IoT Smart Water Care System Leverages Nordic’s BLE SoC

Nordic Semiconductor has announced that ConnectedYard has selected Nordic’s nRF51822 Bluetooth Low Energy (BLE) SoC to provide the wireless connectivity for pHin, a smart water care solution designed to simplify the care and maintenance of backyard swimming pools and hot tubs. pHin combines an nRF51822 SoC- and Wi-Fi-enabled smart monitor and smartphone app that monitors water chemistry and temperature around the clock and notifies customers when they need to take action.
The pHin Smart Monitor floats in the pool or hot tub and continuously monitors water temperature and water chemistry—including pH and oxidation reduction potential (ORP)—and then wirelessly sends the water chemistry data over the Nordic SoC-enabled Bluetooth LE connection to the pool owner’s Bluetooth 4.0 (or later) smartphone and the ‘pHin WiFi bridge’. The data is also available via the pHin Partner Portal, which allows retailers, service technicians, and pool builders to remotely monitor water conditions and provides features that help drive consumers back to their local retailer for chemicals and other products. pHin uses a coin cell battery to achieve over two years of battery life between replacement, thanks in part to the ultra low power consumption of the nRF51822 SoC.

Nordic’s nRF51822 is ideally suited for Bluetooth LE and 2.4GHz ultra low power wireless applications. The nRF51822 is built around a 32-bit Arm® Cortex M0 CPU, 2.4GHz multiprotocol radio, and 256kB/128kB Flash and 32kB/16kB RAM. The SoC is supplied with Nordic’s S130 SoftDevice, a Bluetooth 4.2 qualified concurrent multi-link protocol stack. Nordic’s software architecture includes a clear separation between the RF protocol software and the application code, simplifying development for ConnectedYard’s engineers and ensuring the SoftDevice doesn’t become corrupted when developing, compiling, testing and verifying application code.

Nordic Semiconductor | www.nordicsemi.com

Rugged Touch Panel Computer Targets Railway System Designs

ADLINK Technology has released its latest Driver Machine Interface (DMI) touch panel computer, the DMI-1210, designed specifically for train control and driver information display. Powered by the Intel Atom x5-E3930 processor (formerly Apollo Lake) and featuring a 12.1” (4:3) high resolution color display, 5-wire resistive touch screen and securable I/O interface, the DMI-1210 can be deployed as an HMI unit for driver’s desks, control panel for passenger information systems, surveillance system control/display unit or in railway diagnostics and communications applications.
The DMI-1210 is an EN 50155 certificated, cost-effective, commercial-off-the-shelf (COTS) driver interface that offers train radio display, electronic timetable, and diagnostic display functions and additional functionality such as train data recorder. The DMI-1210 supports full range DC power input from +16.8 V to +137.5 V DC. Optional MVB, GNSS, 3G/LTE, WLAN and Bluetooth through add-on modules give system integrators the necessary tools to expand use case possibilities.

With ADLINK’s built-in Smart Embedded Management Agent (SEMA) management and status LEDs on the front panel, the DMI-1210 provides easy and effective health monitoring and system maintenance. In addition, system robustness and reliability are provided by careful component selection for extended temperature operation, isolated I/Os, conformal coated circuit boards, securable I/O connectors and high ingress protection rating (IP65 front, IP42 rear).

ADLINK Technology | www.adlinktech.com

 

April Circuit Cellar: Sneak Preview

The April issue of Circuit Cellar magazine is out next week (March 20th)!. We’ve worked hard to cook up a tasty selection of in-depth embedded electronics articles just for you. We’ll be serving them up to in our 84-page magazine.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of April 2019 Circuit Cellar:

VIDEO AND DISPLAY TECHNOLOGIES IN ACTION

Video Technology in Drones
Because video is the main mission of the majority of commercial drones, video technology has become a center of gravity in today’s drone design decisions. The topic covers everything including single-chip video processing, 4k HD video capture, image stabilization, complex board-level video processing, drone-mounted cameras, hybrid IR/video camera and mesh-networks. In this article, Circuit Cellar’s Editor-in-Chief, Jeff Child, looks at the technology and trends in video technology for drones.

Building an All-in-One Serial Terminal
Many embedded systems require as least some sort of human interface. While Jeff Bachiochi was researching alternatives to mechanical keypads, he came across the touchscreen display products from 4D Systems. He chose their inexpensive, low-power 2.4-inch, resistive touch screen as the basis for his display subsystem project. He makes use of the display’s Espressif Systems ESP8266 processor and Arduino IDE support to turn the display module into a serial terminal with a serial TTL connection to other equipment.

MICROCONTROLLERS ARE EVERYWHERE

Product Focus: 32-Bit Microcontrollers
As the workhorse of today’s embedded systems, 32-bit microcontrollers serve a wide variety of embedded applications-including the IoT. MCU vendors continue to add more connectivity, security and I/O functionality to their 32-bit product families. This Product Focus section updates readers on these trends and provides a product album of representative 32-bit MCU products.

Build a PIC32-Based Recording Studio
In this project article, learn how Cornell students Radhika Chinni, Brandon Quinlan, Raymond Xu built a miniature recording studio using the Microchip PIC32. It can be used as an electric keyboard with the additional functionality of recording and playing back multiple layers of sounds. There is also a microphone that the user can use to make custom recordings.

WONDERFUL WORLD OF WIRELESS

Low-Power Wireless Comms
The growth in demand for IoT solutions has fueled the need for products and technology to do wireless communication from low-power edge devices. Using technologies including Bluetooth Low-Energy (BLE), wireless radio frequency technology (LoRa) and others, embedded system developers are searching for ways to get efficient IoT connectivity while drawing as little power as possible. Circuit Cellar Chief Editor Jeff Child explores the latest technology trends and product developments in low-power wireless communications.

Bluetooth Mesh (Part 2)
Continuing his article series on Bluetooth mesh, this month Bob Japenga looks at the provisioning process required to get a device onto a Bluetooth mesh network. Then he examines two application examples and evaluates the various options for each example.

Build a Prescription Reminder
Pharmaceuticals prescribed by physicians are important to patients both old and young. But these medications will only do their job if taken according to a proper schedule. In this article, Devlin Gualtieri describes his Raspberry-Rx Prescription Reminder project, a network-accessible, the Wi-Fi connected, Raspberry Pi-based device that alerts a person when a particular medication should be administered. It also keeps a log of the actual times when medications were administered.

ENGINEERING TIPS, TRICKS AND TECHNIQUES

The Art of Current Probing
In his February column, Robert Lacoste talked about oscilloscope probes—or more specifically, voltage measurement probes. He explained how selecting the correct probe for a given measurement, and using it as it properly, is as important as having a good scope. In this article, Robert continues the discussion with another common measurement task: Accurately measuring current using an oscilloscope.

Software Engineering
There’s no doubt that achieving high software quality is human-driven endeavor. No amount of automated code development can substitute for best practices. A great tool for such efforts is the IEEE Computer Society’s Guide to the Software Engineering Body of Knowledge. In this article, George Novacek discusses some highlights of this resource, and why he has frequently consulted this document when preparing development plans.

HV Differential Probe
A high-voltage differential probe is a critical piece of test equipment for anyone who wants to safely examine high voltage signals on a standard oscilloscope. In his article, Andrew Levido describes his design of a high-voltage differential probe with features similar to commercial devices, but at a considerably lower cost. It uses just three op amps in a classic instrumentation amplifier configuration and provides a great exercise in precision analog design.

i.MX6-Based SBC Offers Global Cellular Expansion

VersaLogic has announced the Swordtail SBC that features models with either the NXP i.MX6 Quad (quad core), or the i.MX6 DualLite (dual core) processors. The SBC includes on-board Wi-Fi, Bluetooth and a cellular plug-in socket. At home in hostile environments the compact 95 mm x 95 mm computer board is rated for operation at full industrial temperature range (-40° to +85°C). Unlike many Arm-based “modules”, VersaLogic’s new Arm-based products are complete board-level computers. They do not require additional carrier cards, companion boards, connector break-out boards, or other add-ons to function.

Swordtail boards have been designed to enable transmission of maintenance or diagnostic information without the need for a wired connection. Wi-Fi and Bluetooth radios are included on board, and a NimbleLink Skywire socket supports a wide range of optional cellular and other wireless plug-ins. The Swordtail embedded computer board is suited for deployment into demanding industrial, smart city and transportation applications requiring rugged, long-life, power efficient and industrial temperature rated solutions.

Both Swordtail models feature soldered-on memory, and a variety of I/O connections. In addition to wireless capability, the on-board I/O includes a Gbit Ethernet port with network boot capability, two USB 2.0 Ports, serial I/O (RS-232), CAN Bus, microSD socket, and I2C interface. The boards can accommodate up to 32 GB of on-board flash storage.

Designed for COTS and MCOTS users, Swordtail can be modified for specific applications in quantities as low as 100 pieces. Many applications that require lower power or lower heat dissipation also need very high levels of reliability. Designed and tested for industrial temperature (-40° to +85°C) operation, VersaLogic’s Swordtail also meets MIL-STD-202H specifications to withstand high impact and vibration. Carefully engineered and validated, Swordtail excels in unforgiving environments.

Like other VersaLogic products, the Swordtail is designed for long-term availability (10+ year typical production lifecycle). The Swordtail single board computers (EPC-2702), will be available Q2 2019 from both VersaLogic and Digi-Key. OEM pricing starts at $236.

VersaLogic | www.versalogic.com

Low-Power Wireless MCUs Provide Real-Time Performance

STMicroelectronics (ST) has announced its latest Bluetooth offering, its STM32WBx5 dual-core wireless MCUs. The devices come with Bluetooth 5, OpenThread and ZigBee 3.0 connectivity combined with ultra-low-power performance. Fusing features of ST’s STM32L4 Arm Cortex-M4 MCUs and in-house radio managed by a dedicated Cortex-M0+, the STM32WBx5 is power-conscious yet capable of concurrent wireless-protocol and real-time application execution. It is well suited to remote sensors, wearable trackers, building automation controllers, computer peripherals, drones and other IoT devices.
Security features of the STM32WBx5 MCUs include Customer Key Storage (CKS), Public Key Authorization (PKA), and encryption engines for the radio MAC and upper layers. The MCUs have up to 1 MB of on-chip flash and a Quad-SPI port for efficient connection to external memory, if needed. Additional features include crystal-less Full-Speed USB, 32 MHz RF oscillator with trimming capacitors, a touch-sense controller, LCD controller, analog peripherals and multiple timers and watchdogs. The balun for antenna connection is also integrated.

Leveraging ultra-low-power technologies of the STM32L4 line, STM32WBx5 MCUs feature multiple power-saving modes including 13 nA shutdown mode, adaptive voltage scaling, and the adaptive real-time (ART) accelerator to maximize energy efficiency and ensure long-lasting performance in self-powered applications. The integrated radio transmitter is optimized for high RF performance and low power consumption to maximize battery runtime. The RF output power is programmable up to +6 dBm in 1 dB increments, and the MCU draws only 5.2 mA when transmitting at 0 dB. Receive sensitivity is -96 dBm for BLE communication at 1mbps. Designed for a link budget of 102 dB, the radio ensures robust communication over long connection distances and includes support for an external Power Amplifier (PA).

STMicroelectronics | www.st.com

 

BLE Multicore MCUs Embed Arm Cortex M33 CPU

Dialog Semiconductor has announced its SmartBond DA1469x family of Bluetooth low energy SoCs, a range of multi-core MCUs for wireless connectivity. The devices’ three integrated cores have each been carefully chosen for their capabilities to sense, process and communicate between connected devices, says Dialog. To provide the devices’ processing power, the DA1469x product family is the first wireless MCU in production with a dedicated application processor based on the Arm Cortex-M33 CPU, according to Dialog.

The M33 is aimed at compute intensive applications, such as high-end fitness trackers, advanced smart home devices and virtual reality game controllers. The DA1469x devices have a new integrated radio that offers double the range compared to its predecessor together with an Arm Cortex-M0+ based software-programmable packet engine that implements protocols and provides full flexibility for wireless communication.

On the connectivity front, an emerging application is for manufacturers to deploy accurate positioning through the Angle of Arrival and Angle of Departure features of the newly introduced Bluetooth 5.1 standard. With its world-class radio front end performance and configurable protocol engine, the DA1469x complies with this new version of the standard and opens new opportunities for devices that require accurate indoor positioning such as building access and remote keyless entry systems.

To enhance the sensing functionality of the DA1469x, the M33 application processor and M0+ protocol engine is complemented with a Sensor Node Controller (SNC), which is based on a programmable micro-DSP that runs autonomously and independently processes data from the sensors connected to its digital and analog interfaces, waking the application processor only when needed. In addition to this power-saving feature, a state-of-the-art Power Management Unit (PMU) provides best-in-class power management by controlling the different processing cores and only activating them as needed.

The SoCs feature up to 144 DMIPS, 512 KB of RAM, memory protection, a floating-point unit, a dedicated crypto engine to enable end-to-end security and expandable memories, ensuring a wide range of advanced smart device applications can be implemented using the chipset family and supporting a range of key value-add interfaces to extend functionality even further.

The PMU also provides three regulated power rails and one LDO output to supply external system components, removing the requirement of a separate power management IC (PMIC). Additionally, the DA169x product family come equipped with a range of key value-add interfaces including a display driver, an audio interface, USB, a high-accuracy ADC, a haptic driver capable of driving both ERM and LRA motors as well as a programmable stepping motor controller.

Developers working with the DA1469x product family can make use of Dialog’s software development suite – SmartSnippets – which gives them the tools they need to develop best-in-class applications on the new MCUs. The DA1469x variants will start volume production in the first half of 2019. Samples and development kits are available now.

Dialog Semiconductor | www.dialog-semiconductor.com

 

Low-Power Bluetooth MCUs Deliver Mesh Networking

Cypress Semiconductor has announced it is sampling two low-power, dual-mode Bluetooth 5.0 and Bluetooth Low Energy (BLE) MCUs that include support for Bluetooth mesh networking for the Internet of Things (IoT). The new CYW20819 and CYW20820 MCUs each provide simultaneous Bluetooth 5.0 audio and BLE connections.

The CYW20819 Bluetooth/BLE MCU has the ability to maintain Serial Port Profile (SPP) protocol connections and Bluetooth mesh connections simultaneously. The CYW20820 offers the same features and integrates a power amplifier (PA) with up to 10 dBm output power for long-range applications up to 400 m and whole-home coverage. This provides classic Bluetooth tablet and smartphone connections while enabling a low-power, standards-compliant mesh network for sensor-based smart home or enterprise applications.

Both MCUs embed the Arm Cortex-M4 core. It enables operation at 60% lower active power for connected 200-ms beacons compared to current solutions—delivering up to 123 days of battery life from a CR2032 coin cell battery. Previously, users needed to be in the immediate vicinity of a Bluetooth device to control it without an added hub. Using Bluetooth mesh networking technology, combined with the high-performance integrated PA in the CYW20820, the devices within a network can communicate with each other.

Cypress Semiconductor | www.cypress.com

Wi-Fi 6 / Bluetooth Combo Chips Enhance Automotive Infotainment

Cypress Semiconductor has announced a trio of new products, including Wi-Fi / Bluetooth combo chipsets and supporting software serve as application development platforms that enable multiple users to connect and seamlessly stream unique content to as many as 10 mobile devices simultaneously. The new infotainment platforms include a Wi-Fi 6 (802.11ax) and Bluetooth combo solution that features Cypress’ Real Simultaneous Dual Band (RSDB) architecture. RSDB has become the de facto standard for premium connected infotainment experiences, enabling two unique data streams to run at full throughput simultaneously by integrating two complete Wi-Fi subsystems into a single chip. Wi-Fi 6 enables gigabit-level throughput and improves reliability for content streaming to multiple devices at once.
Cypress also added two Wi-Fi 5 (802.11ac) and Bluetooth combo solutions to its portfolio, empowering car makers and automotive system suppliers with a scalable platform solution to address a wide range of vehicles with a uniform software architecture that minimizes development and system integration costs.

According to Cypress, premium infotainment systems require high-throughput, multi-role, concurrent operation to implement wireless mirroring for applications such as Apple CarPlay, Android Auto and Mirrorlink. Cypress’ Wi-Fi and Bluetooth combo solutions meet these needs and also offer simultaneous Wi-Fi Hotspot and content access, and multi-band/multi-radio coexistence for video and Bluetooth audio. The Cypress CYW89650 2×2 plus 2×2 Wi-Fi 6 and Bluetooth 5.0 combo solution delivers more than 1G bps throughput, and the RSDB architecture enables concurrent operation for these use cases in high-performance infotainment systems without audio or video degradation.

The new CYW89459 2×2 Wi-Fi 5 and Bluetooth 5.0 combo with RSDB builds on the success of Cypress’ existing automotive Wi-Fi 5 solutions, enabling more connected devices to the head unit and including emerging features such as WPA3 security, Wi-Fi Location and Wi-Fi Aware. Together with the new cost-effective CYW89373 1×1 Wi-Fi 5 and Bluetooth 5.0 combo, the portfolio provides mass market to luxury class vehicles with advanced wireless performance and medium coexistence management for an uninterrupted entertainment experience.

Cypress’ automotive wireless solutions are fully automotive qualified with AEC-Q100 grade-3 validation. Cypress’ existing solutions have been designed in by numerous top-tier car OEMs and automotive suppliers and are in production vehicles today supporting infotainment and telematics applications such as smartphone screen-mirroring, content streaming and Bluetooth voice connectivity in car kits.

Cypress Semiconductor | www.cypress.com

 

 

Guitar Video Game Uses PIC32

Realism Revamp

While music-playing video games are fun, their user interfaces tend to leave a lot to be desired. Learn how these two Cornell students designed and built a musical video game that’s interfaced using a custom-built wireless guitar controller. The game is run on a Microchip PIC32 MCU and has a TFT LCD display to show notes that move across the screen toward a strum region.

By Jake Podell and Jonah Wexler

While many popular video games involve playing a musical instrument, the controllers used by the player are not the greatest. These controllers are often made of cheap plastic, and poorly reflect the feeling of playing the real instrument. We have created a fun and competitive musical video game, which is interfaced with using a custom-built wireless guitar controller (Figure 1 and Figure 2). The motivation for the project was to experiment with video game interfaces that simulate the real-world objects that inspired them.

Figure 1
Front of the guitar controller. Note the strings and plectrum.

Figure 2
Back of the guitar controller

The video game is run on a Microchip PIC32 microcontroller [1]. We use a thin-film-transistor LCD display (TFT) to display notes that move across the screen toward a strum region. The user plays notes on a wireless mock guitar, which is built with carbon-impregnated elastic as strings and a conducting plectrum for the guitar pick. The game program running on the PIC32 produces guitar plucks and undertones of the song, while keeping track of the user’s score. The guitar is connected to an Arduino Uno and Bluetooth control center, which communicates wirelessly to the PIC32.

The controller was designed to simulate the natural motion of playing a guitar as closely as possible. We broke down that motion on a real guitar into two parts. First, users select the sound they want to play by holding the appropriate strings down. Second, the users play the sound by strumming the strings. To have a controller that resembled a real guitar, we wanted to abide by those two intuitive motions.

Fret & Strum Circuits

At the top of the guitar controller is the fret board. This is where the users can select the sounds they want to play. Throughout the system, the sound is represented as a nibble (4 bits), so we use 4 strings to select the sound.

Each string works as an active-low push-button. The strings are made of carbon-impregnated elastic, which feels and moves like elastic but is also conductive. Each string was wrapped in 30-gauge copper wire, to ensure solid contact with any conductive surfaces. The strings are each connected to screws that run through the fret board and connect the strings to the fret circuit (Figure 3).

Figure 3
Complete controller circuit schematic (on guitar).

The purpose of the fret circuit is to detect changes in voltage across four lines. Each line is branched off a power rail and connected across a string to an input pin on an Arduino Uno. Current runs from the power rail across each string to its respective input pin, which reads a HIGH signal. To detect a push on the string, we grounded the surface into which the string is pushed. By wrapping the fret board in a grounded conductive pad and pushing the string into the fret board, we are able to ground our signal before it can reach the input pin. When this occurs, the associated pin reads a LOW signal, which is interpreted as a press of the string by our system.

Along with the fret circuit, we needed a way to detect strums. The strum circuit is similar in its use of a copper-wrapped, carbon-impregnated elastic string. The string is connected through the fret board to an input pin on the Arduino, but is not powered. Without any external contact, the pin reads LOW. When voltage is applied to the string, the pin reads HIGH, detecting the strum. To mimic the strumming motion most accurately, we used a guitar pick to apply the voltage to the string. The pick is wrapped in a conductive material (aluminum foil), which is connected to the power rail. Contact of the pick applies voltage to the string, which on a rising edge denotes a strum.

Figure 4
Shown here is a block diagram of the controller signals.

As shown in Figure 4, the direct user interface for the player is the guitar controller. The physical interaction with the guitar is converted to an encoded signal by an Arduino mounted to the back of the guitar. The Arduino Uno polls for a signal that denotes a strum, and then reads the strum pattern across the four strings. The signal is sent over USB serial to a Bluetooth control station, which uses a Python script to broadcast the signal to an Adafruit Bluetooth LE module. The laptop that we used as a Bluetooth control station established a link between the controller and the Bluetooth receiver, and was paramount to the debugging and testing of our system. Finally, the Bluetooth module communicated over UART with the PIC, which interpreted the user’s signal in the context of the game [2].  …

Read the full article in the March 344 issue of Circuit Cellar
(Full article word count: 3271 words; Figure count: 10 Figures.)

Watch the project video here:

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!

Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

March Circuit Cellar: Sneak Preview

The March issue of Circuit Cellar magazine is out next week!. We’ve rounded up an outstanding selection of in-depth embedded electronics articles just for you, and rustled them all into our 84-page magazine.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of March 2019 Circuit Cellar:

POWER MAKES IT POSSIBLE

Power Issues for Wearables
Wearable devices put extreme demands on the embedded electronics that make them work—and power is front and center among those demands. Devices spanning across the consumer, fitness and medical markets all need an advanced power source and power management technologies to perform as expected. Circuit Cellar Chief Editor Jeff Child examines how today’s microcontroller and power electronics are enabling today’s wearable products.

Power Supplies for Medical Systems
Over the past year, there’s been an increasing trend toward new products that have some sort of application or industry focus. That means supplies that include either certifications, special performance specs or tailored packaging intended for a specific application area such as medical. This Product Focus section updates readers on these technology trends and provides a product gallery of representative medical-focused power supplies.

DESIGN RESOURCES, ISSUES AND CHALLENGES

Flex PCB Design Services
While not exactly a brand-new technology, flexible printed circuit boards are a critical part of many of today’s challenging embedded system applications from wearable devices to mobile healthcare electronics. Circuit Cellar’s Editor-in-Chief, Jeff Child, explores the Flex PCB design capabilities available today and whose providing them.

Design Flow Ensures Automotive Safety
Fault analysis has been around for years, and many methods have been created to optimize evaluation of hundreds of concurrent faults in specialized simulators. However, there are many challenges in running a fault campaign. Mentor’s Doug Smith presents an improved formal verification flow that reduces the number of faults while simultaneously providing much higher quality of results.

Cooling Electronic Systems
Any good embedded system engineer knows that heat is the enemy of reliability. As new systems cram more functionality at higher speeds into ever smaller packages, it’s no wonder an increasing amount of engineering mindshare is focusing on cooling electronic systems. In this article, George Novacek reviews some of the essential math and science around cooling and looks are several cooling technologies—from cold pates to heat pipes.

MICROCONTROLLER PROJECTS WITH ALL THE DETAILS

MCU-Based Solution Links USB to Legacy PC I/O
In PCs, serial interfaces have now been just about completely replaced by USB. But many of those interfaces are still used in control and monitoring embedded systems. In this project article, Hossam Abdelbaki describes his ATSTAMP design. ATSTAMP is an MCS-51 (8051) compatible microcontroller chip that can be connected to the USB port of any PC via any USB-to-serial bridge currently available in the market.

Pet Collar Uses GPS and Wi-Fi
The PIC32 has proven effective for a myriad of applications, so why not a dog collar? Learn how Cornell graduates Vidya Ramesh and Vaidehi Garg built a GPS-enabled pet collar prototype. The article discusses the hardware peripherals used in the project, the setup, and the software. It also describes the motivation behind the project, and possibilities to expand the project in the future.

Guitar Video Game Uses PIC32
While music-playing video games are fun, their user interfaces tend leave a lot to be desired. Learn how Cornell students Jake Podell and Jonah Wexler designed and built a musical video game that’s interfaced with using a custom-built wireless guitar controller. The game is run on a Microchip PIC32 MCU and uses a TFT LCD display to show notes that move across the screen towards a strum region.

… AND MORE FROM OUR EXPERT COLUMNISTS

Non-Evasive Current Sensor
Gone are the days when you could do most of your own maintenance on your car’s engine. Today they’re sophisticated electronic systems. But there are some things you can do with the right tools. In his article, By Jeff Bachiochi talks about how using the timing light on his car engine introduced him to non-contact sensor technology. He talks about the types of probes available and how to use them to read the magnitude of alternating current (AC

Impedance Spectroscopy using the AD5933
Impedance spectroscopy is the measurement of a device’s impedance (or resistance) over a range of frequencies. Brian Millier has designed many voltammographs and conductivity meters over the years. But he recently came across the Analog Devices AD5933 chip made by which performs most all the functions needed to do impedance spectroscopy. In this article, explores the technology, circuit design and software that serve these efforts.

Side-Channel Power Analysis
Side-channel power analysis is a method of breaking security on embedded systems, and something Colin O’Flynn has covered extensively in his column. This time Colin shows how you can prove some of the fundamental assumptions that underpin side-channel power analysis. He uses the open-source ChipWhisperer project with Jupyter notebooks for easy interactive evaluation.

Open-Spec, i.MX6 UL-Based SBC Boasts DAQ and Wireless Features

By Eric Brown

Technologic Systems has announced an engineering sampling program for a wireless- and data acquisition focused SBC with open specifications that runs Debian Linux on NXP’s low-power i.MX6 UL SoC. The -40°C to 85°C tolerant TS-7180 is designed for industrial applications such as industrial control automation and remote monitoring management, including unmanned control room, industrial automation, automatic asset management and asset tracking.


 
TS-7180, front and back
(click images to enlarge)
Like Technologic’s i.MX6-based TS-7970, the TS-7180 has a 122 mm x 112 mm footprint. Like its 119 x 94mm TS-7553-V2 SBC and sandwich-style, 75 mm x 55 mm TS-4100, it features the low power Cortex-A7 based i.MX6 UL, enabling the board to run at a typical 0.91 W.

Like the TS-4100, the new SBC includes an FPGA. On the TS-4100 this was described as a Lattice MachX02 FPGA with an open source, programmable ZPU soft core for controlling GPIO, SPI, I2C and daughtercards. Here, the manual mentions only that the unnamed FPGA enables the optional, 3x 16-bit wide quadrature counters, which are accessible via I2C registers. The “quadrature and edge-counter inputs provide access to” dual, optional tachometers, says Technologic.


 
TS-7180 (left) and block diagram
(click images to enlarge)
The quadrature counters and tachometers are part of a DAQ subsystem with screw terminal interfaces that is not available on its other i.MX6 UL boards. The digital acquisition features also include analog and digital inputs, DIO, and PWM.

Technologic boards typically have a lot of wireless options, but the TS-7180 goes even further by adding a cellular modem socket that supports either MultiTech or NimbeLink wireless modules. You also get Wi-Fi/BT, optional GPS, and a socket for Digi’s XBee modules, which include modems for RF, 802.15.4, DigiMesh, and more. There are also dual 10/100 Ethernet port with an optional Power-over-Ethernet daughtercard.


 
TS-7180 with cellular socket populated with NimbeLink wireless module (left) and with populated XBee socket
(click images to enlarge)
The TS-7180 ships with up to 1 GB RAM and 2 KB FRAM (Cypress 16 kbit FM25L16B), which “provides reliable data retention while eliminating the complexities, overhead, and system level reliability problems caused by EEPROM and other nonvolatile memories,” says Technologic. You also get a microSD slot and 4GB eMMC, which is “configurable as 2 GB pSLC mode for additional system integrity.”

The SBC provides a USB 2.0 host port, as well as micro-USB OTG and serial console ports. There’a also mention of a “coming soon” internal USB interface. Five serial interfaces, including TTL and RS485 ports, are available on screw terminals along with a CAN port.

Other features include an RTC and an optional enclosure and 9-axis IMU. The board runs on an 8-30V input with optional external power supply and Technologic’s TS-SILO SuperCap for 30 seconds of battery backup.

As usual, the board is backed up with open schematics and comprehensive documentation. If it wasn’t over our $200 limit, it would be included in our new catalog of 122 open-spec hacker boards. Two SKUs are available: a basic $315 model with 512MB RAM and a $381 model with 1GB RAM that adds GPS and IMU.

Specifications listed for the TS-7180 include:

  • Processor — NXP i.MX6UL (1x Cortex-A7 core @ up to 696MHz); FPGA
  • Memory/storage:
    • 512MB or 1GB DDR3 RAM
    • 2KB FRAM
    • 4GB MLC eMMC; opt. standard eMMC up to 64GB (special request)
    • MicroSD slot
  • Wireless:
    • 802.11b/g/n with antenna
    • Bluetooth 4.0 BLE
    • Cell modem socket (MultiTech or NimbeLink)
    • Optional GPS
    • XBee interface
  • Networking – 2x 10/100 Ethernet ports with optional PoE via daughtercard
  • Other I/O:
    • USB 2.0 host port
    • Micro-USB OTG port
    • Micro-USB serial console device port
    • 4x serial (1x TTL UART, 3x RS-232) via screw terminals
    • RS-485 (via screw terminal)
    • CAN (via screw terminal)
    • SPI, I2C headers
  • DAQ I/O:
    • 7x DIO (30 VDC tolerant) via screw terminal
    • 4x analog inputs (10V or 4-20 mA) via screw terminal
    • 4x digital inputs via screw terminal
    • PWM header
    • 2x optional quadrature counters
    • 2x Optional tachometers
  • Other features — battery backed RTC; temp. sensor; optional 9-axis accelerometer/gyro; TS-SILO Super Capacitor; optional enclosure
  • Power — 8-30 DC input; 0.91W typical consumption (0.59 min to 6.37 max); optional 24V external DIN-rail mountable “PS-MDR-20-24” power supply
  • Operating temperature — -40 to 85°C
  • Dimensions — 122 x 112mm
  • Operating system — Linux 4.1.15 kernel with Debian image

Further information

The TS-7180 is available in an engineering sampling program for $315 with 512 MB RAM or $381 model with 1GB RAM, GPS, and IMU. 100-unit pricing is $254 and $320. More information may be found in Technologic’s TS-7180 announcement and product page.

This article originally appeared on LinuxGizmos.com on January 4.

Technologic Systems | www.embeddedarm.com

 

Nordic Semi’s BLE SoC Selected for Ultra Low Power IoT Module

Nordic Semiconductor has announced that Nanopower has selected Nordic’s nRF52832 Bluetooth Low Energy (Bluetooth LE) System-on-Chip (SoC) to provide the wireless connectivity for its nP-BLE52 module, designed for developers of IoT applications with highly restricted power budgets.

The nP-BLE52 module employs a proprietary power management IC—integrated alongside Nordic’s nRF52832 Wafer-Level Chip Scale Package (WL-CSP) SoC in a System-in-Package (SiP)—which enables it to cut power to the SoC, putting it in sleep mode, before waking it up a pre-set time and in the same state as before it was put to sleep. In doing so the SoC’s power consumption in sleep mode is reduced to 10 nA, making it well suited for IoT applications where battery life is critical by potentially increasing cell lifespan 10x.

In active mode, the nRF52832 SoC runs normally. The SoC has been engineered to minimize power consumption with features such as the 2.4GHz radio’s 5.5mA peak RX/TX currents and a fully-automatic power management system. Once the Nordic SoC has completed its tasks, it instructs the nP-BLE52 to put it to sleep and wake it up again at the pre-set time. The nP-BLE52 then stores the Nordics SoC’s state variables and waits until the nRF52832 SoC needs to be powered up again. On wake-up, the device uploads the previous state variables, allowing the Nordic SoC to be restored to the same operational state as before the power was cut. The SoC’s start-up is much more rapid than if it was activated from a non-powered mode.

The nP-BLE52 module also features a low power MCU which can be set to handle external sensors and actuators when the Nordic chip is switched off. In this state, the module still monitors sensors and buffer readings and can trigger wake-ups if these readings are above predetermined thresholds, while consuming less than 1 uA. The nP-BLE52 also integrates an embedded inertial measurement unit (IMU).

The module’s power management is controlled through a simple API, whereby the user can predetermine the duration of the Nordic SoC’s sleep mode, set the wake-up time and date parameters, and select pins for other on/off triggers.

The module offers IoT developers several advantages, either extending battery life and/or reducing the size of the battery required to power the application thereby reducing the end-product footprint. Longer battery life also reduces or eliminates battery swaps and enables the developer to better adjust for remaining useful battery life as the battery discharges. The module is suitable for any battery-powered device which is not required to be constantly active, for example asset tracking, remote monitoring, beacons, and some smart-home applications.

The nRF52832 WL-CSP SoC measures just 3.0 mm by 3.2mm while offering all the features of the conventionally-packaged chip. The nRF52832 is a powerful multiprotocol SoC ideally suited for Bluetooth LE and 2.4 GHz ultra low-power wireless applications. It combines an 64 MHz, 32-bit Arm Cortex M4F processor with a 2.4 GHz multiprotocol radio (supporting Bluetooth 5, ANT, and proprietary 2.4 GHz RF software) featuring -96dB RX sensitivity, with 512kB Flash memory and 64kB RAM.

The WL-CSP SoC is supplied with Nordic’s S132 SoftDevice, a Bluetooth 5-certifed RF software protocol stack for building advanced Bluetooth LE applications. The S132 SoftDevice features Central, Peripheral, Broadcaster, and Observer Bluetooth LE roles, supports up to twenty connections, and enables concurrent role operation. Nordic’s unique software architecture provides clear separation between the RF protocol software and the developer’s application code, easing product development.

Nordic Semiconductor | www.nordicsemi.com

February Circuit Cellar: Sneak Preview

The February issue of Circuit Cellar magazine is coming soon. We’ve raised up a bumper crop of in-depth embedded electronics articles just for you, and packed ’em into our 84-page magazine.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of February 2019 Circuit Cellar:

MCUs ARE EVERYWHERE, DOING EVERYTHING

Electronics for Automotive Infotainment
As automotive dashboard displays get more sophisticated, information and entertainment are merging into so-called infotainment systems. That’s driving a need for powerful MCU- and MPU-based solutions that support the connectivity, computing and interfacing needs particular to these system designs. In this article, Circuit Cellar’s Editor-in-Chief, Jeff Child, looks at the technology and trends feuling automotive infotainment.

Inductive Sensing with PSoC MCUs
Inductive sensing is shaping up to be the next big thing for touch technology. It’s suited for applications involving metal-over-touch situations in automotive, industrial and other similar systems. In his article, Nishant Mittal explores the science and technology of inductive sensing. He then describes a complete system design, along with firmware, for an inductive sensing solution based on Cypress Semiconductor’s PSoC microcontroller.

Build a Self-Correcting LED Clock
In North America, most radio-controlled clocks use WWVB’s transmissions to set the correct time. WWVB is a Colorado-based time signal radio station near. Learn how Cornell graduates Eldar Slobodyan and Jason Ben Nathan designed and built a prototype of a Digital WWVB Clock. The project’s main components include a Microchip PIC32 MCU, an external oscillator and a display.

WE’VE GOT THE POWER

Product Focus: ADCs and DACs
Analog-to-digital converters (ADCs) and digital-to-analog converters (DACs) are two of the key IC components that enable digital systems to interact with the real world. Makers of analog ICs are constantly evolving their DAC and ADC chips pushing the barriers of resolution and speeds. This new Product Focus section updates readers on this technology and provides a product album of representative ADC and DAC products.

Building a Generator Control System
Three phase electrical power is a critical technology for heavy machinery. Learn how US Coast Guard Academy students Kent Altobelli and Caleb Stewart built a physical generator set model capable of producing three phase electricity. The article steps through the power sensors, master controller and DC-DC conversion design choices they faced with this project.

EMBEDDED COMPUTING FOR YOUR SYSTEM DESIGN

Non-Standard Single Board Computers
Although standard-form factor embedded computers provide a lot of value, many applications demand that form take priority over function. That’s where non-standard boards shine. The majority of non-standard boards tend to be extremely compact, and well suited for size-constrained system designs. Circuit Cellar Chief Editor Jeff Child explores the latest technology trends and product developments in non-standard SBCs.

Thermal Management in machine learning
Artificial intelligence and machine learning continue to move toward center stage. But the powerful processing they require is tied to high power dissipation that results in a lot of heat to manage. In his article, Tom Gregory from 6SigmaET explores the alternatives available today with a special look at cooling Google’s Tensor Processor Unit 3.0 (TPUv3) which was designed with machine learning in mind.

… AND MORE FROM OUR EXPERT COLUMNISTS

Bluetooth Mesh (Part 1)
Wireless mesh networks are being widely deployed in a wide variety of settings. In this article, Bob Japenga begins his series on Bluetooth mesh. He starts with defining what a mesh network is, then looks at two alternatives available to you as embedded systems designers.

Implementing Time Technology
Many embedded systems need to make use of synchronized time information. In this article, Jeff Bachiochi explores the history of time measurement and how it’s led to NTP and other modern technologies for coordinating universal date and time. Using Arduino and the Espressif System’s ESP32, Jeff then goes through the steps needed to enable your embedded system to request, retrieve and display the synchronized date and time to a display.

Infrared Sensors
Infrared sensing technology has broad application ranging from motion detection in security systems to proximity switches in consumer devices. In this article, George Novacek looks at the science, technology and circuitry of infrared sensors. He also discusses the various types of infrared sensing technologies and how to use them.

The Art of Voltage Probing
Using the right tool for the right job is a basic tenant of electronics engineering. In this article, Robert Lacoste explores one of the most common tools on an engineer’s bench: oscilloscope probes, and in particular the voltage measurement probe. He looks and the different types of voltage probes as well as the techniques to use them effectively and safely.

IoT Wireless Sensor Nodes Target LPWAN Deployments

Advantech has released its WISE-4210 series of IoT wireless sensor products, including a wireless LPWAN-to-Ethernet AP and three wireless sensor nodes. The nodes include tthe WISE-4210-S231 internal temperature and humidity sensor (shown), WISE-4210-S251 sensor node with 6-channel digital input and a serial port and WISE-4210-S214 sensor node with 4-channel analog input and 4-channel digital input. The device-to-cloud total solution provided by this series of LPWAN products allows IT, OT, and cloud platform system developers to easily implement a private LPWAN, acquire field site data, and achieve seamless integration with both public cloud, such as Microsoft Azure and private enterprise clouds.

Based on proprietary LPWAN technology, the new WISE-4210 series products minimize frequency band interference, support a wider data transmission range, are compatible with lithium batteries, and enable cloud platform integration. By locking the sub-GHz frequency band, WISE-4210 series products significantly reduce susceptibility to interference for 2.4 GHz wireless communication technologies such as Wi-Fi, Bluetooth and Zigbee.

By supporting a network transmission distance of up to 5 km, the WISE-4210 series meets the requirements of large-scale interior environments such as data centers, factories and warehouses for collecting and applying a wide range of interior data. With LPWAN technology, only three 3.6 V lithium batteries are required to operate the WISE-4210 sensor nodes for up to five years, eliminating the need for additional wiring and frequent recharging. Additionally, the WISE-4210 series supports multiple transfer protocols, including MQTT, RESTful, Modbus/TCP and Modbus/RTU, for simple device-to-cloud connections.

The WISE-4210-S231 sensor node with built-in temperature and humidity sensor collects relevant data form factories, data centers or warehouse management without requiring the installation of additional sensors or gateways, making it ideal for indoor temperature and humidity control applications. Meanwhile, the WISE-4210-S251 sensor node, which provides 6-channel digital input and a single RS-485 port, and the WISE-4210-S214 sensor node, which provides four-channel analog input and 4-channel digital input, can be used to collect electricity meter, pressure gauge, thermometer, and power consumption data from factory facilities.

The three wireless nodes support direct data transmissions to SCADA and cloud platforms through a WISE-4210-AP, eliminating the need for a separate data conversion device. The WISE-4210-AP access point is capable of managing up to 64 nodes simultaneously, and thus can simplify overall infrastructure and save installation space.

Advantech | www.advantech.com

PSoC MCU Variant is Purpose-Built for IoT Edge Processing

Cypress Semiconductor is expanding its Internet of Things (IoT) solutions portfolio with a new member of its ultra-low-power PSoC 6 microcontroller (MCU) family. The new PSoC 6 MCU is purpose-built to address the growing needs for computing, connectivity and storage in IoT edge devices. The new MCUs include expanded embedded memory with 2 MB Flash and 1 MB SRAM to support compute-intensive algorithms, connectivity stacks and data logging.

At the same time, Cypress has announced two new development kits for the PSoC 6 family, enabling developers to immediately leverage the industry’s lowest power, most flexible dual-core MCU with hardware-based security—to prolong battery life, deliver efficient processing and sensing, and protect sensitive user data. PSoC 6 is empowering millions of IoT products today, providing the most secure and low-power processing available.
Developers can evaluate the new PSoC 6 MCUs with expanded embedded memory using Cypress’ new PSoC 6 Wi-Fi BT Prototyping Kit (CY8CPROTO-062-4343W) (shown). This $30 kit features peripheral modules including Cypress’ industry-leading CapSense capacitive-sensing technology, PDM-PCM microphones, and memory expansion modules, enabling quick evaluation and easy development. The kit is supported by Cypress’ ModusToolbox software suite that provides easy-to-use tools for application development in a familiar MCU integrated development environment (IDE).

To streamline development of products with Bluetooth Low Energy (BLE) 5.0 connectivity, Cypress has introduced the PSoC 6 BLE Prototyping Kit (CY8CPROTO-063-BLE). This $20 kit features a fully-certified CYBLE-416045-02 BLE module—a turnkey solution that includes a PSoC 63 MCU, onboard crystal oscillators, trace antenna and passive components.

Cypress’ PSoC 6 MCUs are production qualified today and are in-stock at authorized distributors. The new PSoC 6 MCUs with expanded embedded memory are currently sampling and are expected to be in production in the first quarter of 2019. The PSoC 6 Wi-Fi BT Prototyping Kit (CY8CPROTO-062-4343W) is available for $30 and the PSoC 6 BLE Prototyping Kit (CY8CPROTO-063-BLE) is available for $20.

Cypress Semiconductor | www.cypress.com