Single-Chip Controllers for 20-Inch Automotive Touchscreens

A new family of single-chip maXTouch touchscreen controllers from Microchip Technology is designed to address a number of issues particular to automotive screens up to 20 inches in size. Even as touchscreen displays in the car grow larger, drivers expect screens to operate with the same touch experience as mobile phones. However, screens in automobiles need to meet stringent head impact and vibration tests, and consequently have thicker cover lenses that potentially impact the touch interface performance. As screens get larger, they are also more likely to interfere with other frequencies such as AM radio and car access systems. All of these factors become a major challenge in the design of modern automotive capacitive touch systems.
The MXT2912TD-A, with nearly 3,000 touch sensing nodes, and MXT2113TD-A, supporting more than 2,000 nodes, bring consumers the touchscreen user experience they expect in vehicles. These new devices build upon Microchip’s existing maXTouch touchscreen technology that is widely adopted by manufacturers worldwide. Microchip’s latest solutions offer superior signal-to-noise capability to address the requirements of thick lenses, even supporting multiple finger touches through thick gloves and in the presence of moisture.

As automakers use screens to replace mechanical switches on the dash for sleeker interior designs, safe and reliable operation becomes even more critical. The MXT2912TD and MXT2113TD devices incorporate self- and sensor-diagnostic functions, which constantly monitor the integrity of the touch system. These smart diagnostic features support the Automotive Safety Integrity Level (ASIL) classification index as defined by the ISO 26262 Functional Safety Specification for Passenger Vehicles.

The new devices feature technology that enables adaptive touch utilizing self-capacitance and mutual-capacitance measurements, so all touches are recognized and false touch detections are avoided. They also feature Microchip’s proprietary new signal shaping technology that significantly lowers emissions to help large touchscreens using maXTouch controllers meet CISPR-25 Level 5 requirements for electromagnetic interference in automobiles. The new touch controllers also meet automotive temperature grade 3 (-40°C to +85°C) and grade 2 (-40°C to +105°C) operating ranges and are AEC-Q100 qualified.

With the addition of the new maXTouch touchscreen controllers, Microchip provides full scalability to customers, offering the industry’s only complete and growing portfolio of automotive-qualified touchscreen controllers for the use of various screen sizes. Developers can design multiple platforms from small touchpads to large displays in the same development environment with the same host software interface and quality user experience. This ultimately shortens design time while lowering system and development costs.

Eight dedicated application and sensor design centers around the world help Microchip customers and partners accelerate the process of bringing their maXTouch technology designs to market. Microchip’s maXTouch technology specialists are working with all major sensor, display and touch module manufacturers.

An evaluation kit is available for each of the parts in the new maXTouch touchscreen controller family. The kit includes a Printed Circuit Board (PCB) with the maXTouch touchscreen controller, a touch sensor on a clear glass lens, the Flat Printed Circuit (FPC) to connect to the sensor display, a converter PCB to connect the kit to the host computer via USB, as well as cables, software and documentation. All parts are also compatible with maXTouch Studio, a full software development environment to support the evaluation of maXTouch touchscreen controllers.

The MXT2912TD-A and MXT2113TD-A devices are available now in sampling and volume quantities in LQFP176 and LQFP144 packages, respectively.

Microchip Technology | www.microchip.com

IAR Updates Dev Tools for Renesas Automotive MCUs

IAR Systems has announced a major update of its development tools for Renesas automotive-focused RH850 microcontrollers. The latest version of the complete C/C++ compiler and debugger toolchain IAR Embedded Workbench for Renesas RH850 offers boosted user experience and extended capabilities through a number of new features.

IAR Embedded Workbench for Renesas RH850 incorporates a compiler, a debugger, an assembler and a linker in one integrated development environment. It is available in several editions to suit different company needs, including a functional safety edition certified by TÜV SÜD according to IEC 61508, ISO 26262 and EN 50128. Renesas Electronics’ RH850 automotive MCU family includes rich functional safety and embedded security features needed for advanced automotive applications.
Version 2.10 of IAR Embedded Workbench for Renesas RH850 adds compliance with the latest C language standard ISO/IEC 9899:2011 and the latest C++ standard ISO/IEC 14882:2014, ensuring high-quality, future-proof code. Renowned for producing very efficient code, the IAR C/C++ Compiler™ in IAR Embedded Workbench for Renesas RH850 now supports stack protection and stack usage analysis functionality. Available as an add-on for the toolchain is the static analysis tool C-STAT, which is now updated with a number of new checks. With these additions, developers building RH850-based applications are able to further strengthen code quality, stability and reliability in their embedded applications.

Automotive embedded applications are growing in complexity, which means it can be challenging to make a correct setup of peripherals from scratch. The Renesas Smart Configurator is a tool for combining software, automatically generating control programs for peripheral modules, and pin setting from the GUI with built-in cross-checks to avoid potential contention with multiplexed functions. In version 2.10 of IAR Embedded Workbench for Renesas RH850, automated code generation from Renesas Smart Configurator is made possible through the straight-forward project connection functionality.

IAR Systems | www.iar.com

3D Gesture Recognition Controller for Cars

Microchip Technology has announced a new 3D gesture recognition controller that offers the lowest system cost in the automotive industry, providing a durable single-chip solution for advanced automotive HMI designs. The MGC3140 joins Microchip’s family of easy-to-use 3D gesture controllers as the first qualified for automotive use.

Suited for a range for applications that limit driver distraction and add convenience to vehicles, Microchip’s new capacitive technology-based air gesture controller is ideal for navigating infotainment systems, sun shade operation, interior lighting and other applications. The technology also supports the opening of foot-activated rear liftgates and any other features a manufacturer wishes to incorporate with a simple gesture action.
The MGC3140 is Automotive Electronics Council AEC-Q100 qualified with an operating temperature range of -40°C to +125°C, and it meets the strict electromagnetic interference (EMI) and electromagnetic compatibility (EMC) requirements of automotive system designs. Each 3D gesture system consists of a sensor that can be constructed from any conductive material, as well as the Microchip gesture controller tuned for each individual application.

Car manufacturers are increasingly seeking ways to reduce driver distraction through implementing functional safety technology in vehicles. Many Human Machine Interface (HMI) designers are turning to gesture recognition as a solution to improve driver and vehicle safety without sacrificing interior design, adding features that allow drivers to easily control everything from switching on lights to answering phone calls while focusing on the road.

While existing solutions such as infrared and time-of-flight technologies can be costly and operate poorly in bright or direct sunlight, the MGC3140 offers reliable sensing in full sunlight and harsh environments. Other solutions on the market also come with physical constraints and require significant infrastructure and space to be integrated in a vehicle. The MGC3140 is compatible with ergonomic interior designs and enables HMI designers to innovate with fewer physical constraints, as the sensor can be any conductive material and hidden from view.

The Emerald evaluation kit provides a convenient evaluation platform for the 3D gesture recognition controller. The kit includes a reference PCB with the MGC3140 controller, a PCB-based sensor to recognize gestures, as well as all needed cables, software and documentation to support an easy-to-use user experience. All parts are compatible with Microchip’s Aurea software development environment which supports all Microchip 3D gesture controllers.

The MGC3140 is available now in sampling and volume production quantities.

Microchip Technology | www.microchip.com

Pioneer Chooses Cypress Wi-Fi/ Bluetooth IC for Infotainment System

Cypress Semiconductor has announced that Pioneer has integrated Cypress’ Wi-Fi and Bluetooth Combo solution into its flagship in-dash navigation AV receiver. The solution enables passengers to display and use their smartphone’s apps on the receiver’s screen via Apple CarPlay or Android Auto, which provide the ability to use smartphone voice recognition to search for information or respond to text messages. The Cypress Wi-Fi and Bluetooth combo solution uses Real Simultaneous Dual Band (RSDB) technology so that Apple CarPlay and Android Auto can operate concurrently without degradation caused by switching back and forth between bands.
The Pioneer AVH-W8400NEX receiver uses Cypress’ CYW89359 combo solution, which includes an advanced coexistence engine that enables optimal performance for dual-band 2.4-GHz and 5-GHz 802.11ac Wi-Fi and dual-mode Bluetooth/Bluetooth Low Energy (BLE) simultaneously for superior multimedia experiences. The CYW89359’s RSDB architecture enables two unique data streams to run at full throughput simultaneously by integrating two complete Wi-Fi subsystems into a single chip.

The CYW89359 is fully automotive qualified with AECQ-100 grade-3 validation and is being designed in by numerous top-tier car OEMs and automotive suppliers as a full in-vehicle connectivity solution, supporting infotainment and telematics applications such as smartphone screen-mirroring, content streaming and Bluetooth voice connectivity in car kits.

Cypress Semiconductor | www.cypress.com

Chip Marries 60 V Buck Controller and 4 Buck Regulators

Analog Devices has announced the Power by Linear LTC3372, an integrated power management solution for systems that require multiple low voltage outputs generated from an input voltage as high as 60 V. The LTC3372 features a 60 V synchronous buck switching regulator controller followed by four configurable synchronous monolithic buck regulators. This combination provides up to five high efficiency low quiescent current outputs in a single IC, well-suited for automotive, industrial and medical applications.

The LTC3372’s buck controller operates over a 4.5 V to 60 V input voltage range and drives an all N-channel MOSFET power stage. Its output can be programmed to either 3.3 V or 5 V and can generate an output current up to 20 A. The controller output is typically used to feed the four monolithic buck regulators. Each monolithic buck channel can be programmed to regulate an output voltage as low as 0.8 V with a configurable output current up to 4 A. Eight 1 A integrated power stages are programmed by the C1-C3 pins into one of eight unique configurations, from a quad 2 A buck to a dual 4 A buck. This allows only one inductor per channel.

The LTC3372 offers a low IQ solution ideal for battery-powered or automotive applications in which one or more power supply rails are always on. With just the high voltage controller enabled, the device draws 15 µA from a 12 V input supply while regulating the output to 5 V at no load. Each monolithic buck regulator adds only 8 µA of additional IQ per channel enabled. The LTC3372’s monolithic buck switching frequency can be programmed from 1 MHz to 3 MHz and can be synchronized to an external clock while the buck controller switches at 1/6 of this frequency. Additional features include foldback current limiting, soft-start, short-circuit protection and output overvoltage protection.

The LTC3372 is available from stock in a thermally enhanced 48-pin 7 mm × 7 mm QFN package. E and I grades are specified over an operating junction temperature range of –40°C to 125°C, and the H grade features operation from –40°C to 150°C.

Analog Devices | www.analog.com

PMICs Enable Optimized Power for Automotive ADAS

Maxim Integrated Products has announced a series of power-management ICs (PMICs)  that enable designers to optimize power for automotive advanced driver-assistance systems (ADAS) functions to achieve high performance, small size, efficiency and electrical protection.

ADAS functions, many of which are now mandatory or will be soon, increase vehicle safety and enhance the driving experience. These features include smart braking for collision avoidance, GPS/navigation, adaptive cruise control, lane centering, lane-departure warning, and back-up/surround video. Although these functions receive considerable design attention, managing DC power in electrically harsh vehicle environments is a less-publicized yet critical challenge which involves significant issues of functions, features, performance, efficiency and footprint.
Maxim’s array of application-optimized ICs, which manage DC power, solve the top-level designer pain points for various ADAS functions involving a combination of package size, operating efficiency, quiescent current, electrical protection, and EMI generation.

The series of PMICs which Maxim has released include:

MAX20019 Dual Synchronous Step-Down Converter—Provides the industry’s smallest 3.2MHz dual step-down power supply in a 2mm × 3mm package size (compared to the closest competing solutions that offer single channel parts in either a 2mm x 2mm or 3mm x 3mm package size)

MAX20087 Quad Camera Power Protector—ASIL-grade camera module protector IC includes an I2C interface to report on over/undervoltage/fault conditions; monitors up to four 600 mA coax channels and isolates faults from individual camera modules

MAX20075 and MAX20076 Synchronous Step-Down Converters—Offer the industry’s lowest quiescent current with peak and valley mode options; provide a high peak efficiency of 91% for always-on applications compared to competing solutions, while featuring a 40 V load-dump tolerance

MAX20014 Triple-Output Converter—Features one synchronous boost and two synchronous step-down converters for smaller, simpler, and lower cost designs (competing approaches require two ICs plus discrete components); features 2.2 MHz switching frequency and spread-spectrum capability for reduced EMI and comes in a small 4 mm x 4 mm package size

Maxim Integrated | www.maximintegrated.com

MCUs and Processors Vie for Embedded Mindshare

Performance Push

Today’s crop of high-performance microcontrollers and embedded processors provide a rich continuum of features, functions and capabilities. Embedded system designers have many choices in both categories but the dividing line between the two can be blurry.

By Jeff Child, Editor-in-Chief

At one time the world of microcontrollers and the world of microprocessors were clearly separate. That’s slowly changed over the years as the high-performance segment of microcontrollers have become more powerful. And the same time, embedded processors have captured ever more mindshare and market share that used to be exclusively owned by the MCU camp. The lines blurred even further once most all MCUs started using Arm-based processor cores.

All the leading MCU vendors have a high-performance line of products, some in the 200 MHz and up range. Moreover, some application-specific MCU offerings are designed specifically for the performance needs of a particular market segment—automotive being the prime example. In some cases, these high end MCUs are vying for design wins against embedded processors that meet the same size, weight and power requirements as MCUs. In this article, we’ll examine some of the latest and greatest products and technologies on both sides.

High Performance MCU

An example of an MCU vendor’s high-performance line of products is Cypress Semiconductor’s FM4. FM4 is a portfolio of 32-bit, general-purpose, high performance MCUs based on the Arm Cortex-M4 processor with FPU and DSP functionality. FM4 microcontrollers operate at frequencies up to 200 MHz and support a diverse set of on-chip peripherals for motor control, factory automation and home appliance applications. The portfolio delivers low-latency, reliable, machine-to-machine (M2M) communication required for Industry 4.0 using network-computing technologies to advance design and manufacturing.

The FM4 MCU supports an operating voltage range of 2.7 V to 5.5 V. The devices incorporate 256 KB to 2 MB flash and up to 256 KB RAM. The fast flash memory combined with a flash accelerator circuit (pre-fetch buffer plus instruction cache) provides zero-wait-state operation up to 200 MHz. A standard DMA and an additional descriptor-based DMA (DSTC), each with an independent bus for data transfer, can be used to further offload the CPU. Figure 1 shows the FM4-216-ETHERNET, a development platform for developing applications using the Arm Cortex-M4-based FM4 S6E2CC MCU.

Figure 1
The FM4-216-ETHERNET is a development platform for developing applications using the Arm Cortex-M4-based FM4 S6E2CC MCU.

The high-performance line of MCUs from ST Microelectronics is its STM32H7 series. An example product from that series is the STM32H753 MCU with Arm’s highest-performing embedded core (Cortex-M7). According to ST Micro it delivers a record performance of 2020 CoreMark/856 DMIPS running at 400 MHz, executing code from embedded flash memory.

Other innovations and features implemented by ST further boost performance.These include the Chrom-ART Accelerator for fast and efficient graphical user-interfaces, a hardware JPEG codec that allows high-speed image manipulation, highly efficient Direct Memory Access (DMA) controllers, up to 2 MB of on-chip dual-bank flash memory with read-while-write capability, and the L1 cache allowing full-speed interaction with off-chip memory. Multiple power domains allow developers to minimize the energy consumed by their applications, while plentiful I/Os, communication interfaces, and audio and analog peripherals can address a wide range of entertainment, remote-monitoring and control applications.

Last year STMicro announced its STM32H7 high-performing MCUs are designed with the same security concepts as the Platform Security Architecture (PSA) from Arm announced at that time. This PSA framework on the STM32H7 MCUs are combined with STM32-family enhanced security features and services. ST’s STM32H7 MCU devices integrate hardware-based security features including a True Random-Number Generator (TRNG) and advanced cryptographic processor, which will simplify protecting embedded applications and global IoT systems against attacks like eavesdropping, spoofing or man-in-the-middle interception.

MCU Runs Linux OS

One dividing line that remains between MCUs and microprocessors is their ability to run major operating systems. While most embedded processors can run OSes like Linux, most MCUs lack the memory architecture required to do so. Breaking that barrier, in February MCU vendor Microchip Technology unveiled a System on Module (SOM) featuring the SAMA5D2 microprocessor. The ATSAMA5D27-SOM1 contains the recently released ATSAMA5D27C-D1G-CU System in Package (SiP) (Figure 2).

Figure 2
The Arm Cortex-A5-based SAMA5D2 SiP is available in three DDR2 memory sizes (128 Mb, 512 Mb and 1 Gb) and optimized for bare metal, RTOS and Linux implementation

The SOM simplifies design by integrating the power management, non-volatile boot memory, Ethernet PHY and high-speed DDR2 memory onto a small, single-sided PCB. There is a great deal of design effort and complexity associated with creating an industrial-grade MPU-based system running a Linux operating system. The SOM integrates multiple external components and eliminates key design challenges around EMI, ESD and signal integrity. …

Read the full article in the August 337 issue of Circuit Cellar

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!

Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

On-Chip Flash MCU Uses 28 nm Process Technology

Renesas Electronics has announced the sample shipment of the industry’s first on-chip flash memory microcontroller using a 28 nm process technology. To contribute to the realization of next-generation green cars and autonomous vehicles with higher efficiency and higher reliability, the RH850/E2x Series MCU incorporates up to six 400 MHz CPU cores. According to Renesas, that makes it the first on-chip flash memory automotive MCU to achieve processing performance of 9600 MIPS. The new MCU series also features a built-in flash memory of up to 16 MB as well as enhanced security functions and functional safety.

Under Renesas Autonomy, an open, innovative and trusted platform for assisted and automated driving, Renesas provides end-to-end solutions that advance the evolution of vehicles towards next-generation green cars, connected cars and autonomous-driving vehicles. There are two main pillars of the Renesas Autonomy Platform. One is this new 28 nm automotive control MCU. And the other is the R-Car Family of SoCs designed for cloud connectivity and sensing.
Car OEMs and Tier 1 manufacturers, such as Denso, have already started to adopt the new 28 nm MCU. Reasons cited include the MCU’s superior processing performance capable of developing next-generation fuel-efficient engines, as well as its scalability. Scalability is important because of the expected electronic control unit (ECU) integration to come from changes in automotive electrics/electronics (E/E) architecture.

Following the development of the 28 nm embedded flash memory in February 2015, Renesas announced its collaboration with TSMC on 28nm MCUs in September 2016. The company today hit a major milestone by reaching sample shipment of the world’s first 28nm embedded flash memory MCU on the market. Renesas has already succeeded in verifying large-scale operation of fin-structure MONOS flash memory targeting 16/14nm and beyond generations of MCUs. As the leading supplier of automotive semiconductor solutions, Renesas is committed to advancing the industry through continued technological innovation to achieve a safe and secure automotive society.

To assure scalability in the RH850/E2x Series, in addition to the 28 nm flash memory MCU, Renesas has also launched a 40 nm process MCU. Samples of this MCU are available now. Samples of both 28 nm and 40 nm MCUs from RH850/E2x are  available.

Renesas Electronics | www.renesas.com

Automotive Echo Cancellation Available for NXP Processors

NXP Semiconductors has announced a new echo cancellation noise reduction solution (ECNR) that significantly reduces the problem of noisy voice communications and provides carmakers with a consumer pleasing, hands-free calling experience. The cost-effective solution combines innovative ECNR software that can be easily ported onto NXP i.MX processors and NXP’s leading car radio tuners and DSPs. The new NXP ECNR solution is also ITU-T P1110 and CarPlay pre-certified.
Echo and noise can make communication on the road difficult. Echo occurs when the speakers within a car transmit a voice signal from an incoming call, which subsequently ricochets through the vehicle and returns to the microphone. This causes the caller to hear their own voice, which is distracting and can result in broken communications. Additionally, road noise from fans, exhaust, tires, windows and passengers can infiltrate calls and render them unintelligible, ultimately disrupting the driving experience and causing frustration.

The new NXP ECNR solution deals with both problems by removing echoes and filtering out unwanted noise from the cockpit to enhance the sound quality of conversations. Since the ECNR solution can be ported to NXP chipsets and is ITU-T P1110 and CarPlay pre-certified, it can reduce carmakers’ R&D expenses and speed up the design cycle.

NXPs SAF775x integrates up to 2 AM/FM tuners, radio processing, an automotive audio hub and an open HiFi2 core for advanced audio algorithms. SAF775x has rich analog and digital interfaces, flexible audio mixer and filter structure, and core audio processing algorithms. The SAF775x family radio-audio one chip is a market-proven solution and has been successfully designed in major automotive OEM platforms.

i.MX applications processors offer a feature and performance-scalable multicore platform that includes single, dual and quad-core families based on the Arm® v7-A and Arm v8 architecture based solutions with powerful processing for neural networks, advanced graphics, machine vision, video, audio, voice and safety-critical requirements.

The ECNR algorithm is running on the HiFi2 core of SAF775x, ready be activated by a key code.

NXP Semiconductors | www.nxp.com

Step-Down Converters Target Always-On Car Systems

Maxim Integrated Products has announced the ultra-compact, pin-compatible MAX20075 and MAX20076 step-down converters that enable system designers looking to create small and highly efficient 40-V load dump-tolerant applications. The MAX20075 and MAX20076 step-down converters offer low quiescent current (IQ) and feature integrated compensation. This enables minimal external components that can lead up to 50% savings in board space making them well-suited for always-on automotive applications.

According to Maxim Integrated, car customers expect always-on applications to bring them experiences richer and more compelling than ever before. However, car system designers are challenged with having to balance delivering advanced features with meeting size constraints, power-saving features and high efficiency.

The MAX20075 and MAX20076 in peak current mode draw just 3.5 µA in the low power operating mode, which is key to meeting the stringent OEM IQ consumption requirements of 100 µA per module. The converters enable low noise operation via pin-controlled spread spectrum and fixed 2.1 MHz operation to meet CISPR 25 Class 5 EMI compliance. Furthermore, added advantage of the 2.1 MHz operation and internal compensation is that it lowers the solution size and the bill of materials (BOM) compared to a non-synchronous device that operates in the AM band.

The MAX20075 and MAX20076 are available with a low minimum on-time mode operation, which allows the converters to support large input-to-output conversion ratios. For example, Vbatt input to Vout of less than 3 V at 2.1 MHz; this translates to not having to use a secondary supply, which reduces overall BOM cost by $0.30 to incorporate new functions into the design for greater flexibility. The MAX20075 and MAX20076 meet AEC-Q100, are available in a 3 mm x 3 mm TDFN package, and operate over the -40°C to +125°C temperature range.

Maxim Integrated | www.maximintegrated.com

Single-Chip Battery Management System for Cars

Maxim Integrated Products has announced MAX17843 battery management system (BMS). The MAX17843 is 12-channel, high-voltage smart sensor data-acquisition device. Electric vehicles (EVs), hybrid EVs, and plug-in hybrids rely on large lithium-ion battery packs filled with hundreds or even thousands of individual battery cells. With industry experts predicting that 25% of cars sold by 2025 will have electric engines, automotive OEMs and Tier 1s need an intelligent battery management system to enable safe, low cost solutions with robust communications.

MAX17843 meets the highest safety standards, adhering to ISO 26262 and ASIL D requirements (also applicable for ASIL C). Its differential universal asynchronous receiver/transmitter (UART) using capacitive isolation reduces bill of materials (BOM) costs and failure in time (FIT) rates. With this, designers can save up to 90% of their isolation BOM cost. The UART, with ultimate flexibility, enables robust communications in noisy environments. Using Maxim’s unique proprietary daisy-chain architecture and successive-approximation-register (SAR) analog-to-digital converter (ADC), the MAX17843 captures fast, accurate voltage measurements and delivers high EMC performance. It is applicable for a variety of automotive and EV powertrain applications.

Key advantages:

  • Safety: ISO 26262 and ASIL D certification, as well as TUV certification in design and management process; meets various BCI requirements; comprehensive diagnostics
  • Low System Cost: Internal cell balancing and UART reduces BOM costs compared to competitive solutions; only IC to allow capacitive or transformer isolation
  • Robust Communications: Reliable distributive and centralized CMC architecture with UART; Supports 100m daisy-chain segments and high noise immunity; Supports emission, ESD, and hot plug

The MAX17843 is available at Maxim’s website for $7.61 (1,000), The MAX17843EVKIT# evaluation kit is available for $1,000. The device operates over the -40°C to +125°C temperature range and is available in a 64-pin LQFP package (10mm x 10mm).

Maxim Integrated Products | www.maximintegrated.com

NVIDIA Graphics Tapped for Mercedes-Benz MBUX AI Cockpit

At the CES show last month, Mercedes-Benz its NVIDIA-powered MBUX infotainment system–a next-gen car cabin experience can learn and adapt to driver and passenger preferences, thanks to artificial intelligence.

According to NVIDIA, all the key MBUX systems are built together with NVIDIA, and they’re all powered by NVIDIA. The announcement comes a year after Huang joined Mercedes-Benz execs on stage at CES 2017 and said that their companies were collaborating on an AI car that would be ready in 2018.

Powered by NVIDIA graphics and deep learning technologies, the Mercedes-Benz User Experience, or MBUX, has been designed to deliver beautiful new 3D touch-screen displays. It can be controlled with a new voice-activated assistant that can be summoned with the phrase “Hey, Mercedes. It’s an intelligent learning system that adapts to the requirements of customers, remembering such details as the seat and steering wheel settings, lights and other comfort features.

The MBUX announcement highlights the importance of AI to next-generation infotainment systems inside the car, even as automakers are racing put AI to work to help vehicles navigate the world around them autonomously. The new infotainment system aims to use AI to adapt itself to drivers and passengers— automatically suggesting your favorite music for your drive home, or offering directions to a favorite restaurant at dinner time. It’s also one that will benefit from “over-the-air” updates delivering new features and capabilities.

Debuting in this month (February) in the new Mercedes-Benz A-Class, MBUX will power dramatic wide-screen displays that provide navigation, infotainment and other capabilities, touch-control buttons on the car’s steering wheel, as well as an intelligent assistant that can be summoned with a voice command. It’s an interface that can change its look to reflect the driver’s mood—whether they’re seeking serenity or excitement—and understand the way a user talks.

NVIDIA | www.nvidia.com

Vehicle Computer Targets Comms + Control

MEN Micro has announced the BC50R, a maintenance-free box computer that has been designed for data acquisition applications in rugged environments in vehicles such as trains, commercial vehicles, mobile machines or ships. All interfaces are implemented on rugged M12 connectors (USB, digital input and output, Gigabit Ethernet, CAN and legacy serial I/O). The housing is compliant to the IP65 protection class.

On the inside, the system offers two PCI Express Mini card slots with two SIM card slots for WLAN, GNSS or 3G/4G functionality. The necessary antenna connectors can be made available at the front panel. It is powered by an AMD Embedded G-Series APU (Accelerated Processing Unit), the T48N, running at 1.4 GHz. The use of the Embedded G-Series makes for high scalability in CPU (single/dual core) performance. The BC50R is equipped with 2 GB of DDR3 SDRAM and offers SD card and mSATA slots. The system is designed for fanless operation at temperatures from -40 to +70°C (+85°C for up to 10 minutes), its special aluminum housing with cooling fins serves as a heat sink for the internal electronics and in this way provides conduction cooling.

The BC50R supports a 24 VDC and 36 VDC nom. class S2 power supply in compliance with EN 50155 or power supplies which comply with ISO 7637-2 (E-mark for automotive) (nominal input voltage 24 V) or with EN 60945 (ship). The power can be switched on and off using an ignition signal on the power connector, and a shutdown-delay time after switching off the power can be adjusted by software.

The combination of the various CPU/GPU options with the available selection of external interfaces (realized via separate graphics and I/O interface boards within the system) makes for an flexible system design that can quickly be tailored to a wide variety of applications.

MEN Micro | www.menmicro.com

Kit for R-Car V3M SoC Speeds Development

Renesas Electronics has announced the R-Car V3M Starter Kit to simplify and speed up the development of New Car Assessment Program (NCAP) front camera applications, surround view system, and LiDARs. The new starter kit is based on the R-Car V3M image recognition system-on-chip (SoC), delivering a combination of low power consumption and high performance for the growing NCAP front camera market. By combining the R-Car V3M starter kit with supporting software and tools, system developers can easily develop front camera applications, contributing to reduced development efforts and faster time-to-market.

Renesas also announced an enhancement to the R-Car V3M by integrating a new, highly power-efficient hardware accelerator for high-performance convolutional neural networks (CNNs), which enables features such as road detection or object classification that are increasingly used in automotive applications. The R-Car V3M’s innovative hardware accelerator enables CNNs to execute at ultra-low power consumption levels that cannot be reached when CNNs are running on CPUs or GPUs.

The new R-Car V3M Starter Kit, the R-Car V3M SoC, and supporting software and tools including Renesas’ open-source e² studio IDE integrated development environment (IDE), are part of Renesas’ open, innovative, and trusted Renesas autonomy Platform for ADAS and automated driving that delivers total end-to-end solutions scaling from cloud to sensing and vehicle control.

The new starter kit is a ready-to-use kit. In addition to the required interface and tools, the kit provides essential components for ADAS and automated driving development, including 2GB RAM, 4GB eMMC (embedded multi-media controller) onboard memory, Ethernet, display outputs, and interfaces for debugging. The integrated 440-pin expansion port gives full freedom for system manufacturers to develop application-specific expansion boards for a wide range of computing applications, from a simple advanced computer vision development environment to prototyping of multi-camera systems for applications such as surround view. This board flexibility reduces the time needed for hardware development in addition to maintaining a high degree of software portability and reusability.

The R-Car V3M Starter Kit is supported by a Linux Board Support Package (BSP), which is available through elinux.org. Further commercial operating systems will be made available from next year onwards. Codeplay will enable OpenCL and SYCL on the starter kit in Q1 2018. Further tools, sample code and application notes for computer vision and image processing will be provided throughout 2018. Renesas enables several tools on the R-Car V3M Starter Kit including Renesas e² studio toolchain and tools for debugging, which ease the development burden and enable faster time-to-market.

In addition to the R-Car V3M Starter Kit, Renesas has enabled ultra-low power consumption for CNNs, which achieve image recognition and image classification, on the R-Car V3M SoC. The R-Car V3M allows the implementation of high-performance, low power consumption CNN networks in NCAP cameras that cannot be realized with traditional high power consuming CPU or GPU architectures. Renesas complements the IMP-X5, a subsystem for computer vision processing that is composed of an image processor and the programmable CV engine, with a new, innovative CNN hardware accelerator developed in house, that allows the implementation of high-performance CNNs at ultra-low low power. With this new IP, Renesas enables system developers to choose between the IMP-X5 or the new hardware accelerator to deploy CNNs. This heterogeneous approach allows system developers to choose the most efficient architecture, depending on required programming flexibility, performance and power consumption.

The Renesas R-Car V3M is available now. The R-Car V3M Starter Kit with a Linux BSP will be available in Q1 2018 initially in limited quantities. A complete offering with an extended software solution is scheduled for Q3 2018.

Renesas Electronics | www.renesas.com

Inductor for Automotive PoC Circuits

Murata Manufacturing has introduced the LQW32FT series for automotive power over coax (PoC) circuits. This inductor provides high impedance in a wide band, with inductance of 47µH in the 1210-inch size (3.2 mm x 2.5mm). Mass production was already started in November 2017.

1207_img0001PoC is increasingly used with SerDes equipment in automotive applications in order to reduce weight, with a single coax cable transferring power and image data for an on-board camera. In former PoC implementations, large and small impedance several inductors were needed to handle the broadband signal at the circuit processor and to maintain high impedance in a wide band to separate the signal and power.

The LQW32FT series allows a single inductor to replace the multiple components that were formerly necessary. This supports efforts to save space and reduce the overall size of a system, and to lower total DC resistance. This component also provides a 125℃ maximum for the usage environment temperature, making it suitable for automotive circuits. The LQW32FT series is expected to be further expanded to support the high-speed signal transmissions needed by the market.

Murata Manufacturing | www.murata.com