Nordic Semi’s BLE SoC Selected for Ultra Low Power IoT Module

Nordic Semiconductor has announced that Nanopower has selected Nordic’s nRF52832 Bluetooth Low Energy (Bluetooth LE) System-on-Chip (SoC) to provide the wireless connectivity for its nP-BLE52 module, designed for developers of IoT applications with highly restricted power budgets.

The nP-BLE52 module employs a proprietary power management IC—integrated alongside Nordic’s nRF52832 Wafer-Level Chip Scale Package (WL-CSP) SoC in a System-in-Package (SiP)—which enables it to cut power to the SoC, putting it in sleep mode, before waking it up a pre-set time and in the same state as before it was put to sleep. In doing so the SoC’s power consumption in sleep mode is reduced to 10 nA, making it well suited for IoT applications where battery life is critical by potentially increasing cell lifespan 10x.

In active mode, the nRF52832 SoC runs normally. The SoC has been engineered to minimize power consumption with features such as the 2.4GHz radio’s 5.5mA peak RX/TX currents and a fully-automatic power management system. Once the Nordic SoC has completed its tasks, it instructs the nP-BLE52 to put it to sleep and wake it up again at the pre-set time. The nP-BLE52 then stores the Nordics SoC’s state variables and waits until the nRF52832 SoC needs to be powered up again. On wake-up, the device uploads the previous state variables, allowing the Nordic SoC to be restored to the same operational state as before the power was cut. The SoC’s start-up is much more rapid than if it was activated from a non-powered mode.

The nP-BLE52 module also features a low power MCU which can be set to handle external sensors and actuators when the Nordic chip is switched off. In this state, the module still monitors sensors and buffer readings and can trigger wake-ups if these readings are above predetermined thresholds, while consuming less than 1 uA. The nP-BLE52 also integrates an embedded inertial measurement unit (IMU).

The module’s power management is controlled through a simple API, whereby the user can predetermine the duration of the Nordic SoC’s sleep mode, set the wake-up time and date parameters, and select pins for other on/off triggers.

The module offers IoT developers several advantages, either extending battery life and/or reducing the size of the battery required to power the application thereby reducing the end-product footprint. Longer battery life also reduces or eliminates battery swaps and enables the developer to better adjust for remaining useful battery life as the battery discharges. The module is suitable for any battery-powered device which is not required to be constantly active, for example asset tracking, remote monitoring, beacons, and some smart-home applications.

The nRF52832 WL-CSP SoC measures just 3.0 mm by 3.2mm while offering all the features of the conventionally-packaged chip. The nRF52832 is a powerful multiprotocol SoC ideally suited for Bluetooth LE and 2.4 GHz ultra low-power wireless applications. It combines an 64 MHz, 32-bit Arm Cortex M4F processor with a 2.4 GHz multiprotocol radio (supporting Bluetooth 5, ANT, and proprietary 2.4 GHz RF software) featuring -96dB RX sensitivity, with 512kB Flash memory and 64kB RAM.

The WL-CSP SoC is supplied with Nordic’s S132 SoftDevice, a Bluetooth 5-certifed RF software protocol stack for building advanced Bluetooth LE applications. The S132 SoftDevice features Central, Peripheral, Broadcaster, and Observer Bluetooth LE roles, supports up to twenty connections, and enables concurrent role operation. Nordic’s unique software architecture provides clear separation between the RF protocol software and the developer’s application code, easing product development.

Nordic Semiconductor | www.nordicsemi.com

February Circuit Cellar: Sneak Preview

The February issue of Circuit Cellar magazine is coming soon. We’ve raised up a bumper crop of in-depth embedded electronics articles just for you, and packed ’em into our 84-page magazine.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of February 2019 Circuit Cellar:

MCUs ARE EVERYWHERE, DOING EVERYTHING

Electronics for Automotive Infotainment
As automotive dashboard displays get more sophisticated, information and entertainment are merging into so-called infotainment systems. That’s driving a need for powerful MCU- and MPU-based solutions that support the connectivity, computing and interfacing needs particular to these system designs. In this article, Circuit Cellar’s Editor-in-Chief, Jeff Child, looks at the technology and trends feuling automotive infotainment.

Inductive Sensing with PSoC MCUs
Inductive sensing is shaping up to be the next big thing for touch technology. It’s suited for applications involving metal-over-touch situations in automotive, industrial and other similar systems. In his article, Nishant Mittal explores the science and technology of inductive sensing. He then describes a complete system design, along with firmware, for an inductive sensing solution based on Cypress Semiconductor’s PSoC microcontroller.

Build a Self-Correcting LED Clock
In North America, most radio-controlled clocks use WWVB’s transmissions to set the correct time. WWVB is a Colorado-based time signal radio station near. Learn how Cornell graduates Eldar Slobodyan and Jason Ben Nathan designed and built a prototype of a Digital WWVB Clock. The project’s main components include a Microchip PIC32 MCU, an external oscillator and a display.

WE’VE GOT THE POWER

Product Focus: ADCs and DACs
Analog-to-digital converters (ADCs) and digital-to-analog converters (DACs) are two of the key IC components that enable digital systems to interact with the real world. Makers of analog ICs are constantly evolving their DAC and ADC chips pushing the barriers of resolution and speeds. This new Product Focus section updates readers on this technology and provides a product album of representative ADC and DAC products.

Building a Generator Control System
Three phase electrical power is a critical technology for heavy machinery. Learn how US Coast Guard Academy students Kent Altobelli and Caleb Stewart built a physical generator set model capable of producing three phase electricity. The article steps through the power sensors, master controller and DC-DC conversion design choices they faced with this project.

EMBEDDED COMPUTING FOR YOUR SYSTEM DESIGN

Non-Standard Single Board Computers
Although standard-form factor embedded computers provide a lot of value, many applications demand that form take priority over function. That’s where non-standard boards shine. The majority of non-standard boards tend to be extremely compact, and well suited for size-constrained system designs. Circuit Cellar Chief Editor Jeff Child explores the latest technology trends and product developments in non-standard SBCs.

Thermal Management in machine learning
Artificial intelligence and machine learning continue to move toward center stage. But the powerful processing they require is tied to high power dissipation that results in a lot of heat to manage. In his article, Tom Gregory from 6SigmaET explores the alternatives available today with a special look at cooling Google’s Tensor Processor Unit 3.0 (TPUv3) which was designed with machine learning in mind.

… AND MORE FROM OUR EXPERT COLUMNISTS

Bluetooth Mesh (Part 1)
Wireless mesh networks are being widely deployed in a wide variety of settings. In this article, Bob Japenga begins his series on Bluetooth mesh. He starts with defining what a mesh network is, then looks at two alternatives available to you as embedded systems designers.

Implementing Time Technology
Many embedded systems need to make use of synchronized time information. In this article, Jeff Bachiochi explores the history of time measurement and how it’s led to NTP and other modern technologies for coordinating universal date and time. Using Arduino and the Espressif System’s ESP32, Jeff then goes through the steps needed to enable your embedded system to request, retrieve and display the synchronized date and time to a display.

Infrared Sensors
Infrared sensing technology has broad application ranging from motion detection in security systems to proximity switches in consumer devices. In this article, George Novacek looks at the science, technology and circuitry of infrared sensors. He also discusses the various types of infrared sensing technologies and how to use them.

The Art of Voltage Probing
Using the right tool for the right job is a basic tenant of electronics engineering. In this article, Robert Lacoste explores one of the most common tools on an engineer’s bench: oscilloscope probes, and in particular the voltage measurement probe. He looks and the different types of voltage probes as well as the techniques to use them effectively and safely.

IoT Wireless Sensor Nodes Target LPWAN Deployments

Advantech has released its WISE-4210 series of IoT wireless sensor products, including a wireless LPWAN-to-Ethernet AP and three wireless sensor nodes. The nodes include tthe WISE-4210-S231 internal temperature and humidity sensor (shown), WISE-4210-S251 sensor node with 6-channel digital input and a serial port and WISE-4210-S214 sensor node with 4-channel analog input and 4-channel digital input. The device-to-cloud total solution provided by this series of LPWAN products allows IT, OT, and cloud platform system developers to easily implement a private LPWAN, acquire field site data, and achieve seamless integration with both public cloud, such as Microsoft Azure and private enterprise clouds.

Based on proprietary LPWAN technology, the new WISE-4210 series products minimize frequency band interference, support a wider data transmission range, are compatible with lithium batteries, and enable cloud platform integration. By locking the sub-GHz frequency band, WISE-4210 series products significantly reduce susceptibility to interference for 2.4 GHz wireless communication technologies such as Wi-Fi, Bluetooth and Zigbee.

By supporting a network transmission distance of up to 5 km, the WISE-4210 series meets the requirements of large-scale interior environments such as data centers, factories and warehouses for collecting and applying a wide range of interior data. With LPWAN technology, only three 3.6 V lithium batteries are required to operate the WISE-4210 sensor nodes for up to five years, eliminating the need for additional wiring and frequent recharging. Additionally, the WISE-4210 series supports multiple transfer protocols, including MQTT, RESTful, Modbus/TCP and Modbus/RTU, for simple device-to-cloud connections.

The WISE-4210-S231 sensor node with built-in temperature and humidity sensor collects relevant data form factories, data centers or warehouse management without requiring the installation of additional sensors or gateways, making it ideal for indoor temperature and humidity control applications. Meanwhile, the WISE-4210-S251 sensor node, which provides 6-channel digital input and a single RS-485 port, and the WISE-4210-S214 sensor node, which provides four-channel analog input and 4-channel digital input, can be used to collect electricity meter, pressure gauge, thermometer, and power consumption data from factory facilities.

The three wireless nodes support direct data transmissions to SCADA and cloud platforms through a WISE-4210-AP, eliminating the need for a separate data conversion device. The WISE-4210-AP access point is capable of managing up to 64 nodes simultaneously, and thus can simplify overall infrastructure and save installation space.

Advantech | www.advantech.com

PSoC MCU Variant is Purpose-Built for IoT Edge Processing

Cypress Semiconductor is expanding its Internet of Things (IoT) solutions portfolio with a new member of its ultra-low-power PSoC 6 microcontroller (MCU) family. The new PSoC 6 MCU is purpose-built to address the growing needs for computing, connectivity and storage in IoT edge devices. The new MCUs include expanded embedded memory with 2 MB Flash and 1 MB SRAM to support compute-intensive algorithms, connectivity stacks and data logging.

At the same time, Cypress has announced two new development kits for the PSoC 6 family, enabling developers to immediately leverage the industry’s lowest power, most flexible dual-core MCU with hardware-based security—to prolong battery life, deliver efficient processing and sensing, and protect sensitive user data. PSoC 6 is empowering millions of IoT products today, providing the most secure and low-power processing available.
Developers can evaluate the new PSoC 6 MCUs with expanded embedded memory using Cypress’ new PSoC 6 Wi-Fi BT Prototyping Kit (CY8CPROTO-062-4343W) (shown). This $30 kit features peripheral modules including Cypress’ industry-leading CapSense capacitive-sensing technology, PDM-PCM microphones, and memory expansion modules, enabling quick evaluation and easy development. The kit is supported by Cypress’ ModusToolbox software suite that provides easy-to-use tools for application development in a familiar MCU integrated development environment (IDE).

To streamline development of products with Bluetooth Low Energy (BLE) 5.0 connectivity, Cypress has introduced the PSoC 6 BLE Prototyping Kit (CY8CPROTO-063-BLE). This $20 kit features a fully-certified CYBLE-416045-02 BLE module—a turnkey solution that includes a PSoC 63 MCU, onboard crystal oscillators, trace antenna and passive components.

Cypress’ PSoC 6 MCUs are production qualified today and are in-stock at authorized distributors. The new PSoC 6 MCUs with expanded embedded memory are currently sampling and are expected to be in production in the first quarter of 2019. The PSoC 6 Wi-Fi BT Prototyping Kit (CY8CPROTO-062-4343W) is available for $30 and the PSoC 6 BLE Prototyping Kit (CY8CPROTO-063-BLE) is available for $20.

Cypress Semiconductor | www.cypress.com

January Circuit Cellar: Sneak Preview

Happy New Years! The January issue of Circuit Cellar magazine is coming soon. Don’t miss this 1st issue of Circuit Cellar 2019. Enjoy pages and pages of great, in-depth embedded electronics articles.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of January 2019 Circuit Cellar:

TRENDS & CHOICES IN EMBEDDED COMPUTING

Comms and Control for Drones
Consumer and commercial drones represent one of the most dynamic areas of embedded design today. Chip, board and system suppliers are offering improved ways for drones to do more processing on board the drone, while also providing solutions for implementing the control and communication subsystems in drones. This article by Circuit Cellar’s Editor-in-Chief Jeff Child looks at the technology and products available today that are advancing the capabilities of today’s drones.

Choosing an MPU/MCU for Industrial Design
By Microchip Technology’s Jacko Wilbrink
As MCU performance and functionality improve, the traditional boundaries between MCUs and microprocessor units (MPUs) have become less clear. In this article, Jacko examines the changing landscape in MPU vs. MCU capabilities, OS implications and the specifics of new SiP and SOM approaches for simplifying higher-performance computing requirements in industrial applications.

Product Focus: COM Express Boards
The COM Express architecture has found a solid and growing foothold in embedded systems. COM Express boards provide a complete computing core that can be upgraded when needed, leaving the application-specific I/O on the baseboard. This Product Focus section updates readers on this technology and provides a product album of representative COM Express products.

MICROCONTROLLERS ARE DOING EVERYTHING

Connecting USB to Simple MCUs
By Stuart Ball
Sometimes you want to connect a USB device such as a flash drive to a simple microcontroller. Problem is most MCUs cannot function as a USB host. In this article, Stuart steps through the technology and device choices that solve this challenge. He also puts the idea into action via a project that provides this functionality.

Vision System Enables Overlaid Images
By Daniel Edens and Elise Weir
In this project article, learn how these two Cornell students designed a system to overlay images from a visible light camera and an infrared camera. They use software running on a PIC32 MCU to interface the two types of cameras. The MCU does the computation to create the overlaid images, and displays them on an LCD screen.

DATA ACQUISITION AND MEASUREMENT

Data Acquisition Alternatives
By Jeff Child
While the fundamentals of data acquisition remain the same, its interfacing technology keeps evolving and changing. USB and PCI Express brought data acquisition off the rack, and onto the lab bench top. Today solutions are emerging that leverage Mini PCIe, Thunderbolt and remote web interfacing. Circuit Cellar’s Editor-in-Chief, Jeff Child, dives into the latest technology trends and product developments in data acquisition.

High-Side Current Sensing
By Jeff Bachiochi
Jeff says he likes being able to measure things—for example, being able to measure load current so he can predict how long a battery will last. With that in mind, he recently found a high-side current sensing device, Microchip’s EMC1701. In his article, Jeff takes you through the details of the device and how to make use of it in a battery-based system.

Power Analysis Capture with an MCU
By Colin O’Flynn
Low-cost microcontrollers integrate many powerful peripherals in them. You can even perform data capture directly to internal memory. In his article, Colin uses the ChipWhisperer-Nano as a case study in how you might use such features which would otherwise require external programmable logic.

TOOLS AND TECHNIQUES FOR EMBEDDED SYSTEM DESIGN

Easing into the IoT Cloud (Part 2)
By Brian Millier
In Part 1 of this article series Brian examined some of the technologies and services available today enabling you to ease into the IoT cloud. Now, in Part 2, he discusses the hardware features of the Particle IoT modules, as well as the circuitry and program code for the project. He also explores the integration of a Raspberry Pi solution with the Particle cloud infrastructure.

Hierarchical Menus for Touchscreens
By Aubrey Kagan
In his December article, Aubrey discussed his efforts to build a display subsystem and GUI for embedded use based on a Noritake touchscreen display. This time he shares how he created a menu system within the constraints of the Noritake graphical display system. He explains how he made good use of Microsoft Excel worksheets as a tool for developing the menu system.

Real Schematics (Part 2)
By George Novacek
The first part of this article series on the world of real schematics ended last month with wiring. At high frequencies PCBs suffer from the same parasitic effects as any other type of wiring. You can describe a transmission line as consisting of an infinite number of infinitesimal resistors, inductors and capacitors spread along its entire length. In this article George looks at real schematics from a transmission line perspective.

LoRa SiP Devices Provide Low Power IoT Node Solution

Microchip Technology has introduced a highly integrated LoRa System-in-Package (SiP) family with an ultra-low-power 32-bit MCU, sub-GHz RF LoRa transceiver and software stack. The SAM R34/35 SiPs come with certified reference designs and interoperability with major LoRaWAN gateway and network providers. The devices also provide the ultra-low power consumption in sleep modes, offering extended battery life in remote IoT nodes.

Most LoRa end devices remain in sleep mode for extended periods of time, only waking up occasionally to transmit small data packets. Powered by the ultra-low-power SAM L21 Arm Cortex-M0+ based MCU, the SAM R34 devices provide sleep modes as low as 790 nA to significantly reduce power consumption and extend battery life in end applications. Highly integrated in a compact 6 mm x 6 mm package, the SAM R34/35 family is well suited for a broad array of long-range, low-power IoT applications that require small form factor designs and multiple years of battery life.

In addition to ultra-low-power consumption, the simplified development process means developers can accelerate their designs by combining their application code with Microchip’s LoRaWAN stack and quickly prototype with the ATSAMR34-XPRO development board (DM320111), which is supported by the Atmel Studio 7 Software Development Kit (SDK). The development board is certified with the Federal Communications Commission (FCC), Industry Canada (IC) and Radio Equipment Directive (RED), providing developers with the confidence that their designs will meet government requirements across geographies.
LoRa technology is designed to enable low-power applications to communicate over longer ranges than Zigbee, Wi-Fi and Bluetooth using the LoRaWAN open protocol. Ideal for a range of applications such as smart cities, agricultural monitoring and supply chain tracking, LoRaWAN enables the creation of flexible IoT networks that can operate in both urban and rural environments. According to the LoRa Alliance, the number of LoRaWAN operators has doubled from 40 to 80 over the last 12 months, with more than 100 countries actively developing LoRaWAN networks.

The SAM R34/35 family is supported by Microchip’s LoRaWAN stack, as well as a certified and proven chip-down package that enables customers to accelerate the design of RF applications with reduced risk. With support for worldwide LoRaWAN operation from 862 to 1,020 MHz, developers can use a single part variant across geographies, simplifying the design process and reducing inventory burden. The SAM R34/35 family supports Class A and Class C end devices as well as proprietary point-to-point connections.

Microchip’s SAM R34/35 LoRa family is available in six device variants. SAM R34 devices in a 64-lead TFBGA package begin at $3.76 each in 10,000-unit quantities. SAM R35 devices are available without a USB interface starting at $3.66 each in 10,000-unit quantities.

Microchip Technology | www.microchip.com

Nordic’s BLE SoC Selected for IIoT Energy Monitor Device

Nordic Semiconductor has announced that OneMeter, a Lublin, Poland-based Industrial Internet of Things (IIoT) startup, has selected Nordic’s nRF51822 Bluetooth Low Energy (Bluetooth LE) System-on-Chip (SoC) to provide the wireless connectivity for its “OneMeter Beacon”, a device that provides companies with the ability to monitor and manage their energy usage data in real time.

Designed for use in a broad range of industrial and commercial environments—for example production facilities, manufacturing plants, and food service companies—the OneMeter Beacon is simply plugged in to an existing electronic electricity meter via an optical port interface, enabling the beacon to receive energy usage data from the meter using the IEC 62056-21 / IEC 1107 protocol. Once installed, the beacon is paired to a Bluetooth 4.0 (and later) Android smartphone or tablet, where from the OneMeter app the user can initialize and synchronize the beacon.

Once synchronized, the beacon reads data from the meter every 15 minutes, and stores it in the Nordic SoC’s Flash memory, from where the beacon automatically transmits the data to the user’s smartphone or tablet using Bluetooth LE wireless connectivity provided by the nRF51822 SoC. From the app the user can review data from the most recent readout (including active and reactive energy consumption parameters), as well as view daily, weekly and monthly energy usage charts and more.

OneMeter Cloud provides a comprehensive platform from which a company can not only monitor its metering data, but also perform accurate energy usage cost estimation, conduct effective energy audits, avoid penalties for exceeding contracted power by defining power parameter alerts, as well as manage its photovoltaic (PV) infrastructure. Certified measurement data can be shared with energy vendors enabling invoices to be settled based on actual usage instead of forecasts. The OneMeter beacon is powered by a 3V CR2032 coin cell battery, providing up to 12 months battery life before replacement, thanks in part to the ultra-low power characteristics of the nRF51822 SoC which has been engineered to minimize power consumption.

Nordic’s nRF51822 is a multiprotocol SoC ideally suited for Bluetooth LE and 2.4GHz ultra low-power wireless applications. The nRF51822 is built around a 32-bit Arm Cortex M0 CPU, 2.4GHz multiprotocol radio, and 256kB/128kB Flash and 32kB/16kB RAM. The SoC is supplied with Nordic’s S130 SoftDevice, a Bluetooth 4.2 qualified concurrent multi-link protocol stack solution supporting simultaneous Central/Peripheral/Broadcaster/Observer role connections.

Nordic Semiconductor | www.nordicsemi.com

 

December Circuit Cellar: Sneak Preview

The December issue of Circuit Cellar magazine is coming soon. Don’t miss this last issue of Circuit Cellar in 2018. Pages and pages of great, in-depth embedded electronics articles prepared for you to enjoy.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of December 2018 Circuit Cellar:

AI, FPGAs and EMBEDDED SUPERCOMPUTING

Embedded Supercomputing
Gone are the days when supercomputing levels of processing required a huge, rack-based systems in an air-conditioned room. Today, embedded processors, FPGAs and GPUs are able to do AI and machine learning kinds of operation, enable new types of local decision making in embedded systems. In this article, Circuit Cellar’s Editor-in-Chief, Jeff Child, looks at these technology and trends driving embedded supercomputing.

Convolutional Neural Networks in FPGAs
Deep learning using convolutional neural networks (CNNs) can offer a robust solution across a wide range of applications and market segments. In this article written for Microsemi, Ted Marena illustrates that, while GPUs can be used to implement CNNs, a better approach, especially in edge applications, is to use FPGAs that are aligned with the application’s specific accuracy and performance requirements as well as the available size, cost and power budget.

NOT-TO-BE-OVERLOOKED ENGINEERING ISSUES AND CHOICES

DC-DC Converters
DC-DC conversion products must juggle a lot of masters to push the limits in power density, voltage range and advanced filtering. Issues like the need to accommodate multi-voltage electronics, operate at wide temperature ranges and serve distributed system requirements all add up to some daunting design challenges. This Product Focus section updates readers on these technology trends and provides a product gallery of representative DC-DC converters.

Real Schematics (Part 1)
Our magazine readers know that each issue of Circuit Cellar has several circuit schematics replete with lots of resistors, capacitors, inductors and wiring. But those passive components don’t behave as expected under all circumstances. In this article, George Novacek takes a deep look at the way these components behave with respect to their operating frequency.

Do you speak JTAG?
While most engineers have heard of JTAG or have even used JTAG, there’s some interesting background and capabilities that are so well know. Robert Lacoste examines the history of JTAG and looks at clever ways to use it, for example, using a cheap JTAG probe to toggle pins on your design, or to read the status of a given I/O without writing a single line of code.

PUTTING THE INTERNET-OF-THINGS TO WORK

Industrial IoT Systems
The Industrial Internet-of-Things (IIoT) is a segment of IoT technology where more severe conditions change the game. Rugged gateways and IIoT edge modules comprise these systems where the extreme temperatures and high vibrations of the factory floor make for a demanding environment. Here, Circuit Cellar’s Editor-in-Chief, Jeff Child, looks at key technology and product drives in the IIoT space.

Internet of Things Security (Part 6)
Continuing on with his article series on IoT security, this time Bob Japenga returns to his efforts to craft a checklist to help us create more secure IoT devices. This time he looks at developing a checklist to evaluate the threats to an IoT device.

Applying WebRTC to the IoT
Web Real-time Communications (WebRTC) is an open-source project created by Google that facilitates peer-to-peer communication directly in the web browser and through mobile applications using application programming interfaces. In her article, Callstats.io’s Allie Mellen shows how IoT device communication can be made easy by using WebRTC. With WebRTC, developers can easily enable devices to communicate securely and reliably through video, audio or data transfer.

WI-FI AND BLUETOOTH IN ACTION

IoT Door Security System Uses Wi-Fi
Learn how three Cornell students, Norman Chen, Ram Vellanki and Giacomo Di Liberto, built an Internet connected door security system that grants the user wireless monitoring and control over the system through a web and mobile application. The article discusses the interfacing of a Microchip PIC32 MCU with the Internet and the application of IoT to a door security system.

Self-Navigating Robots Use BLE
Navigating indoors is a difficult but interesting problem. Learn how these two Cornell students, Jane Du and Jacob Glueck, used Received Signal Strength Indicator (RSSI) of Bluetooth Low Energy (BLE) 4.0 chips to enable wheeled, mobile robots to navigate towards a stationary base station. The robot detects its proximity to the station based on the strength of the signal and moves towards what it believes to be the signal source.

IN-DEPTH PROJECT ARTICLES WITH ALL THE DETAILS

Sun Tracking Project
Most solar panel arrays are either fixed-position, or have a limited field of movement. In this project article, Jeff Bachiochi set out to tackle the challenge of a sun tracking system that can move your solar array to wherever the sun is coming from. Jeff’s project is a closed-loop system using severs, opto encoders and the Microchip PIC18 microcontroller.

Designing a Display System for Embedded Use
In this project article, Aubrey Kagan takes us through the process of developing an embedded system user interface subsystem—including everything from display selection to GUI development to MCU control. For the project he chose a 7” Noritake GT800 LCD color display and a Cypress Semiconductor PSoC5LP MCU.

Benchmarks for the IoT

Input Voltage

–Jeff Child, Editor-in-Chief

JeffHeadShot

I remember quite vividly back in 1997 when Marcus Levy founded the Embedded Microprocessor Benchmark Consortium, better known as EEMBC. It was big deal at the time because, while benchmarks where common in the consumer computing world of desktop/laptop processors, no one had ever crafted any serious benchmarks for embedded processors. I was an editor covering embedded systems technology at the time, and Marcus, as an editor with EDN Magazine back then, traveled in the same circles as I did. On both the editorial side and on the processor vendor side, he had enormous respect in the industry—making him an ideal person to spin up an effort like EEMBC.

Creating benchmarks for embedded processors was more complicated than for general purpose processors, but EEMBC was up the challenge. Fast forward to today, and EEEBC now boasts a rich list of performance benchmarks for the hardware and software used in a variety of applications including autonomous driving, mobile imaging, mobile devices and many others. In recent years, the group has taken on the complex challenge of developing benchmarks for the Internet-of-Things (IoT).

I recently had the chance to talk with EEMBC’s current president, Peter Torelli, about the consortium’s latest effort: its IoTMark-BLE benchmark. It’s part of the EEMBC’s IoTMark benchmarking suite for measuring the combined energy consumption of an edge node’s sensor interface, processor and radio interface. IoTMark-BLE focuses on Bluetooth Low Energy (BLE) devices. In late September, EEMBC announced that the IoTMark-BLE benchmark is available for licensing.

The IoTMark-BLE benchmark profile models a real IoT edge node consisting of an I²C sensor and a BLE radio through sleep, advertise and connected-mode operation. The benchmark measures the energy required to power the edge node platform and to run the tests fed by the benchmark. At the center of the benchmark is the IoTConnect framework, a low-cost benchmarking harness used by multiple EEMBC benchmarks. The framework provides an external sensor emulator (the I/O Manager), a BLE gateway (the radio manager) and an Energy Monitor.

Benchmark users interact with the DUT via an interface with which they can set a number of tightly defined parameters, such as connection interval, I²C speed, BLE transmission power and more. Default values are provided to enable direct comparisons between DUTs, or users can change them to analyze a design’s sensitivity to each parameter. IoTMark-BLE’s IoTConnect framework supports microcontrollers (MCUs) and radio modules from any vendor, and it is compatible with any embedded OS, software stack or OEM hardware.

It makes sense that IoT benchmarks focus on power and energy use. IoT edge devices need to work in remote locations near the sensors they’re linked with. With that in mind, Peter Torelli says that the benchmark measures everything inside an IoT system-on-chip (SoC)—including the peripheral I/O reading from the I2C sensor, the transmit and receive amplifiers in the BLE radio—everything except the sensor itself. Torelli says it was important to not use intelligent sensors for the benchmark, the idea being that its important that the MCU’s role performing communication be part of the measurement. Interestingly, in developing the benchmark, it was found that even the software stacks on IoT SoCs have a big impact on performance. “Some are very efficient when they’re in advertise mode or in active mode, and then go to sleep,” says Torelli, “And there are others that remain active for much longer times and burn a lot of power.”

Shifting gears, I want to take moment to praise long time columnist and member of the Circuit Cellar family, Ed Nisley. Over 30 years ago, Steve Ciarcia asked Ed to write a regular column for the brand-new Circuit Cellar INK magazine. After an even 200 articles, Ed decided to make his September column his last. Thank you, Ed, for your many years of insightful, quality work in the pages of this magazine. You’ll be missed. Readers can follow Ed’s continuing series of shop notes, projects and curiosities on his blog at softsolder.com.

Let me welcome Brian Millier as our newest Circuit Cellar columnist—his column Pickup Up Mixed Signals begins this issue. Brian is no stranger to the magazine, penning over 50 guest features in the magazine since the mid-90s on a variety of topics including guitar amplifier electronics, IoT system design, LCDs and many others. I’m thrilled to have Brian joining our team. With his help, we promise to continue fulfilling Circuit Cellar’s role as the leading media platform aimed at inspiring the evolution of embedded system design.

This appears in the November 340 issue of Circuit Cellar magazine

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

Module Meets Needs of Simple Bluetooth Low Energy Systems

Laird has announced its new Bluetooth 5 module series, designed to simplify the process of bringing wireless designs to market. The BL651 Series is the latest addition to Laird’s Nordic Semiconductor family of Bluetooth 5 offerings. Building on the success of the BL652 and BL654 series, the BL651 is a cost-effective solution for simple Bluetooth Low Energy (BLE) applications that provides all the capabilities of the Nordic nRF52810 silicon in a small, fully certified module.

The BL651 leverages the benefits of Bluetooth 5 features, including higher data throughput and increased broadcasting capacity, in a tiny footprint. According to the company, the BL651 has been designed to allow a seamless hardware upgrade path to the more fully featured BL652 series if additional flash and RAM requirements are identified in the customer development process.

The BL651 series delivers the capabilities of the Nordic nRF52810 silicon in a small, fully certified module with simple soldering castellation for easy prototyping and mass production manufacturing. Designers can use the Nordic SDK and SoftDevice or Zephyr RTOS to build their BLE application. In addition, the BL651 series is 100% PCB footprint drop in compatible with the BL652 Series of modules, allowing flexibility to upscale designs if more flash/RAM or further feature sets are required during the design process.

In large factories Bluetooth sensor networks can easily span an entire campus and gather sensor data that can provide deep insights needed to maintain efficiency, productivity and security. The BL651 Series helps make these types of sensor networks easy to build, scale, and maintain.

Laird Connectivity | www.lairdtech.com

Connected Padlock Uses U-Blox BLE and Cellular Modules

U‑blox has announced their collaboration with India‑based Play Inc. on a connected GPS padlock for industrial applications. The lock, which doubles as a location tracker, features a U‑blox M8 GNSS receiver, MAX‑M8Q, and uses the u‑blox CellLocate service to extend positioning to indoor locations. U‑blox Bluetooth low energy with NINA‑B112, and 2G, 3G and 4G U‑blox cellular communication modules, including some that are ATEX certified, enable communication between users and the lock.
According to the company, In many industrial settings, locks are an unwelcome bottleneck. They typically require the physical presence of a person with a key to open them, they need to be checked periodically for signs of tampering, and when they are forced open, owners typically find out too late. Play Inc’s i‑Lock combines physical toughness and wireless technology to address these challenges. Offering a variety of access methods, including physical keys and keyless approaches using remote GPRS and SMS passwords as well as Bluetooth low energy or cloud‑based communication via mobile device apps, the i‑Lock lets plant managers or other customers flexibly grant authorization to access the goods that are under lock. And in the event that the padlock is forcefully opened, they are immediately alerted via a server or, optionally, SMS texting.

In addition to securing mobile and stationary goods, the lock’s GNSS receiver lets users track goods in transit. The i‑Lock supports a variety of tracking modes to optimize power consumption for increased autonomy. Location‑awareness further enables geofence restricted applications, in which the i‑Lock can only be open if it is within predefined geographical bounds—for example a petroleum filling station.

The security lock was designed to endure both physical attempts of tampering and cyberattacks. Its fiberglass reinforced enclosure withstands temperatures from -20 to +80 degrees C. The lock features Super Admin, Admin, and User access levels, 128-bit AES encryption, user‑configurable passwords, and a secure protocol to ensure data‑transmission accuracy.

The i‑Lock will be presented at The IoT Solutions Congress Barcelona on October 16‑18, 2018.

U-blox | www.u-blox.com

Variscite’s Latest DART Module Taps Headless i.MX6 ULZ

By Eric Brown

Variscite is spinning out yet another pin-compatible version of its 50 mm x 25 mm DART-6UL computer-on-module, this time loaded with NXP’s headless new i.MX6 ULZ variant of the single Cortex-A7 core i.MX6 UL. Due for a Q4 launch, the unnamed module lacks display or LAN support. It’s billed as “a native solution for headless Linux-based embedded products such as IoT devices and smart home sensors requiring low power, low size and rich connectivity options.”


DART-6UL with iMX6 ULZ 
(click image to enlarge)
The lack of display and LAN features mirrors the limitations of the i.MX6 ULZ, which NXP refers to as a “cost-effective Linux processor.” The headless, up to 900  MHz Cortex-A7 ULZ SoC offers most of the I/O of the of the i.MX6 UL/ULL, including ESAI, S/PDIF, and 3x I2S audio interfaces, but it lacks features such as the 2D Pixel acceleration engine and Ethernet controllers.


NXP i.MX6 ULZ block diagram
(click image to enlarge)
Last year, Variscite spun the Linux-ready DART-6UL into a faster, 696MHz v1.2 upgrade, which added the option of NXP’s power-efficient i.MX6 ULL SoC in addition to the i.MX6 UL. A few months later, it followed up with a DART-6UL-5G model that boasts an on-board, “certified” WiFi/Bluetooth module with dual-band, 2.4 GHz/ 5 GHz 802.11ac/a/b/g/n.


DART-6UL-5G (left) and DART-6UL v1.2
(click images to enlarge)
The upcoming i.MX6 ULZ based version, which we imagine Variscite will dub the DART-6ULZ, has the same Wi-Fi-ac module with Bluetooth 4.2 BLE. Like the latest versions of the other DART-6UL modules, the module can be clocked to 900 MHz.

The “cost effective” ULZ version differs in that it lacks the other models’ touch-enabled, 24-bit parallel RGB interface and dual 10/100 Ethernet controllers. Other subtracted features compared to earlier models include dual CAN, parallel camera, and “extra security features.”

The new module is also limited to a 0 to 85°C range instead of being available in 0 to 70°C or -40 to 85°C versions. The i.MX6 ULZ SoC itself has a slightly wider range of 0 to 95°C.

The pin compatible DART-6UL with iMX6 ULZ will offer the i.MX6 ULZ SoC with “optional security features,” which include TRNG, AES crypto engine, and secure boot. The 50 mm x 25mm module will ship with 512MB DDR3L, which was the previous maximum of the now up to 1 GB RAM DART-6UL. The storage range is similar, with a choice 512 MB NAND and up to 64 GB eMMC.

The DART-6UL with i.MX6 ULZ will support 2x USB 2.0 OTG host/device ports, audio in and out, and UART, I2C, SPI, PWM, and ADC interfaces. OS support is listed as “Linux Yocto, Linux Debian, Boot2QT.”

The ULZ version of the DART-6UL will support existing development kits, which are based on the VAR-6ULCustomBoard. This 100 mm x 70 mm x 20 mm carrier board offers a microSD slot, a USB host port, and micro-USB OTG and debug ports, as well as features that are inaccessible to the ULZ, including dual GbE, RGB, LVDS, CAN and camera interfaces.

This week Variscite announced another DART module based on another new NXP SoC. The DART-MX8M-Mini module taps a 14nm-fabricated i.MX8M Mini SoC variant of the i.MX8M with one to four 2GHz Cortex-A53 cores and a 400 MHz Cortex-M4, plus scaled down 1080p video via MIPI-DSI.

Further information

The DART-6UL with iMX6 ULZ will be available in the fourth quarter. The DART-6UL/ULL/ULZ product page notes that the lowest, volume-discounted price is $24, which likely pertains to the ULZ part. More information may be found in Variscite’s announcement.

This article originally appeared on LinuxGizmos.com on September 19.

Variscite | www.variscite.com

Connected Retail IoT System Employs Nordic’s BLE SoC

Nordic Semiconductor has announced that Insigma, a U.S.-based Internet of Things (IoT) solutions company, employs Nordic’s nRF52832 Bluetooth Low Energy (Bluetooth LE) System-on-Chip (SoC) in its “Connected Retail” suite of IoT products. Insigma’s Connected Retail solution allows brands to create an intelligent IoT network of smart coolers, shelves, displays, and vending machines with minimal human intervention. The solution employs a proprietary wireless sensor and camera techology to record and report on stock levels, product placement compliance, product consumption trends and consumer engagement.

In operation, the device is equipped with two cameras, which take images of the products in the cooler or on the shelf. This image is then processed via Insigma’s proprietary machine vision technology to detect the products in view. To start collecting data and analytics, Insigma’s customers simply attach the sensor to the inside of an existing cooler, vending machine, or shelf without need for wiring or mains power. The integration of the Nordic SoC establishes ultra low power wireless connectivity, delivering up to seven years battery life thanks in part to the ultra low power characteristics of the Nordic SoC.

The nRF52832 has been engineered to minimize power consumption with features such as the 2.4 GHz radio’s 5.5 mA peak RX/TX currents and a fully-automatic power management system that reduces power consumption by up to 80 percent compared with Nordic’s nRF51 Series SoCs.

The collected data is stored on the device and is then relayed on-site to a sales agent or technician’s Bluetooth 4.0 (and later) smartphone or tablet using Bluetooth LE wireless connectivity. From Insigma’s ‘Virtual Hub’ app, the data can then be uploaded to Insigma’s Cloud servers, or sent directly to an IoT gateway (again via Bluetooth LE), from where it is automatically sent to Insigma’s Cloud servers via a GSM or CDMA cellular network. The secure and scalable Cloud platform features alert and artificial intelligence engines enabling device management and configuration, while providing a reporting dashboard to display complex IoT data with simple visualization.

Nordic’s nRF52832 multiprotocol SoC combines a 64 MHz, 32-bit Arm Cortex M4F processor with a 2.4 GHz multiprotocol radio (supporting Bluetooth 5, ANT and proprietary 2.4 GHz RF protocol software) featuring -96 dBm RX sensitivity, with 512 kB flash memory and 64 kB RAM.

The SoC is supplied with Nordic’s S132 SoftDevice, a Bluetooth 5-certifed RF software protocol stack for building advanced Bluetooth LE applications. The S132 SoftDevice features Central, Peripheral, Broadcaster and Observer Bluetooth LE roles, supports up to twenty connections, and enables concurrent role operation.

Nordic Semiconductor | www.nordicsemi.com

 

Pioneer Chooses Cypress Wi-Fi/ Bluetooth IC for Infotainment System

Cypress Semiconductor has announced that Pioneer has integrated Cypress’ Wi-Fi and Bluetooth Combo solution into its flagship in-dash navigation AV receiver. The solution enables passengers to display and use their smartphone’s apps on the receiver’s screen via Apple CarPlay or Android Auto, which provide the ability to use smartphone voice recognition to search for information or respond to text messages. The Cypress Wi-Fi and Bluetooth combo solution uses Real Simultaneous Dual Band (RSDB) technology so that Apple CarPlay and Android Auto can operate concurrently without degradation caused by switching back and forth between bands.
The Pioneer AVH-W8400NEX receiver uses Cypress’ CYW89359 combo solution, which includes an advanced coexistence engine that enables optimal performance for dual-band 2.4-GHz and 5-GHz 802.11ac Wi-Fi and dual-mode Bluetooth/Bluetooth Low Energy (BLE) simultaneously for superior multimedia experiences. The CYW89359’s RSDB architecture enables two unique data streams to run at full throughput simultaneously by integrating two complete Wi-Fi subsystems into a single chip.

The CYW89359 is fully automotive qualified with AECQ-100 grade-3 validation and is being designed in by numerous top-tier car OEMs and automotive suppliers as a full in-vehicle connectivity solution, supporting infotainment and telematics applications such as smartphone screen-mirroring, content streaming and Bluetooth voice connectivity in car kits.

Cypress Semiconductor | www.cypress.com

Cloud-based Eval Service for Nordic BLE SoC-Based Designs

Nordic Semiconductor has launched “nRF Connect for Cloud”, a free service for Cloud-based evaluation, test, and verification of Bluetooth Low Energy (Bluetooth LE) designs employing Nordic’s nRF51 and nRF52 Series multiprotocol Bluetooth LE SoCs. nRF Connect for Cloud features an intuitive workflow and offers much of the functionality of Nordic’s “nRF Connect for Desktop” and “nRF Connect for Mobile” which are popular applications used for building and developing Bluetooth LE products. nRF Connect for Cloud also supports an extensive range of standard Bluetooth services together with proprietary services such as nRF UART.
Operating with all popular browsers, nRF Connect for Cloud uses web Bluetooth application programming interfaces (APIs) to push and extract data to and from the Cloud, enabling the developer to test and modify the behavior and performance of prototypes. By using the front-end and visualization features of nRF Connect for Cloud, historical data can be extracted from databases and analyzed in a browser. The product also allows engineers to monitor and interact with remote wireless IoT designs enabling the collaboration of geographically separate development teams on a single project.

nRF Connect for Cloud is supported by the nRF Gateway App available for iOS and Android-powered mobile devices. The nRF Gateway App enables Nordic Bluetooth LE devices to use a smartphone-enabled Internet gateway to convert Bluetooth LE messages to ReST/MQTT/IP protocols for Cloud interoperability.

The Gateway App communicates with the nRF Connect for Cloud back-end hosted on Amazon Web Services (AWS) and is based on Software as a Service (SaaS) components. By leveraging AWS industry-grade components, the app implements end-to-end data and device connectivity, guarantees reliability, and scales from a few to hundreds of Bluetooth LE devices.

nRF Connect for Cloud currently supports Bluetooth LE solutions but future versions will also support Nordic’s nRF91 Series low power, global multimode LTE-M/NB-IoT System-in-Package (SiP) for cellular IoT.

nRF Connect for Cloud works out-of-the-box with the Nordic Thingy:52 IoT Sensor Kit, Nordic nRF5 development kit (DK), and software development kit (SDK) examples. A quick-start guide is available from www.nrfcloud.com.

Nordic Semiconductor | www.nordicsemi.com