RN4020 Bluetooth Smart Module

Microchip Technology recently announced its first Bluetooth 4.1 Low Energy module, the RN4020, which carries both worldwide regulatory certifications and is Bluetooth Special Interest Group (SIG) certified. The integrated Bluetooth Low Energy (BTLE) stack and on-board support for the common SIG low-energy profiles speeds time to market while ensuring Bluetooth compatibility, eliminating expensive certification costs and reducing development risks. The module comes preloaded with the Microchip Low-energy Data Profile (MLDP), which enables designers to easily stream any type of data across the BTLE link. MicrochipRN4020

The RN4020 is a stack-on-board module, so it can connect to any microcontroller with a UART interface, including hundreds of PIC MCUs, or it can operate standalone without an MCU for basic data collection and communication, such as a beacon or sensor. Standalone operation is facilitated by Microchip’s unique no-compile scripting, which allows module configuration via a simple ASCII command interface—no tools or compiling are required.

The RN4020 Bluetooth Low Energy Module is available for $6.78 each in 1,000-unit quantities.

[Via Microchip Technology]

July Issue Offers Data-Gathering Designs and More

The concept of the wireless body-area network (WBAN), a network of wireless wearable computing devices, holds great promise in health-care applications.

Such a network could integrate implanted or wearable sensors that provide continuous mobile health (mHealth) monitoring of a person’s most important “vitals”—from calorie intake to step count, insulin to oxygen levels, and heart rate to blood pressure. It could also provide real-time updates to medical records through the Internet and alert rescue or health-care workers to emergencies such as heart failures or seizures.

Data Gathering DesignsConceivably, the WBAN would need some sort of controller, a wearable computational “hub” that would track the data being collected by all the sensors, limit and authorize access to that information, and securely transmit it to other devices or medical providers.

Circuit Cellar’s July issue (now available online for membership download or single-issue purchase)  features an essay by Clemson University researcher Vivian Genaro Motti, who discusses her participation in the federally funded Amulet project.

Amulet’s Clemson and Dartmouth College research team is prototyping pieces of “computational jewelry” that can serve as a body-area network’s mHealth hub while being discreetly worn as a bracelet or pendant. Motti’s essay elaborates on Amulet’s hardware and software architecture.

Motti isn’t the only one aware of the keen interest in WBANs and mHealth. In an interview in the July issue, Shiyan Hu, a professor whose expertise includes very-large-scale integration (VLSI), says that many of his students are exploring “portable or wearable electronics targeting health-care applications.”

This bracelet-style Amulet developer prototype has an easily accessible board.

This bracelet-style Amulet developer prototype has an easily accessible board.

Today’s mHealth market is evident in the variety of health and fitness apps available for your smartphone. But the most sophisticated mHealth technologies are not yet accessible to embedded electronics enthusiasts. (However, Amulet has created a developer prototype with an easily accessible board for tests.)

But market demand tends to increase access to new technologies. A BCC Research report predicts the mHealth market, which hit $1.5 billion in 2012, will increase to $21.5 billion by 2018. Evolving smartphones, better wireless coverage, and demands for remote patient monitoring are fueling the growth. So you can anticipate more designers and developers will be exploring this area of wearable electronics.

AND THAT’S NOT ALL…
In addition to giving you a glimpse of technology on the horizon, the July issue provides our staple of interesting projects and DIY tips you can adapt at your own workbench. For example, this issue includes articles about microcontroller-based strobe photography; a thermal monitoring system using ANT+ wireless technology; a home solar-power setup; and reconfiguring and serial backpacking to enhance LCD user interfaces.

We’re also improving on an “old” idea. Some readers may recall contributor Tom Struzik’s 2010 article about his design for a Bluetooth audio adapter for his car (“Wireless Data Exchange: Build a 2,700-lb. Bluetooth Headset,” Circuit Cellar 240).

In the July issue, Struzik writes about how he solved one problem with his design: how to implement a power supply to keep the phone and the Bluetooth adapter charged.

“To run both, I needed a clean, quiet, 5-V USB-compatible power supply,” Struzik says. “It needed to be capable of providing almost 2 A of peak current, most of which would be used for the smartphone. In addition, having an in-car, high-current USB power supply would be good for charging other devices (e.g., an iPhone or iPad).”

Struzik’s July article describes how he built a 5-V/2-A automotive isolated switching power supply. The first step was using a SPICE program to model the power supply before constructing and testing an actual circuit. Struzik provides something extra with his article: a video tutorial explaining how to use Linear Technology’s LTspice simulator program for switching design. It may help you design your own circuit.

This is Tom Struzik's initial test circuit board, post hacking. A Zener diode is shown in the upper right, a multi-turn trimmer for feedback resistor is in the center, a snubber capacitor and “stacked” surface-mount design (SMD) resistors are on the center left, USB D+/D– voltage adjust trimmers are on top center, and a “test point” is shown in the far lower left. If you’re looking for the 5-V low dropout (LDO) regulator, it’s on the underside of the board in this design.

This is Tom Struzik’s initial test circuit board, post hacking. A Zener diode is shown in the upper right, a multi-turn trimmer for feedback resistor is in the center, a snubber capacitor and “stacked” surface-mount design (SMD) resistors are on the center left, USB D+/D– voltage adjust trimmers are on top center, and a “test point” is shown in the far lower left. If you’re looking for the 5-V low dropout (LDO) regulator, it’s on the underside of the board in this design.

 

ARM mbed Platform for Bluetooth Smart Applications

OLYMPUS DIGITAL CAMERAThe nRF51822-mKIT simplifies and accelerates the prototyping process for Bluetooth Smart sensors connecting to the Internet of Things (IoT). The platform is designed for fast, easy, and flexible development of Bluetooth Smart applications.

The nRF51822 system-on-chip (SoC) combines a Bluetooth v4.1-compliant 2.4-GHz multiprotocol radio with an ARM Cortex-M0 CPU core on a single chip optimized for ultra-low-power operation. The SoC simplifies and accelerates the prototyping process for Bluetooth Smart sensors connecting to the IoT.

The nRF51822-mKIT’s features include a Bluetooth Smart API, 31 pin-assignable general-purpose input/output (GPIO), a CMSIS-DAP debugger, Programmable Peripheral Interconnect (PPI), and the ability to run from a single 2032 coin-cell battery.

Through mbed, the kit is supported by a cloud-based approach to writing code, adding libraries, and compiling firmware. A lightweight online IDE operates on all popular browsers running on Windows, Mac OSX, iOS, Android, and Linux OSes. Developers can use the kit to access a cloud-based ARM RVDS 4.1 compiler that optimizes code size and performance.

The nRF51822-mKIT costs $59.95.

Nordic Semiconductor ASA
www.nordicsemi.com

Client Profile: Invenscience LC

Invenscience2340 South Heritage Drive, Suite I
Nibley UT, 84321

CONTACT: Collin Lewis, sales@invenscience.com
invenscience.com

EMBEDDED PRODUCTS: Torxis Servos and various servo controllers

FEATURED PRODUCT: Invenscience features a wide range of unique servo controllers that generate the PWM signal for general RC servomotors of all brands and Torxis Servos. (The Simple Slider Servo Controller is pictured.) Included in this lineup are:

  • Gamer joystick controllers
  • Conventional joystick controllers
  • Equalizer-style slider controllers
  • Android device Bluetooth controllers

All of these controllers provide power and the radio control (RC) PWM signal necessary to make servos move without any programming effort.

EXCLUSIVE OFFER: Use the promo code “CC2014” to receive a 10% discount on all purchases through March 31, 2014.

Circuit Cellar prides itself on presenting readers with information about innovative companies, organizations, products, and services relating to embedded technologies. This space is where Circuit Cellar enables clients to present readers useful information, special deals, and more.

The Adafruit Learning System Releases Bluetooth HID Keyboard Controller

Bluefruit2Adafruit’s Bluefruit EZ-Key enables you to create a wireless Bluetooth keyboard controller in an hour. The module acts as a Bluetooth keyboard and is compatible with any Bluetooth-capable device (e.g., Mac, Windows, Linux, iOS, and Android).

You simply power the Bluefruit EZ-Key with 3 to 16 VDC and pair it to a computer, tablet, or smartphone. You can then connect buttons from the 12 input pins. When a button is pressed, it sends a keypress to the computer. The module has been preprogrammed to send the four arrow keys, return, space, “w,” “a,” “s,” “d,” “1,” and “2” by default. Advanced users can use a Future Technology Devices International (FTDI) chip or other serial console cable to reprogram the module’s keys for a human interface device (HID) key report.

BluefruitEach Bluefruit EZ-Key has a unique identifier. More than one module can be paired to a single device. The FCC- and CE-certified, RoHS-compliant modules integrate easily into your project.

Pricing for the Bluefruit EZ-Key begins at $19.95. For more information, visit The Adafruit Learning System. Bluefruit EZ-Key tutorials are also available.