May Circuit Cellar: Sneak Preview

The May issue of Circuit Cellar magazine is out next week!. We’ve been hard at work laying the foundation and nailing the beams together with a sturdy selection of  embedded electronics articles just for you. We’ll soon be inviting you inside this 84-page magazine.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of May 2019 Circuit Cellar:

EMBEDDED COMPUTING AT WORK

Technologies for Digital Signage
Digital signage ranks among the most dynamic areas of today’s embedded computing space. Makers of digital signage players, board-level products and other technologies continue to roll out new solutions for implementing powerful digital signage systems. Circuit Cellar Chief Editor Jeff Child looks at the latest technology trends and product developments in digital signage.

PC/104 and PC/104 Family Boards
PC/104 has come a long way since its inception over 25 ago. With its roots in ISA-bus PC technology, PC/104 evolved through the era of PCI and PCI Express by spinning off its wider family of follow on versions including PC/104-Plus, PCI-104, PCIe/104 and PCI/104-Express. This Product Focus section updates readers on these technology trends and provides a product gallery of representative PC/104 and PC/104-family boards.

TOOLS & TECHNIQUES FOR EMBEDDED ENGINEERING

Code Analysis Tools
Today it’s not uncommon for embedded devices to have millions of lines of software code. Code analysis tools have kept pace with these demands making it easier for embedded developers to analyze, debug and verify complex embedded software. Circuit Cellar Chief Editor Jeff Child explores the latest technology trends and product developments in code analysis tools.

Transistor Basics
In this day and age of highly integrated ICs, what is the relevance of the lone, discrete transistor? It’s true that most embedded systems can be solved by chip level solutions. But electronic component vendors do still make and sell individual transistors because there’s still a market for them. In this article, Stuart Ball reviews some important basics about transistors and how you can use them in your embedded system design.

Pressure Sensors
Over the years, George Novacek has done articles examining numerous types of sensors that measure various physical aspects of our world. But one measurement type he’s not yet discussed in the past is pressure. Here, George looks at pressure sensors in the context of using them in an electronic monitoring or control system. The story looks at the math, physics and technology associated with pressure sensors.

MICROCONTROLLERS DO IT ALL

Robotic Arm Plays Beer Pong
Simulating human body motion is a key concept in robotics development. With that in mind, learn how these Cornell graduates Daniel Fayad, Justin Choi and Harrison Hyundong Chang accurately simulate the movement of a human arm on a small-sized robotic arm. The Microchip PIC32 MCU-based system enables the motion-controlled, 3-DoF robotic arm to take a user’s throwing motion as a reference to its own throw. In this way, they created a robotic arm that can throw a ping pong ball and thus play beer pong.

Fancy Filtering with the Teensy 3.6
Signal filtering entails some tricky tradeoffs. A fast MCU that provides hardware-based floating-point capability eases some of those tradeoffs. In the past, Brian Millier has used the Arm-based Teensy MCU modules to serve meet those needs. In this article, Brian taps the Teensy 3.6 Arm MCU module to perform real-time audio FFT-convolution filtering.

Real-Time Stock Monitoring Using an MCU
With today’s technology, even very simple microcontroller-based devices can fetch and display data from the Internet. Learn how Cornell graduates David Valley and Saelig Khatta built a system using that can track stock prices in real-time and display them conveniently on an LCD screen. For the design, they used an Espressif Systems ESP8266 Wi-Fi module controlled by a Microchip PIC32 MCU. Our fun little device fetches chosen stock prices in real-time and displays them on a screen.

… AND MORE FROM OUR EXPERT COLUMNISTS

Attacking USB Gear with EMFI
Many products use USB, but have you ever considered there may be a critical security vulnerability lurking in your USB stack? In this article, Colin O’Flynn walks you through on example product that could be broken using electromagnetic fault injection (EMFI) to perform this attack without even removing the device enclosure.

An Itty Bitty Education
There’s no doubt that we’re living in a golden age when it comes to easily available and affordable development kits for fun and education. With that in mind, Jeff Bachiochi shares his experiences programming and playing with the Itty Bitty Buggy from Microduino. Using the product, you can build combine LEGO-compatible building blocks into mobile robots controlled via Bluetooth using your cellphone.

Solar Powered BLE Sensor Platform Offers Battery-Less IoT Solution

ON Semiconductor has introduced its RSL10 Multi-Sensor Platform powered only with a solar cell. This complete solution supports the development of IoT sensors using continuous solar energy harvesting to gather and communicate data through Bluetooth Low Energy (BLE), without the need for batteries or other forms of non-renewable energy.

The combination of ultra-low-power wireless communications, small form-factor solar cell and low duty cycle sensing applications makes it possible to develop and deploy totally maintenance-free IoT sensor nodes. The RSL10 Solar Cell Multi-Sensor Platform is enabled by the RSL10 SIP, a complete System-in-Package (SiP) solution featuring the RSL10 radio, integrated antenna and all passive components.

The platform combines the RSL10 SIP with a solar cell and a host of low power sensors from Bosch Sensortec, including the BME280 all-in-one environmental sensor (pressure, temperature, humidity) and the BMA400 ultra-low-power 3-axis accelerometer. Together, they will allow developers and manufacturers to create complete IoT nodes that are entirely powered through renewable energy or energy harvested from the sensor’s surroundings.

There are a growing number of IoT sensor applications where the duty cycle is low enough to support intermittent communications, allowing the energy needed to support operation to be harvested using renewable sources. The energy efficiency of the RSL10 is augmented by the highly efficient power management system and the ultra-low-power sensors implemented in the platform. Applications are expected to include smart home and building automation such as HVAC control, window/door sensors and air quality monitoring. Asset tracking including package open/close detection, shock monitoring, and temperature and humidity data logging are also possible applications.

For easy development, the platform is supplied with all design files (Gerber, schematic and BoM) and customizable source code as part of a CMSIS software package. The RSL10 Solar Cell Multi-Sensor Platform is available now from ON Semiconductor.

ON Semiconductor | www.onsemi.com

 

ST and Virscient Team Up for Connected-Car Effort

STMicroelectronics has teamed up with Virscient to help system designers build automotive solutions using ST’s Telemaco3P secure telematics and connectivity processors. Virscient offers support to ST customers in the development and delivery of advanced automotive applications based on the ST Modular Telematics Platform (MTP). MTP is a comprehensive development and demonstration platform incorporating ST’s Telemaco3P telematics and connectivity microprocessor.

MTP enables the rapid prototyping and development of smart-driving applications, including vehicle connectivity to back-end servers, road infrastructure, and other vehicles. Virscient brings a deep understanding of wireless connectivity technologies and protocols ideal for architecting connected-car systems that rely on technologies such as GNSS (Precise Positioning), LTE/cellular modems, V2X technologies, Wi-Fi, Bluetooth and Bluetooth Low Energy (BLE).

The Telemaco3P incorporates dual Arm Cortex-A7 processors with an embedded Hardware Security Module (HSM), an independent Arm Cortex-M3 subsystem, and a rich set of connectivity interfaces. With security at its core, and considerable flexibility in both hardware and software configurations, the Telemaco3P provides an excellent platform for connectivity within the vehicular environment.

ST’s Telemaco3P system-on-chip is designed as a solution for ensuring a secure connection between the vehicle and the Cloud. Its asymmetric multi-core architecture provides powerful application processors as well as an independent CAN control subsystem with optimized power management. Its ISO 26262 silicon design, its embedded Hardware Security Module, and automotive-grade qualification up to 105°C ambient temperature make it well suited for implementing a wide range of secure telematics applications supporting high-throughput wireless connectivity and over-the-air firmware upgrades.

STMicroelectronics | www.st.com
Virscient | www.virscient.com

 

IoT Smart Water Care System Leverages Nordic’s BLE SoC

Nordic Semiconductor has announced that ConnectedYard has selected Nordic’s nRF51822 Bluetooth Low Energy (BLE) SoC to provide the wireless connectivity for pHin, a smart water care solution designed to simplify the care and maintenance of backyard swimming pools and hot tubs. pHin combines an nRF51822 SoC- and Wi-Fi-enabled smart monitor and smartphone app that monitors water chemistry and temperature around the clock and notifies customers when they need to take action.
The pHin Smart Monitor floats in the pool or hot tub and continuously monitors water temperature and water chemistry—including pH and oxidation reduction potential (ORP)—and then wirelessly sends the water chemistry data over the Nordic SoC-enabled Bluetooth LE connection to the pool owner’s Bluetooth 4.0 (or later) smartphone and the ‘pHin WiFi bridge’. The data is also available via the pHin Partner Portal, which allows retailers, service technicians, and pool builders to remotely monitor water conditions and provides features that help drive consumers back to their local retailer for chemicals and other products. pHin uses a coin cell battery to achieve over two years of battery life between replacement, thanks in part to the ultra low power consumption of the nRF51822 SoC.

Nordic’s nRF51822 is ideally suited for Bluetooth LE and 2.4GHz ultra low power wireless applications. The nRF51822 is built around a 32-bit Arm® Cortex M0 CPU, 2.4GHz multiprotocol radio, and 256kB/128kB Flash and 32kB/16kB RAM. The SoC is supplied with Nordic’s S130 SoftDevice, a Bluetooth 4.2 qualified concurrent multi-link protocol stack. Nordic’s software architecture includes a clear separation between the RF protocol software and the application code, simplifying development for ConnectedYard’s engineers and ensuring the SoftDevice doesn’t become corrupted when developing, compiling, testing and verifying application code.

Nordic Semiconductor | www.nordicsemi.com

Low-Power Bluetooth MCUs Deliver Mesh Networking

Cypress Semiconductor has announced it is sampling two low-power, dual-mode Bluetooth 5.0 and Bluetooth Low Energy (BLE) MCUs that include support for Bluetooth mesh networking for the Internet of Things (IoT). The new CYW20819 and CYW20820 MCUs each provide simultaneous Bluetooth 5.0 audio and BLE connections.

The CYW20819 Bluetooth/BLE MCU has the ability to maintain Serial Port Profile (SPP) protocol connections and Bluetooth mesh connections simultaneously. The CYW20820 offers the same features and integrates a power amplifier (PA) with up to 10 dBm output power for long-range applications up to 400 m and whole-home coverage. This provides classic Bluetooth tablet and smartphone connections while enabling a low-power, standards-compliant mesh network for sensor-based smart home or enterprise applications.

Both MCUs embed the Arm Cortex-M4 core. It enables operation at 60% lower active power for connected 200-ms beacons compared to current solutions—delivering up to 123 days of battery life from a CR2032 coin cell battery. Previously, users needed to be in the immediate vicinity of a Bluetooth device to control it without an added hub. Using Bluetooth mesh networking technology, combined with the high-performance integrated PA in the CYW20820, the devices within a network can communicate with each other.

Cypress Semiconductor | www.cypress.com

BLE Multicore MCUs Embed Arm Cortex M33 CPU

Dialog Semiconductor has announced its SmartBond DA1469x family of Bluetooth low energy SoCs, a range of multi-core MCUs for wireless connectivity. The devices’ three integrated cores have each been carefully chosen for their capabilities to sense, process and communicate between connected devices, says Dialog. To provide the devices’ processing power, the DA1469x product family is the first wireless MCU in production with a dedicated application processor based on the Arm Cortex-M33 CPU, according to Dialog.

The M33 is aimed at compute intensive applications, such as high-end fitness trackers, advanced smart home devices and virtual reality game controllers. The DA1469x devices have a new integrated radio that offers double the range compared to its predecessor together with an Arm Cortex-M0+ based software-programmable packet engine that implements protocols and provides full flexibility for wireless communication.

On the connectivity front, an emerging application is for manufacturers to deploy accurate positioning through the Angle of Arrival and Angle of Departure features of the newly introduced Bluetooth 5.1 standard. With its world-class radio front end performance and configurable protocol engine, the DA1469x complies with this new version of the standard and opens new opportunities for devices that require accurate indoor positioning such as building access and remote keyless entry systems.

To enhance the sensing functionality of the DA1469x, the M33 application processor and M0+ protocol engine is complemented with a Sensor Node Controller (SNC), which is based on a programmable micro-DSP that runs autonomously and independently processes data from the sensors connected to its digital and analog interfaces, waking the application processor only when needed. In addition to this power-saving feature, a state-of-the-art Power Management Unit (PMU) provides best-in-class power management by controlling the different processing cores and only activating them as needed.

The SoCs feature up to 144 DMIPS, 512 KB of RAM, memory protection, a floating-point unit, a dedicated crypto engine to enable end-to-end security and expandable memories, ensuring a wide range of advanced smart device applications can be implemented using the chipset family and supporting a range of key value-add interfaces to extend functionality even further.

The PMU also provides three regulated power rails and one LDO output to supply external system components, removing the requirement of a separate power management IC (PMIC). Additionally, the DA169x product family come equipped with a range of key value-add interfaces including a display driver, an audio interface, USB, a high-accuracy ADC, a haptic driver capable of driving both ERM and LRA motors as well as a programmable stepping motor controller.

Developers working with the DA1469x product family can make use of Dialog’s software development suite – SmartSnippets – which gives them the tools they need to develop best-in-class applications on the new MCUs. The DA1469x variants will start volume production in the first half of 2019. Samples and development kits are available now.

Dialog Semiconductor | www.dialog-semiconductor.com

 

April Circuit Cellar: Sneak Preview

The April issue of Circuit Cellar magazine is out next week (March 20th)!. We’ve worked hard to cook up a tasty selection of in-depth embedded electronics articles just for you. We’ll be serving them up to in our 84-page magazine.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of April 2019 Circuit Cellar:

VIDEO AND DISPLAY TECHNOLOGIES IN ACTION

Video Technology in Drones
Because video is the main mission of the majority of commercial drones, video technology has become a center of gravity in today’s drone design decisions. The topic covers everything including single-chip video processing, 4k HD video capture, image stabilization, complex board-level video processing, drone-mounted cameras, hybrid IR/video camera and mesh-networks. In this article, Circuit Cellar’s Editor-in-Chief, Jeff Child, looks at the technology and trends in video technology for drones.

Building an All-in-One Serial Terminal
Many embedded systems require as least some sort of human interface. While Jeff Bachiochi was researching alternatives to mechanical keypads, he came across the touchscreen display products from 4D Systems. He chose their inexpensive, low-power 2.4-inch, resistive touch screen as the basis for his display subsystem project. He makes use of the display’s Espressif Systems ESP8266 processor and Arduino IDE support to turn the display module into a serial terminal with a serial TTL connection to other equipment.

MICROCONTROLLERS ARE EVERYWHERE

Product Focus: 32-Bit Microcontrollers
As the workhorse of today’s embedded systems, 32-bit microcontrollers serve a wide variety of embedded applications-including the IoT. MCU vendors continue to add more connectivity, security and I/O functionality to their 32-bit product families. This Product Focus section updates readers on these trends and provides a product album of representative 32-bit MCU products.

Build a PIC32-Based Recording Studio
In this project article, learn how Cornell students Radhika Chinni, Brandon Quinlan, Raymond Xu built a miniature recording studio using the Microchip PIC32. It can be used as an electric keyboard with the additional functionality of recording and playing back multiple layers of sounds. There is also a microphone that the user can use to make custom recordings.

WONDERFUL WORLD OF WIRELESS

Low-Power Wireless Comms
The growth in demand for IoT solutions has fueled the need for products and technology to do wireless communication from low-power edge devices. Using technologies including Bluetooth Low-Energy (BLE), wireless radio frequency technology (LoRa) and others, embedded system developers are searching for ways to get efficient IoT connectivity while drawing as little power as possible. Circuit Cellar Chief Editor Jeff Child explores the latest technology trends and product developments in low-power wireless communications.

Bluetooth Mesh (Part 2)
Continuing his article series on Bluetooth mesh, this month Bob Japenga looks at the provisioning process required to get a device onto a Bluetooth mesh network. Then he examines two application examples and evaluates the various options for each example.

Build a Prescription Reminder
Pharmaceuticals prescribed by physicians are important to patients both old and young. But these medications will only do their job if taken according to a proper schedule. In this article, Devlin Gualtieri describes his Raspberry-Rx Prescription Reminder project, a network-accessible, the Wi-Fi connected, Raspberry Pi-based device that alerts a person when a particular medication should be administered. It also keeps a log of the actual times when medications were administered.

ENGINEERING TIPS, TRICKS AND TECHNIQUES

The Art of Current Probing
In his February column, Robert Lacoste talked about oscilloscope probes—or more specifically, voltage measurement probes. He explained how selecting the correct probe for a given measurement, and using it as it properly, is as important as having a good scope. In this article, Robert continues the discussion with another common measurement task: Accurately measuring current using an oscilloscope.

Software Engineering
There’s no doubt that achieving high software quality is human-driven endeavor. No amount of automated code development can substitute for best practices. A great tool for such efforts is the IEEE Computer Society’s Guide to the Software Engineering Body of Knowledge. In this article, George Novacek discusses some highlights of this resource, and why he has frequently consulted this document when preparing development plans.

HV Differential Probe
A high-voltage differential probe is a critical piece of test equipment for anyone who wants to safely examine high voltage signals on a standard oscilloscope. In his article, Andrew Levido describes his design of a high-voltage differential probe with features similar to commercial devices, but at a considerably lower cost. It uses just three op amps in a classic instrumentation amplifier configuration and provides a great exercise in precision analog design.

Nordic Semi’s BLE SoC Selected for Ultra Low Power IoT Module

Nordic Semiconductor has announced that Nanopower has selected Nordic’s nRF52832 Bluetooth Low Energy (Bluetooth LE) System-on-Chip (SoC) to provide the wireless connectivity for its nP-BLE52 module, designed for developers of IoT applications with highly restricted power budgets.

The nP-BLE52 module employs a proprietary power management IC—integrated alongside Nordic’s nRF52832 Wafer-Level Chip Scale Package (WL-CSP) SoC in a System-in-Package (SiP)—which enables it to cut power to the SoC, putting it in sleep mode, before waking it up a pre-set time and in the same state as before it was put to sleep. In doing so the SoC’s power consumption in sleep mode is reduced to 10 nA, making it well suited for IoT applications where battery life is critical by potentially increasing cell lifespan 10x.

In active mode, the nRF52832 SoC runs normally. The SoC has been engineered to minimize power consumption with features such as the 2.4GHz radio’s 5.5mA peak RX/TX currents and a fully-automatic power management system. Once the Nordic SoC has completed its tasks, it instructs the nP-BLE52 to put it to sleep and wake it up again at the pre-set time. The nP-BLE52 then stores the Nordics SoC’s state variables and waits until the nRF52832 SoC needs to be powered up again. On wake-up, the device uploads the previous state variables, allowing the Nordic SoC to be restored to the same operational state as before the power was cut. The SoC’s start-up is much more rapid than if it was activated from a non-powered mode.

The nP-BLE52 module also features a low power MCU which can be set to handle external sensors and actuators when the Nordic chip is switched off. In this state, the module still monitors sensors and buffer readings and can trigger wake-ups if these readings are above predetermined thresholds, while consuming less than 1 uA. The nP-BLE52 also integrates an embedded inertial measurement unit (IMU).

The module’s power management is controlled through a simple API, whereby the user can predetermine the duration of the Nordic SoC’s sleep mode, set the wake-up time and date parameters, and select pins for other on/off triggers.

The module offers IoT developers several advantages, either extending battery life and/or reducing the size of the battery required to power the application thereby reducing the end-product footprint. Longer battery life also reduces or eliminates battery swaps and enables the developer to better adjust for remaining useful battery life as the battery discharges. The module is suitable for any battery-powered device which is not required to be constantly active, for example asset tracking, remote monitoring, beacons, and some smart-home applications.

The nRF52832 WL-CSP SoC measures just 3.0 mm by 3.2mm while offering all the features of the conventionally-packaged chip. The nRF52832 is a powerful multiprotocol SoC ideally suited for Bluetooth LE and 2.4 GHz ultra low-power wireless applications. It combines an 64 MHz, 32-bit Arm Cortex M4F processor with a 2.4 GHz multiprotocol radio (supporting Bluetooth 5, ANT, and proprietary 2.4 GHz RF software) featuring -96dB RX sensitivity, with 512kB Flash memory and 64kB RAM.

The WL-CSP SoC is supplied with Nordic’s S132 SoftDevice, a Bluetooth 5-certifed RF software protocol stack for building advanced Bluetooth LE applications. The S132 SoftDevice features Central, Peripheral, Broadcaster, and Observer Bluetooth LE roles, supports up to twenty connections, and enables concurrent role operation. Nordic’s unique software architecture provides clear separation between the RF protocol software and the developer’s application code, easing product development.

Nordic Semiconductor | www.nordicsemi.com

PSoC MCU Variant is Purpose-Built for IoT Edge Processing

Cypress Semiconductor is expanding its Internet of Things (IoT) solutions portfolio with a new member of its ultra-low-power PSoC 6 microcontroller (MCU) family. The new PSoC 6 MCU is purpose-built to address the growing needs for computing, connectivity and storage in IoT edge devices. The new MCUs include expanded embedded memory with 2 MB Flash and 1 MB SRAM to support compute-intensive algorithms, connectivity stacks and data logging.

At the same time, Cypress has announced two new development kits for the PSoC 6 family, enabling developers to immediately leverage the industry’s lowest power, most flexible dual-core MCU with hardware-based security—to prolong battery life, deliver efficient processing and sensing, and protect sensitive user data. PSoC 6 is empowering millions of IoT products today, providing the most secure and low-power processing available.
Developers can evaluate the new PSoC 6 MCUs with expanded embedded memory using Cypress’ new PSoC 6 Wi-Fi BT Prototyping Kit (CY8CPROTO-062-4343W) (shown). This $30 kit features peripheral modules including Cypress’ industry-leading CapSense capacitive-sensing technology, PDM-PCM microphones, and memory expansion modules, enabling quick evaluation and easy development. The kit is supported by Cypress’ ModusToolbox software suite that provides easy-to-use tools for application development in a familiar MCU integrated development environment (IDE).

To streamline development of products with Bluetooth Low Energy (BLE) 5.0 connectivity, Cypress has introduced the PSoC 6 BLE Prototyping Kit (CY8CPROTO-063-BLE). This $20 kit features a fully-certified CYBLE-416045-02 BLE module—a turnkey solution that includes a PSoC 63 MCU, onboard crystal oscillators, trace antenna and passive components.

Cypress’ PSoC 6 MCUs are production qualified today and are in-stock at authorized distributors. The new PSoC 6 MCUs with expanded embedded memory are currently sampling and are expected to be in production in the first quarter of 2019. The PSoC 6 Wi-Fi BT Prototyping Kit (CY8CPROTO-062-4343W) is available for $30 and the PSoC 6 BLE Prototyping Kit (CY8CPROTO-063-BLE) is available for $20.

Cypress Semiconductor | www.cypress.com

Nordic’s BLE SoC Selected for IIoT Energy Monitor Device

Nordic Semiconductor has announced that OneMeter, a Lublin, Poland-based Industrial Internet of Things (IIoT) startup, has selected Nordic’s nRF51822 Bluetooth Low Energy (Bluetooth LE) System-on-Chip (SoC) to provide the wireless connectivity for its “OneMeter Beacon”, a device that provides companies with the ability to monitor and manage their energy usage data in real time.

Designed for use in a broad range of industrial and commercial environments—for example production facilities, manufacturing plants, and food service companies—the OneMeter Beacon is simply plugged in to an existing electronic electricity meter via an optical port interface, enabling the beacon to receive energy usage data from the meter using the IEC 62056-21 / IEC 1107 protocol. Once installed, the beacon is paired to a Bluetooth 4.0 (and later) Android smartphone or tablet, where from the OneMeter app the user can initialize and synchronize the beacon.

Once synchronized, the beacon reads data from the meter every 15 minutes, and stores it in the Nordic SoC’s Flash memory, from where the beacon automatically transmits the data to the user’s smartphone or tablet using Bluetooth LE wireless connectivity provided by the nRF51822 SoC. From the app the user can review data from the most recent readout (including active and reactive energy consumption parameters), as well as view daily, weekly and monthly energy usage charts and more.

OneMeter Cloud provides a comprehensive platform from which a company can not only monitor its metering data, but also perform accurate energy usage cost estimation, conduct effective energy audits, avoid penalties for exceeding contracted power by defining power parameter alerts, as well as manage its photovoltaic (PV) infrastructure. Certified measurement data can be shared with energy vendors enabling invoices to be settled based on actual usage instead of forecasts. The OneMeter beacon is powered by a 3V CR2032 coin cell battery, providing up to 12 months battery life before replacement, thanks in part to the ultra-low power characteristics of the nRF51822 SoC which has been engineered to minimize power consumption.

Nordic’s nRF51822 is a multiprotocol SoC ideally suited for Bluetooth LE and 2.4GHz ultra low-power wireless applications. The nRF51822 is built around a 32-bit Arm Cortex M0 CPU, 2.4GHz multiprotocol radio, and 256kB/128kB Flash and 32kB/16kB RAM. The SoC is supplied with Nordic’s S130 SoftDevice, a Bluetooth 4.2 qualified concurrent multi-link protocol stack solution supporting simultaneous Central/Peripheral/Broadcaster/Observer role connections.

Nordic Semiconductor | www.nordicsemi.com

 

Module Meets Needs of Simple Bluetooth Low Energy Systems

Laird has announced its new Bluetooth 5 module series, designed to simplify the process of bringing wireless designs to market. The BL651 Series is the latest addition to Laird’s Nordic Semiconductor family of Bluetooth 5 offerings. Building on the success of the BL652 and BL654 series, the BL651 is a cost-effective solution for simple Bluetooth Low Energy (BLE) applications that provides all the capabilities of the Nordic nRF52810 silicon in a small, fully certified module.

The BL651 leverages the benefits of Bluetooth 5 features, including higher data throughput and increased broadcasting capacity, in a tiny footprint. According to the company, the BL651 has been designed to allow a seamless hardware upgrade path to the more fully featured BL652 series if additional flash and RAM requirements are identified in the customer development process.

The BL651 series delivers the capabilities of the Nordic nRF52810 silicon in a small, fully certified module with simple soldering castellation for easy prototyping and mass production manufacturing. Designers can use the Nordic SDK and SoftDevice or Zephyr RTOS to build their BLE application. In addition, the BL651 series is 100% PCB footprint drop in compatible with the BL652 Series of modules, allowing flexibility to upscale designs if more flash/RAM or further feature sets are required during the design process.

In large factories Bluetooth sensor networks can easily span an entire campus and gather sensor data that can provide deep insights needed to maintain efficiency, productivity and security. The BL651 Series helps make these types of sensor networks easy to build, scale, and maintain.

Laird Connectivity | www.lairdtech.com

Connected Padlock Uses U-Blox BLE and Cellular Modules

U‑blox has announced their collaboration with India‑based Play Inc. on a connected GPS padlock for industrial applications. The lock, which doubles as a location tracker, features a U‑blox M8 GNSS receiver, MAX‑M8Q, and uses the u‑blox CellLocate service to extend positioning to indoor locations. U‑blox Bluetooth low energy with NINA‑B112, and 2G, 3G and 4G U‑blox cellular communication modules, including some that are ATEX certified, enable communication between users and the lock.
According to the company, In many industrial settings, locks are an unwelcome bottleneck. They typically require the physical presence of a person with a key to open them, they need to be checked periodically for signs of tampering, and when they are forced open, owners typically find out too late. Play Inc’s i‑Lock combines physical toughness and wireless technology to address these challenges. Offering a variety of access methods, including physical keys and keyless approaches using remote GPRS and SMS passwords as well as Bluetooth low energy or cloud‑based communication via mobile device apps, the i‑Lock lets plant managers or other customers flexibly grant authorization to access the goods that are under lock. And in the event that the padlock is forcefully opened, they are immediately alerted via a server or, optionally, SMS texting.

In addition to securing mobile and stationary goods, the lock’s GNSS receiver lets users track goods in transit. The i‑Lock supports a variety of tracking modes to optimize power consumption for increased autonomy. Location‑awareness further enables geofence restricted applications, in which the i‑Lock can only be open if it is within predefined geographical bounds—for example a petroleum filling station.

The security lock was designed to endure both physical attempts of tampering and cyberattacks. Its fiberglass reinforced enclosure withstands temperatures from -20 to +80 degrees C. The lock features Super Admin, Admin, and User access levels, 128-bit AES encryption, user‑configurable passwords, and a secure protocol to ensure data‑transmission accuracy.

The i‑Lock will be presented at The IoT Solutions Congress Barcelona on October 16‑18, 2018.

U-blox | www.u-blox.com

IoT Gateway/Dongle Solution Taps Nordic Semi’s BLE SoC

Nordic Semiconductor has announced that Fanstel has selected Nordic’s nRF52840 Bluetooth® 5/Bluetooth Low Energy (Bluetooth LE) advanced multiprotocol System-on-Chip (SoC) for its BWG840F gateway and USB840F dongle. The gateway and the dongle are designed to enable OEMs to rapidly develop solutions for customers—including IoT Cloud service providers and enterprises employing Cloud servers—to monitor IoT devices. Both solutions enable the rapid commissioning and mass deployment of IoT devices in commercial mesh networks via Bluetooth LE and Thread wireless protocols.

Designed to simplify the RF development and certification work required to develop IoT applications, both the gateway and dongle are U.S. FCC and European CE certified and supplied in market-ready enclosures.
The gateway and the dongle employ Fanstel’s Bluenor BT840F module for ultra low power and long range IoT applications. The module is based on the Bluetooth 5- and Thread-compliant nRF52840 SoC-based enabling it support multiprotocol wireless connectivity between the gateway or dongle and Bluetooth LE or Thread nodes in a mesh network. To further support the rapid development of IoT mesh networking solutions based on the gateway, Fanstel provides the DK-BWG840F development kit, allowing users to load firmware into the BT840F module using Nordic’s nRF5 Software Development Kit (SDK) and nRFgo software tools.

The BWG840F gateway’s Wi-Fi module provides Internet connectivity, enabling an IoT mesh network to be monitored and controlled remotely via a Cloud server. Alternatively, the USB840F dongle plugs into a PC’s USB port and relays data between the PC and any node in the mesh network using Bluetooth LE or Thread. For large scale applications, multiple dongles can be deployed in parallel, by being plugged into a wall USB port throughout a facility and then relaying commands and data to any node in the network within range of the ports.

Nordic’s nRF52840 SoC combines a 64 MHz, 32-bit Arm Cortex M4F processor with a 2.4 GHz multiprotocol radio (supporting Bluetooth 5, ANT, Thread, IEEE 802.15.4, and proprietary 2.4 GHz RF protocol software) with 1MB Flash memory and 256 KB RAM. The chip supports all the features of Bluetooth 5 (including 4x the range or 2x the raw data bandwidth (2 Mbps) compared with Bluetooth 4.2). Designed to address the inherent security challenges that are faced in IoT, the nRF52840 SoC incorporates the Arm CryptoCell-310 cryptographic accelerator, offering best-in-class security.

The SoC is supplied with Nordic’s S140 SoftDevice, a Bluetooth 5-certified software protocol stack for building long range and high data Bluetooth LE applications. The S140 SoftDevice offers concurrent Central, Peripheral, Broadcaster, and Observer Bluetooth LE roles, and supports high throughput and long range modes as well as advertising extensions.

The nRF52840 SoC also supports complex Bluetooth LE and other low-power wireless applications that were previously not possible with a single-chip solution. The nRF52840 is Bluetooth 5- and Thread 1.1-certified and its Dynamic Multiprotocol feature uniquely supports concurrent wireless connectivity of both protocols. Its radio architecture—featuring -96-dBm RX sensitivity and an on-chip power amplifier that boosts maximum output power of 8 dBm for a total link budget of >104 dBm—enables the gateway and dongle to achieve an estimated Bluetooth LE range of 2300 m when used in environments with a clear line of sight, low RF interference, and low multiple path interference, according to Fanstel.

Nordic Semiconductor | www.nordicsemi.com

Connected Retail IoT System Employs Nordic’s BLE SoC

Nordic Semiconductor has announced that Insigma, a U.S.-based Internet of Things (IoT) solutions company, employs Nordic’s nRF52832 Bluetooth Low Energy (Bluetooth LE) System-on-Chip (SoC) in its “Connected Retail” suite of IoT products. Insigma’s Connected Retail solution allows brands to create an intelligent IoT network of smart coolers, shelves, displays, and vending machines with minimal human intervention. The solution employs a proprietary wireless sensor and camera techology to record and report on stock levels, product placement compliance, product consumption trends and consumer engagement.

In operation, the device is equipped with two cameras, which take images of the products in the cooler or on the shelf. This image is then processed via Insigma’s proprietary machine vision technology to detect the products in view. To start collecting data and analytics, Insigma’s customers simply attach the sensor to the inside of an existing cooler, vending machine, or shelf without need for wiring or mains power. The integration of the Nordic SoC establishes ultra low power wireless connectivity, delivering up to seven years battery life thanks in part to the ultra low power characteristics of the Nordic SoC.

The nRF52832 has been engineered to minimize power consumption with features such as the 2.4 GHz radio’s 5.5 mA peak RX/TX currents and a fully-automatic power management system that reduces power consumption by up to 80 percent compared with Nordic’s nRF51 Series SoCs.

The collected data is stored on the device and is then relayed on-site to a sales agent or technician’s Bluetooth 4.0 (and later) smartphone or tablet using Bluetooth LE wireless connectivity. From Insigma’s ‘Virtual Hub’ app, the data can then be uploaded to Insigma’s Cloud servers, or sent directly to an IoT gateway (again via Bluetooth LE), from where it is automatically sent to Insigma’s Cloud servers via a GSM or CDMA cellular network. The secure and scalable Cloud platform features alert and artificial intelligence engines enabling device management and configuration, while providing a reporting dashboard to display complex IoT data with simple visualization.

Nordic’s nRF52832 multiprotocol SoC combines a 64 MHz, 32-bit Arm Cortex M4F processor with a 2.4 GHz multiprotocol radio (supporting Bluetooth 5, ANT and proprietary 2.4 GHz RF protocol software) featuring -96 dBm RX sensitivity, with 512 kB flash memory and 64 kB RAM.

The SoC is supplied with Nordic’s S132 SoftDevice, a Bluetooth 5-certifed RF software protocol stack for building advanced Bluetooth LE applications. The S132 SoftDevice features Central, Peripheral, Broadcaster and Observer Bluetooth LE roles, supports up to twenty connections, and enables concurrent role operation.

Nordic Semiconductor | www.nordicsemi.com

 

Cloud-based Eval Service for Nordic BLE SoC-Based Designs

Nordic Semiconductor has launched “nRF Connect for Cloud”, a free service for Cloud-based evaluation, test, and verification of Bluetooth Low Energy (Bluetooth LE) designs employing Nordic’s nRF51 and nRF52 Series multiprotocol Bluetooth LE SoCs. nRF Connect for Cloud features an intuitive workflow and offers much of the functionality of Nordic’s “nRF Connect for Desktop” and “nRF Connect for Mobile” which are popular applications used for building and developing Bluetooth LE products. nRF Connect for Cloud also supports an extensive range of standard Bluetooth services together with proprietary services such as nRF UART.
Operating with all popular browsers, nRF Connect for Cloud uses web Bluetooth application programming interfaces (APIs) to push and extract data to and from the Cloud, enabling the developer to test and modify the behavior and performance of prototypes. By using the front-end and visualization features of nRF Connect for Cloud, historical data can be extracted from databases and analyzed in a browser. The product also allows engineers to monitor and interact with remote wireless IoT designs enabling the collaboration of geographically separate development teams on a single project.

nRF Connect for Cloud is supported by the nRF Gateway App available for iOS and Android-powered mobile devices. The nRF Gateway App enables Nordic Bluetooth LE devices to use a smartphone-enabled Internet gateway to convert Bluetooth LE messages to ReST/MQTT/IP protocols for Cloud interoperability.

The Gateway App communicates with the nRF Connect for Cloud back-end hosted on Amazon Web Services (AWS) and is based on Software as a Service (SaaS) components. By leveraging AWS industry-grade components, the app implements end-to-end data and device connectivity, guarantees reliability, and scales from a few to hundreds of Bluetooth LE devices.

nRF Connect for Cloud currently supports Bluetooth LE solutions but future versions will also support Nordic’s nRF91 Series low power, global multimode LTE-M/NB-IoT System-in-Package (SiP) for cellular IoT.

nRF Connect for Cloud works out-of-the-box with the Nordic Thingy:52 IoT Sensor Kit, Nordic nRF5 development kit (DK), and software development kit (SDK) examples. A quick-start guide is available from www.nrfcloud.com.

Nordic Semiconductor | www.nordicsemi.com