reference voltage on its inverting input. This is provided by the combination of R20, R26 and R27. U5b acts as an impedance converter to minimise the load on the voltage divider…

Thermal power

PC connection
The circuit does not have its own display unit, but instead delivers its readings to a PC via an RS485 bus. Its functions can also be controlled from the PC. IC U8 looks after signal level conversion between the TTL transmit and receive lines of the ATmega microcontroller’s integrated UART and the differential RS485 bus. As the bus protocol allows several connected (peer) devices to transmit data on the bus, transmit mode must be selected actively via pin 3. Jumper JP3 must be fitted if the circuit is connected to the end of the RS485 bus. This causes the bus to be terminated in 120 Ω, which matches the characteristic impedance of a twisted-pair line…

[Via Elektor-Projects.com]

CC269: Break Through Designer’s Block

Are you experiencing designer’s block? Having a hard time starting a new project? You aren’t alone. After more than 11 months of designing and programming (which invariably involved numerous successes and failures), many engineers are simply spent. But don’t worry. Just like every other year, new projects are just around the corner. Sooner or later you’ll regain your energy and find yourself back in action. Plus, we’re here to give you a boost. The December issue (Circuit Cellar 269) is packed with projects that are sure to inspire your next flurry of innovation.

Turn to page 16 to learn how Dan Karmann built the “EBikeMeter” Atmel ATmega328-P-based bicycle computer. He details the hardware and firmware, as well as the assembly process. The monitoring/logging system can acquire and display data such as Speed/Distance, Power, and Recent Log Files.

The Atmel ATmega328-P-based “EBikeMeter” is mounted on the bike’s handlebar.

Another  interesting project is Joe Pfeiffer’s bell ringer system (p. 26). Although the design is intended for generating sound effects in a theater, you can build a similar system for any number of other uses.

You probably don’t have to be coerced into getting excited about a home control project. Most engineers love them. Check out Scott Weber’s garage door control system (p. 34), which features a MikroElektronika RFid Reader. He built it around a Microchip Technology PIC18F2221.

The reader is connected to a breadboard that reads the data and clock signals. It’s built with two chips—the Microchip 28-pin PIC and the eight-pin DS1487 driver shown above it—to connect it to the network for testing. (Source: S. Weber, CC269)

Once considered a hobby part, Arduino is now implemented in countless innovative ways by professional engineers like Ed Nisley. Read Ed’s article before you start your next Arduino-related project (p. 44). He covers the essential, but often overlooked, topic of the Arduino’s built-in power supply.

A heatsink epoxied atop the linear regulator on this Arduino MEGA board helped reduce the operating temperature to a comfortable level. This is certainly not recommended engineering practice, but it’s an acceptable hack. (Source: E. Nisley, CC269)

Need to extract a signal in a noisy environment? Consider a lock-in amplifier. On page 50, Robert Lacoste describes synchronous detection, which is a useful way to extract a signal.

This month, Bob Japenga continues his series, “Concurrency in Embedded Systems” (p. 58). He covers “the mechanisms to create concurrently in your software through processes and threads.”

On page 64, George Novacek presents the second article in his series, “Product Reliability.” He explains the importance of failure rate data and how to use the information.

Jeff Bachiochi wraps up the issue with a article about using heat to power up electronic devices (p. 68). Fire and a Peltier device can save the day when you need to charge a cell phone!

Set aside time to carefully study the prize-winning projects from the Reneas RL78 Green Energy Challenge (p. 30). Among the noteworthy designs are an electrostatic cleaning robot and a solar energy-harvesting system.

Lastly, I want to take the opportunity to thank Steve Ciarcia for bringing the electrical engineering community 25 years of innovative projects, essential content, and industry insight. Since 1988, he’s devoted himself to the pursuit of EE innovation and publishing excellence, and we’re all better off for it. I encourage you to read Steve’s final “Priority Interrupt” editorial on page 80. I’m sure you’ll agree that there’s no better way to begin the next 25 years of innovation than by taking a moment to understand and celebrate our past. Thanks, Steve.

CC268: The History of Embedded Tech

At the end of September 2012, an enthusiastic crew of electrical engineers and journalists (and significant others) traveled to Portsmouth, NH, from locations as far apart as San Luis Obispo, CA,  and Paris, France, to celebrate Circuit Cellar’s 25th anniversary. Attendees included Don Akkermans (Director, Elektor International Media), Steve Ciarcia (Founder, Circuit Cellar), the current magazine staff, and several well-known engineers, editors, and columnists. The event marked the beginning of the next chapter in the history of this long-revered publication. As you’d expect, contributors and staffers both reminisced about the past and shared ideas about its future. And in many instances, the conversations turned to the content in this issue, which was at that time entering the final phase of production. Why? We purposely designed this issue (and next month’s) to feature a diversity of content that would represent the breadth of coverage we’ve come to deliver during the past quarter century. A quick look at this issue’s topics gives you an idea of how far embedded technology has come. The topics also point to the fact that some of the most popular ’80s-era engineering concerns are as relevant as ever. Let’s review.

In the earliest issues of Circuit Cellar, home control was one of the hottest topics. Today, inventive DIY home control projects are highly coveted by professional engineers and newbies alike. On page 16, Scott Weber presents an interesting GPS-based time server for lighting control applications. An MCU extracts time from GPS data and transmits it to networked devices.

The time-broadcasting device includes a circuit board that’s attached to a GPS module. (Source: S. Weber, CC268)

Thiadmer Riemersma’s DIY automated component dispenser is a contemporary solution to a problem that has frustrated engineers for decades (p. 26). The MCU-based design simplifies component management and will be a welcome addition to any workbench.

The DIY automated component dispenser. (Source: T. Riemersma, CC268)

USB technology started becoming relevant in the mid-to-late 1990s, and since then has become the go-to connection option for designers and end users alike. Turn to page 30 for Jan Axelson’s  tips about debugging USB firmware. Axelson covers controller architectures and details devices such as the FTDI FT232R USB UART controller and Microchip Technology’s PIC18F4550 microcontroller.

Debugging USB firmware (Source: J. Axelson, CC268)

Electrical engineers have been trying to “control time” in various ways since the earliest innovators began studying and experimenting with electric charge. Contemporary timing control systems are implemented in a amazing ways. For instance, Richard Lord built a digital camera controller that enables him to photograph the movement of high-speed objects (p. 36).

Security and product reliability are topics that have been on the minds of engineers for decades. Whether you’re working on aerospace electronics or a compact embedded system for your workbench (p. 52), you’ll want to ensure your data is protected and that you’ve gone through the necessary steps to predict your project’s likely reliability (p. 60).

The issue’s last two articles detail how to use contemporary electronics to improve older mechanical systems. On page 64 George Martin presents a tachometer design you can implement immediately in a machine shop. And lastly, on page 70, Jeff Bachiochi wraps up his series “Mechanical Gyroscope Replacement.” The goal is to transmit reliable data to motor controllers. The photo below shows the Pololu MinIMU-9.

The Pololu MinIMU-9′s sensor axes are aligned with the mechanical gyro so the x and y output pitch and roll, respectively. (Source: J. Bachiochi, CC268)

DIY 10.1˝ Touchscreen Home Control System

Domotics (home automation) control systems are among the most innovative and rewarding design projects creative electrical engineers can undertake. Let’s take a look at an innovative Beagle Board-based control system that enables a user to control lights with a 10.1˝ capacitive touchscreen.

Domotics control system

The design features the following modules:

• An I/O board for testing purposes
• An LED strip board for controlling an RGB LED strip
• A relay board for switching 230-VAC devices
• An energy meter for measuring on/off (and also for logging)

ELektor editor and engineer Clemens Valens recently interviewed Koen van Dongen about the design. Van Dongen describes the system’s electronics and then demonstrates how to use the touchscreen to control a light and LED strip.

As Valens explains suggests, it would be a worthwhile endeavor to incorporate a Wi-Fi connection to enable cellphone and tablet control. If you build such system, be sure to share it with our staff. Good luck!

CircuitCellar.com is an Elektor International Media website.