Q&A: Andrew Godbehere, Imaginative Engineering

Engineers are inherently imaginative. I recently spoke with Andrew Godbehere, an Electrical Engineering PhD candidate at the University of California, Berkeley, about how his ideas become realities, his design process, and his dream project. —Nan Price, Associate Editor

Andrew Godbehere

Andrew Godbehere

NAN: You are currently working toward your Electrical Engineering PhD at the University of California, Berkeley. Can you describe any of the electronics projects you’ve worked on?

ANDREW: In my final project at Cornell University, I worked with a friend of mine, Nathan Ward, to make wearable wireless accelerometers and find some way to translate a dancer’s movement into music, in a project we called CUMotive. The computational core was an Atmel ATmega644V connected to an Atmel AT86RF230 802.15.4 wireless transceiver. We designed the PCBs, including the transmission line to feed the ceramic chip antenna. Everything was hand-soldered, though I recommend using an oven instead. We used Kionix KXP74 tri-axis accelerometers, which we encased in a lot of hot glue to create easy-to-handle boards and to shield them from static.

This is the central control belt-pack to be worn by a dancer for CUMotive, the wearable accelerometer project. An Atmel ATmega644V and an AT86RF230 were used inside to interface to synthesizer. The plastic enclosure has holes for the belt to attach to a dancer. Wires connect to accelerometers, which are worn on the dancer’s limbs.

This is the central control belt-pack to be worn by a dancer for CUMotive, the wearable accelerometer project. An Atmel ATmega644V and an AT86RF230 were used inside to interface to synthesizer. The plastic enclosure has holes for the belt to attach to a dancer. Wires connect to accelerometers, which are worn on the dancer’s limbs.

The dancer had four accelerometers connected to a belt pack with an Atmel chip and transceiver. On the receiver side, a musical instrument digital interface (MIDI) communicated with a synthesizer. (Design details are available at http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2007/njw23_abg34/index.htm.)

I was excited about designing PCBs for 802.15.4 radios and making them work. I was also enthusiastic about trying to figure out how to make some sort of music with the product. We programmed several possibilities, one of which was a sort of theremin; another was a sort of drum kit. I found that this was the even more difficult part—not just the making, but the making sense.

When I got to Berkeley, my work switched to the theoretical. I tried to learn everything I could about robotic systems and how to make sense of them and their movements.

NAN: Describe the real-time machine vision-tracking algorithm and integrated vision system you developed for the “Are We There Yet?” installation.

ANDREW: I’ve always been interested in using electronics and robotics for art. Having a designated emphasis in New Media on my degree, I was fortunate enough to be invited to help a professor on a fascinating project.

This view of the Yud Gallery is from the installed camera with three visitors present. Note the specular reflections on the floor. They moved throughout the day with the sun. This movement needed to be discerned from a visitor’s typical movement .

This view of the Yud Gallery is from the installed camera with three visitors present. Note the specular reflections on the floor. They moved throughout the day with the sun. This movement needed to be discerned from a visitor’s typical movement .

For the “Are We There Yet?” installation, we used a PointGrey FireFlyMV camera with a wide-angle lens. The camera was situated a couple hundred feet away from the control computer, so we used a USB-to-Ethernet range extender to communicate with the camera.

We installed a color camera in a gallery in the Contemporary Jewish Museum in San Francisco, CA. We used Meyer Sound speakers with a high-end controller system, which enabled us to “position” sound in the space and to sweep audio tracks around at (the computer’s programmed) will. The Meyer Sound D-Mitri platform was controlled by the computer with Open Sound Control (OSC).

This view of the Yud Gallery is from the perspective of the computer running the analysis. This is a probabilistic view, where the brightness of each pixel represents the “belief” that the pixel is part of an interesting foreground object, such as a pedestrian. Note the hot spots corresponding nicely with the locations of the visitors in the image above.

This view of the Yud Gallery is from the perspective of the computer running the analysis. This is a probabilistic view, where the brightness of each pixel represents the “belief” that the pixel is part of an interesting foreground object, such as a pedestrian. Note the hot spots corresponding nicely with the locations of the visitors in the image above.

The hard work was to then program the computer to discern humans from floors, furniture, shadows, sunbeams, and cloud reflections. The gallery had many skylights, which made the lighting very dynamic. Then, I programmed the computer to keep track of people as they moved and found that this dynamic information was itself useful to determine whether detected color-perturbance was human or not.

Once complete, the experience of the installation was beautiful, enchanting, and maybe a little spooky. The audio tracks were all questions (e.g., “Are we there yet?”) and they were always spoken near you, as if addressed to you. They responded to your movement in a way that felt to me like dancing with a ghost. You can watch videos about the installation at www.are-we-there-yet.org.

The “Are We There Yet?” project opens itself up to possible use as an embedded system. I’ve been told that the software I wrote works on iOS devices by the start-up company Romo (www.kickstarter.com/projects/peterseid/romo-the-smartphone-robot-for-everyone), which was evaluating my vision-tracking code for use in its cute iPhone rover. Further, I’d say that if someone were interested, they could create a similar pedestrian, auto, pet, or cloud-tracking system using a Raspberry Pi and a reasonable webcam.

I may create an automatic cloud-tracking system to watch clouds. I think computers could be capable of this capacity for abstraction, even though we think of the leisurely pastime as the mark of a dreamer.

NAN: Some of the projects you’ve contributed to focus on switched linear systems, hybrid systems, wearable interfaces, and computation and control. Tell us about the projects and your research process.

ANDREW: I think my research is all driven by imagination. I try to imagine a world that could be, a world that I think would be nice, or better, or important. Once I have an idea that captivates my imagination in this way, I have no choice but to try to realize the idea and to seek out the knowledge necessary to do so.

For the wearable wireless accelerometers, it began with the thought: Wouldn’t it be cool if dance and music were inherently connected the way we try to make it seem when we’re dancing? From that thought, the designs started. I thought: The project has to be wireless and low power, it needs accelerometers to measure movement, it needs a reasonable processor to handle the data, it needs MIDI output, and so forth.

My switched linear systems research came about in a different way. As I was in class learning about theories regarding stabilization of hybrid systems, I thought: Why would we do it this complicated way, when I have this reasonably simple intuition that seems to solve the problem? I happened to see the problem a different way as my intuition was trying to grapple with a new concept. That naive accident ended up as a publication, “Stabilization of Planar Switched Linear Systems Using Polar Coordinates,” which I presented in 2010 at Hybrid Systems: Computation and Control (HSCC) in Stockholm, Sweden.

NAN: How did you become interested in electronics?

ANDREW: I always thought things that moved seemingly of their own volition were cool and inherently attention-grabbing. I would think: Did it really just do that? How is that possible?

Andrew worked on this project when computers still had parallel ports. a—This photo shows manually etched PCB traces for a digital EKG (the attempted EEG) with 8-bit LED optoisolation. The rainbow cable connects to a computer’s parallel port. The interface code was written in C++ and ran on DOS. b—The EKG circuitry and digitizer are shown on the left. The 8-bit parallel computer interface is on the right. Connecting the two boards is an array of coupled LEDs and phototransistors, encased in heat shrink tubing to shield against outside light.

Andrew worked on this project when computers still had parallel ports. a—This photo shows manually etched PCB traces for a digital EKG (the attempted EEG) with 8-bit LED optoisolation. The rainbow cable connects to a computer’s parallel port. The interface code was written in C++ and ran on DOS. b—The EKG circuitry and digitizer are shown on the left. The 8-bit parallel computer interface is on the right. Connecting the two boards is an array of coupled LEDs and phototransistors, encased in heat shrink tubing to shield against outside light.

Electric rally-car tracks and radio-controlled cars were a favorite of mine. I hadn’t really thought about working with electronics or computers until middle school. Before that, I was all about paleontology. Then, I saw an episode of Scientific American Frontiers, which featured Alan Alda excitedly interviewing RoboCup contestants. Watching RoboCup [a soccer game involving robotic players], I was absolutely enchanted.

While my childhood electronic toys moved and somehow acted as their own entities, they were puppets to my intentions. Watching RoboCup, I knew these robots were somehow making their own decisions on-the-fly, magically making beautiful passes and goals not as puppets, but as something more majestic. I didn’t know about the technical blood, sweat, and tears that went into it all, so I could have these romantic fantasies of what it was, but I was hooked from that moment.

That spurred me to apply to a specialized science and engineering high school program. It was there that I was fortunate enough to attend a fabulous electronics class (taught by David Peins), where I learned the basics of electronics, the joy of tinkering, and even PCB design and assembly (drilling included). I loved everything involved. Even before I became academically invested in the field, I fell in love with the manual craft of making a circuit.

NAN: Tell us about your first design.

ANDREW: Once I’d learned something about designing and making circuits, I jumped in whole-hog, to a comical degree. My very first project without any course direction was an electroencephalograph!

I wanted to make stuff move on my computer with my brain, the obvious first step. I started with a rough design and worked on tweaking parameters and finding components.

In retrospect, I think that first attempt was actually an electromyograph that read the movements of my eye muscles. And it definitely was an electrocardiograph. Success!

Someone suggested that it might not be a good idea to have a power supply hooked up in any reasonably direct path with your brain. So, in my second attempt, I tried to make something new, so I digitized the signal on the brain side and hooked it up to eight white LEDs. On the other side, I had eight phototransistors coupled with the LEDs and covered with heat-shrink tubing to keep out outside light. That part worked, and I was excited about it, even though I was having some trouble properly tuning the op-amps in that version.

NAN: Describe your “dream project.”

ANDREW: Augmented reality goggles. I’m dead serious about that, too. If given enough time and money, I would start making them.

I would use some emerging organic light-emitting diode (OLED) technology. I’m eyeing the start-up MicroOLED (www.microoled.net) for its low-power “near-to-eye” display technologies. They aren’t available yet, but I’m hopeful they will be soon. I’d probably hook that up to a Raspberry Pi SBC, which is small enough to be worn reasonably comfortably.

Small, high-resolution cameras have proliferated with modern cell phones, which could easily be mounted into the sides of goggles, driving each OLED display independently. Then, it’s just a matter of creativity for how to use your newfound vision! The OpenCV computer vision library offers a great starting point for applications such as face detection, image segmentation, and tracking.

Google Glass is starting to get some notice as a sort of “heads-up” display, but in my opinion, it doesn’t go nearly far enough. Here’s the craziest part—please bear with me—I’m willing to give up directly viewing the world with my natural eyes, I would be willing to have full field-of-vision goggles with high-resolution OLED displays with stereoscopic views from two high-resolution smartphone-style cameras. (At least until the technology gets better, as described in Rainbows End by Vernor Vinge.) I think, for this version, all the components are just now becoming available.

Augmented reality goggles would do a number of things for vision and human-computer interaction (HCI). First, 3-D overlays in the real world would be possible.

Crude example: I’m really terrible with faces and names, but computers are now great with that, so why not get a little help and overlay nametags on people when I want? Another fascinating thing for me is that this concept of vision abstracts the body from the eyes. So, you could theoretically connect to the feed from any stereoscopic cameras around (e.g., on an airplane, in the Grand Canyon, or on the back of some wild animal), or you could even switch points of view with your friend!

Perhaps reality goggles are not commercially viable now, but I would unabashedly use them for myself. I dream about them, so why not make them?

Arduino Uno Blueprint — Free Download

Elektor.Labs recently produced an Arduino Uno blueprint poster for element14. The poster details everything you need to know about the Arduino Uno.

Download it for free here.

Download your Arduino Uno poster

Download your Arduino Uno poster

The poster also includes coding notes that will get you working with your Arduino Uno in no time.

About the Arduino Uno:

  • Core Architecture: AVR
  • Core Sub-Architecture: megaAVR
  • Silicon Core: ATmega328
  • Features: The Arduino Uno is powered via USB or an external supply. It’s programmed with Arduino software.

Recent Arduino-related articles from Circuit Cellar:

 

CC279: Working with RobotBasic

In Circuit Cellar’s October issue, columnist Jeff Bachiochi introduces readers to RobotBasic, a free robot control programming language that you can use to control real or simulated robots, and provides a detailed explanation on how to use it.

Photo 1: This army of robots all use the RobotBASIC Robot Operating System (RROS). Note the large robot has an arm located just above the wheels that is controlled by a second RROS. It uses an on-board laptop running a RobotBASIC (RB) application. The small robots are all controlled via a Bluetooth link from an external PC running an RB application.

Photo 1: This army of robots all use the RobotBASIC Robot Operating System (RROS). Note the large robot has an arm located just above the wheels that is controlled by a second RROS. It uses an on-board laptop running a RobotBASIC (RB) application. The small robots are all controlled via a Bluetooth link from an external PC running an RB application.

“About five years ago, John Blankenship and Samuel Mishal coauthored Robot Programmer’s Bonanza, a book explaining the freely available RobotBASIC IDE they offer. RobotBASIC (RB) is a powerful language that enables you to use standard BASIC syntax (or a modified C-style syntax ( i.e., ++, +=, !=, and &&) to quickly write a program to control and simulate a robot with many types of sensors,” Bachiochi says. “This is a great tool to teach programming.”

RB, with more than 800 commands and functions, can also be a tool for non-robotic applications such as tackling tough engineering problems or creating animated simulations, Bachiochi says.

It’s likely that anyone who starts out simulating with RobotBasic will eventually want to control real robot hardware.

“There is no need to worry,” Bachiochi says. “RB was written to make use of a PC’s I/O. The parallel port is a good source for digital I/O and the serial port is well suited for external communication. The same commands used for robot movement in the simulator can alternatively be sent to a serial port establishing a sort of serial robot command protocol. But, tethered robots aren’t so cool, and many robots are too small to tote around a PC as their “great and powerful Oz.”

“Luckily, much has changed since RB’s original concepts were put into practice,” he adds. “We all know what has happened to these PC ports. They’ve fallen under the USB’s mighty power. RB doesn’t care whether it is talking with a serial port or a USB virtual serial port. USB offers inexpensive Bluetooth dongles and can create wireless serial communication to external devices.”

Bachiochi also discusses the RobotBASIC Robot Operating System (RROS), created to support RB’s serial robot command protocol. The module is available from RB’s website.

“The RROS is a preprogrammed module that can receive communication from RB, interpret commands, and directly interface to hardware,” Bachiochi says. “The module is a Pololu Baby Orangutan robot controller, consisting of an Atmel ATmega328P microcontroller and a Pololu TB6612 dual motor driver carrier in a DIP24 form factor. You can use the module (which comes preprogrammed with the RROS) to build robots like those shown in Photo 1.”

Bachiochi’s look at RB and RROS is a two-part series. In Part 2, appearing in Circuit Cellar’s November issue, Bachiochi will explain how to translate between RROS and the iRobot Create Open Interface.

So, if you want explore a programming language that can take you from simulated to real-world robotics control, check out the October and November issues.

 

Microcontroller-Based Heating System Monitor

Checking a heating system’s consumption is simple enough.

Heating system monitor

Determining a heating system’s output can be much more difficult, unless you have this nifty design. This Atmel ATmega microcontroller-based project enables you to measure heat output as well as control a circulation pump.

Heating bills often present unpleasant surprises. Despite your best efforts to economise on heating, they list tidy sums for electricity or gas consumption. In this article we describe a relatively easy way to check these values and monitor your consumption almost continuously. All you need in order to determine how much heat your system delivers is four temperature sensors, a bit of wiring, and a microcontroller. There’s no need to delve into the electrical or hydraulic components of your system or modify any of them.

A bit of theory
As many readers probably remember from their physics lessons, it’s easy to calculate the amount of heat transferred to a medium such as water. It is given by the product of the temperature change ΔT, the volume V of the medium, and the specific heat capacity CV of the medium. The power P, which is amount of energy transferred per unit time, is:

P= ΔT × CV × V // Δt

With a fluid medium, the term V // Δt can be interpreted as a volumetric flow Vt. This value can be calculated directly from the flow velocity v of the medium and the inner diameter r of the pipe. In a central heating system, the temperature difference ΔT is simply the difference between the supply (S) and return (R) temperatures. This yields the formula:

P = (TS – TR) × CV × v × pr2

The temperatures can easily be measured with suitable sensors. Flow transducers are available for measuring the flow velocity, but installing a flow transducer always requires drilling a hole in a pipe or opening up the piping to insert a fitting.

Measuring principle
Here we used a different method to determine the flow velocity. We make use of the fact that the supply and return temperatures always vary by at least one to two degrees due to the operation of the control system. If pairs of temperature sensors separated by a few metres are mounted on the supply and return lines, the flow velocity can be determined from the time offset of the variations measured by the two sensors…

As the water flows through the pipe with a speed of only a few metres per second, the temperature at sensor position S2 rises somewhat later than the temperature at sensor position S, which is closer to the boiler.

An ATmega microcontroller constantly acquires temperature data from the two sensors. The time delay between the signals from a pair of sensors is determined by a correlation algorithm in the signal processing software, which shifts the signal waveforms from the two supply line sensors relative to each other until they virtually overlap.The temperature signals from the sensors on the return line are correlated in the same manner, and ideally the time offsets obtained for the supply and return lines should be the same.

To increase the sensitivity of the system, the return line sensor signals are applied to the inputs of a differential amplifier, and the resulting difference signal is amplified. This difference signal is also logged as a function of time. The area under the curve of the difference signal is a measure of the time offset of the temperature variations…

Hot water please
If the heating system is also used to supply hot water for domestic use, additional pipes are used for this purpose. For this reason, the PCB designed by the author includes inputs for additional temperature sensors. It also has a switched output for driving a relay that can control a circulation pump.

Under certain conditions, controlling the circulation pump can save you a lot of money and significantly reduce CO2 emissions. This is because some systems have constant hot water circulation so users can draw hot water from the tap immediately. This costs electricity to power the pump, and energy is also lost through the pipe walls. This can be remedied by the author’s circuit, which switches on the circulation pump for only a short time after the hot water tap is opened. This is detected by the temperature difference between the hot water and cold water supply lines…

Circuit description
The easiest way to understand the schematic diagram is to follow the signal path. It starts at the temperature sensors connected to the circuit board, which are NTC silicon devices.

Heating system monitor schematic

Their resistance varies by around 0.7–0.8% per degree K change in temperature. For example, the resistance of a KT110 sensor is approximately 1.7 kΩ at 5 °C and approximately 2.8 kΩ at 70 °C.

The sensor for supply temperature S forms a voltage divider with resistor R37. This is followed by a simple low-pass filter formed by R36 and C20, which filters out induced AC hum. U4a amplifies the sensor signal by a factor of approximately 8. The TL2264 used here is a rail-to-rail opamp, so the output voltage can assume almost any value within the supply voltage range. This increases the absolute measurement accuracy, since the full output signal amplitude is used. U4a naturally needs a reference voltage on its inverting input. This is provided by the combination of R20, R26 and R27. U5b acts as an impedance converter to minimise the load on the voltage divider…

Thermal power

PC connection
The circuit does not have its own display unit, but instead delivers its readings to a PC via an RS485 bus. Its functions can also be controlled from the PC. IC U8 looks after signal level conversion between the TTL transmit and receive lines of the ATmega microcontroller’s integrated UART and the differential RS485 bus. As the bus protocol allows several connected (peer) devices to transmit data on the bus, transmit mode must be selected actively via pin 3. Jumper JP3 must be fitted if the circuit is connected to the end of the RS485 bus. This causes the bus to be terminated in 120 Ω, which matches the characteristic impedance of a twisted-pair line…

[Via Elektor-Projects.com]

Q&A: Colin O’Flynn (Engineering and “Pure” Research)

Colin O’Flynn

NAN: Where are you located?

COLIN: I’m currently living in Halifax, Nova Scotia, Canada. I’m originally from Hamilton, Ontario, Canada, and had been living in Edinburgh, Scotland for almost two years before I moved to Halifax.

NAN: How did you become interested in electronics?

COLIN: Like many people in this area, I did start at a very young age. If I had to pin one event as the starting of my life-long interest in electronics, it was getting one of those “20-in-1” kits from RadioShack as a present. My parents always encouraged my interest in electronics, but as they were a commercial airline pilot and a chartered accountant, it wasn’t the case of them initially pushing me in the same direction they started!

My dad found me a few small “learn-to-solder” kits, which I enjoyed. At age 8, I assembled my first real kit, the LED-Tric Christmas tree featured in the December 1994 issue of Popular Electronics. My parents have kept bringing that tree out as a Christmas decoration every year since, and it still works.

Besides my parents, I also had help from local people interested in electronics and became friends with many of the local electronics store owners. I spent many hours building projects from magazines like Electronics Now, Popular Electronics, Circuit Cellar, and the various Forrest M. Mims III books. I find it interesting to see the recent surge in “maker” culture. It’s something that has really been going on for years. Growing up, there wasn’t such a thing as maker spaces, but there were local people with interesting workshops who would share projects. It’s great to see this a little more mainstream now, as it means more opportunities for people to get involved at any stage of their life in this fascinating world.

NAN: What is your current occupation? Are you still consulting for projects related to 802.15.4 wireless communications?

COLIN: I’m currently a graduate student at Dalhousie University pursuing a PhD. I decided to go back to school for the chance to do more “pure” research. It’s also fun to have access to a range of tools I wouldn’t otherwise get—the lab I sit in has an anechoic chamber, for example. And we have most of the latest versions of high-end software like MATLAB (including most of the add-ons), 3-D electromagnetic antenna simulation software, FPGA design software, and so forth.

RadioBlocks

I’m only loosely involved in 802.15.4 projects for now, and not actively following the latest developments and standards. Having said that, a friend of mine has gotten involved in creating small, wireless modules called RadioBlocks.

They use an IEEE 802.15.4 radio combined with a small ARM Cortex-M0 microcontroller. They use an open-source mesh networking software we created called SimpleMesh, so most of my recent work on 802.15.4 has been around this project. The mesh software is designed to do the basic job of sending a block of data to another node, and otherwise staying out of the way. I previously did a lot of work using IPv6 on such small sensor networks, but haven’t been active in that area lately.

At Dalhousie, I’m working on the area of side-channel analysis of cryptographic systems, specifically power analysis. This area has a simple idea: if you have a microcontroller or other embedded controller, it typically has some internal data bus. When those data lines switch state, it takes power. But the power actually depends on the data. Imagine a databus switching from all 1s to all 0s in a clock cycle, compared to staying at all 1s. Likewise, different operations, such as a MUL compared to a LDI, have different power signatures. If you measure the current consumption on each clock cycle, you can learn something about the data being processed, and then often the secret key. Practically speaking, you can measure this current even with an electromagnetic probe, so you don’t need to physically modify the circuit board.

I gave a presentation at Black Hat Abu Dhabi in December 2012 about some of this work. If you are interested, the slides and white paper are available online at Blackhat.com, or from my personal website NewAE.com. You can see the photo above showing an example of attacking a microcontroller-based smart card. The capture software might look something like where you can see different computations the card is performing directly from the power trace. In this case, each burst is a round of the AES-128 computation.

NAN: Many of your projects include Atmel microcontrollers. Why Atmel?

COLIN: It’s no secret I’ve been a big fan of Atmel’s AVR microcontroller, but it wasn’t my first. I don’t know the exact lineage of my microcontroller work, but one of the first things I learned on was an AMD 2900 Evaluation and Learning Kit. A local electronics store happened to have it in stock. They had gotten it from someone cleaning out old inventory, as even at that time it was old. I added heatsinks, as the several amps it drew when powered with 5 V made a lot of those chips very hot. And, of course, you had to keep the entire board powered up if you didn’t want to lose you program you’d been manually entering. From there, I moved onto a Z80 trainer board, which let you program with a hex-entry keypad, and eventually I moved onto programming it from the computer. I designed a Z80 computer board but never built it—I still have the piece of transparency with the taped out PCB design and photosensitive PCB on which I was to expose it. That’s more than 10 years old now, so I suspect the chemicals in it have degraded a little!

I forget exactly why I picked up the AVRs, but I had one of the first AVRs released, Atmel’s AT90S1200, which I programmed in Assembly. After Assembly, I programmed them in BASIC (using MCS Electronics’s BASCOM-AVR), going as far to write a neural network in

BASCOM-AVR. Even today, I think BASIC gets a bad rap. It was almost the original “Arduino” environment, as you could drop down LCD drivers, ADC, and so forth without ever knowing much about how it worked, and with a really intuitive feel. I moved onto C sometime later, and used C almost exclusively for embedded development since. For some time, I was fairly involved in the tools used in the AVR world, such as WinAVR. Atmel donated a considerable amount of equipment to me, as at the time I was a high school student using these devices for science fair projects. I think that’s a great example of how such corporate donations pay off. I’ve almost exclusively used AVR processors since I am so familiar with them because of that. In addition, as a student with little money but lots of time, I was happy to spend hours each day on AVRFreaks.net or working on open-source tools. While Atmel probably ended up giving me around $3,000 worth of tools, I’m sure the value of work I performed for free in terms of open-source tool contributions or forum posts would be worth many times this.

A funny story around all this work: In undergrad, we used the Atmel AVR microcontrollers. During one of the first labs they distributed a tutorial on how to set up the WinAVR tools and compile your first program. As it turned out, this guide was something I wrote years prior and had posted to the WinAVR website. Sufficient to say, I did OK in that class.

NAN: Tell us about NewAE.com. What kind of information is available on the site?

COLIN: I’ve run NewAE.com since 2001, although it’s not really designed to be the type of website one checks for new content daily. If I’ve spent some time solving a problem that I think other people could use, I’ll put a post up. Sometimes this is a complete project, such as my IEEE 802.15.4 sniffer. Sometimes it’s just a small post, such as how to set up the AVR USB keyboard for 5-V operation, which wasn’t described in the manual. I also use it for keeping copies of any published papers or presentations.

I’ve more recently been posting some ongoing research to the site, including blog posts with ongoing projects, rather than just waiting until it’s completely finished! In that vein, I started a YouTube channel with some technical videos (www.youtube.com/user/colinpoflynn). A big collection of these are from when I taught a digital logic course and recorded all my presentations from that.

My content spans a huge range of topics—everything from showing my students how to get screen captures, to a demonstration of my soldering station, to recordings of my academic paper presentations. I don’t like duplicating work. I’ll only go to the effort of making a video or website post if I really couldn’t find the information elsewhere. Because of this, I don’t have one specific topic you could expect to learn about. I’ve never been aiming to be like EEVBlog!

NAN: You wrote “It’s a SNAP: A Flexible Communications Protocol” (Circuit Cellar 139, 2002) more than 10 years ago. Do you still use SNAP in any of your current projects?

COLIN: I have to admit that I haven’t used SNAP in probably eight years! Of course now, when needing to network devices, I’m more likely to turn to a wireless standard.

NAN: Your article “Open-Source AVR Development” (Circuit Cellar 196, 2006) provides an introduction to the AVR-GCC toolchain for AVR microcontrollers. The article references the Cygwin project and Sourceforge’s WinAVR project. How do these components work in the design?

COLIN: The Cygwin project is still something I use regularly, as it lets you run a variety of Unix-like tools on Windows. The Linux command line is extraordinarily powerful, and it is makes it simple to access things like C compilers, text parsing utilities, and scripting tools. With Cygwin, one can have a Linux-like experience under Windows, which I used in that article to build some of the tools you are developing for AVR. By comparison, WinAVR is just a number of prebuilt tools for the AVR development. While it’s more work to build your own tools, sometimes you require special features that were not available in the premade tools.

NAN: Atmel products have played a starring role in several articles you have published in Circuit Cellar. For example, an AT90S4433 microcontroller was featured in “It’s a SNAP: A Flexible Communications Protocol” (Circuit Cellar 139, 2002), an ATmega88 AVR RISC microcontroller was featured in “Digital Video in an Embedded System” (issue 184, 2005), an AT45DB041 DataFlash and an ATmega88 microcontroller were featured in “Open-Source AVR Development” (issue 187, 2006), and an AT90USBKEY demonstration board was featured in “Advanced USB Design Debugging” (issue 241, 2010). Why Atmel microcontrollers/boards? What do you prefer about these products?

COLIN: As I mentioned before, I have a long history with Atmel products. Because of this, I already have the debug toolchains for their chips and can get projects up very quickly.

When picking boards or products, one of the most important considerations for me is that readers can buy it easily. For me, this means I can get it at DigiKey (and I’ll check Farnell for our UK friends). Part of this comes from being in Canada, where DigiKey was one of the first distributors offering cheap and fast shipping to Canada.

NAN: Are you currently working on or planning any microprocessor-based projects?

Binary Explorer Board

COLIN: My current big project is something I designed over the summer of 2012. It’s called the Binary Explorer Board and is something I used when teaching a course in digital logic at Dalhousie University. I needed a simple, programmable logic board and nothing I could find was exactly right. In particular, I needed something with an integrated programmer, several switches and LEDs, and an integrated breadboard. The students needed to be able to use the breadboard without the CPLD to learn about discretely packaged parts. All the CPLD-based trainers I found didn’t have exactly what I wanted in this regard.

The embedded part is the USB interface using an Atmel AT90USB162 microcontroller, although I plan on later upgrading that to an XMEGA for lower cost and more code room. The firmware is powered by Dean Camera’s excellent open-source USB library called LUFA (www.fourwalledcubicle.com/LUFA.php). This firmware lets students program the CPLD on the board easily over USB. But the cool thing is you can go even further and use the device as a generic programmer for other AVRs or CPLDs/FPGAs. For example, you can mount an AVR on the breadboard, connect it to the USB interface, and program that through the Arduino IDE. The entire board would retail for $35 in single-unit quantity, so it’s cheaper than most textbooks. I’m working on making it a real product with Colorado Micro Devices right now.

The design environment is the standard Xilinx toolchain, although I’ve made a number of predefined projects to make it simple enough for students with zero previous design experience to use. The idea is to get students familiar with the real tools they might see in the industry. Around this project, it’s interesting to note I choose a Xilinx CPLD because of my familiarity with Xilinx devices and design tools. This familiarity comes from years ago when Xilinx donated to me a part for a project I was working on. Now throngs of students will be exposed to Xilinx devices, all because Xilinx was willing to donate some parts to a student.

There is always an assortment of half-finished projects, too. I started designing a battery tester, which could simulate characteristics you’d typically see when driving small wireless nodes from coin-cell batteries. I started planning on using an AVR USB microcontroller and doing all the data logging myself. I then found this LabJack device, which simplified my life a lot, as they had basically a generic USB-based logging/control module.

NAN: What do you consider to be the “next big thing” in the embedded design industry?

COLIN: Wireless and the “Internet of Things” will eventually be a big thing, which means design engineers will need to become more familiar with things like protocols and realistic transmission characteristics. I use the word “realistic,” as part of this world is separating hype from reality. There’s certainly a huge disconnect between the marketing hype around all these various wireless protocols and how well they work in practice. When designing a product that will use a wireless technology, it’s likely some commercial off-the-shelf (COTS) module will be used, so the engineer may think they can remain blissfully unaware of RF or networking things. But the engineer still needs to have a rough idea about how many devices might fit in an area on a single network or the advantage of selecting certain protocols.

Another thing of interest to me is programmable logic, such as FPGAs. It’s been interesting to see the tools that try to turn anybody into an FPGA designer becoming more mainstream, or at least letting you program FPGAs in more common languages (e.g., C/C++). They are still fairly specialized and more likely to be used by a hardware engineer looking to improve productivity, compared to a software engineer who needs to offload an algorithm into a FPGA. But I think they could fairly quickly get to the point that engineers with some FPGA experience could implement considerably more complex designs than they would have otherwise been able to had they been required to design everything from scratch.

In a somewhat similar vein, we are starting to see the availability of multicore devices coming down to embedded levels. Learning to program them in a way to take advantage of these new cores is a useful skill to pick up. I recently started using both the OpenMP API and Cilk++ development software on some of my programs. My work wasn’t targeting an embedded project, but instead regular full-size multicore computers, but it’s still a useful (and fairly simple) skill to pick up.

NAN: Tell us a little about your workbench. What are some of your favorite design tools?

Colin’s Workbench

COLIN: My initial workbench was the kitchen table, although other family members were frequently concerned about eating in the same space as these various items with warning labels about lead. My next workbench was a long, custom-built bench in Hamilton, Ontario. My current bench in Halifax was again custom-built, and I’ll take you few of its features. I’d like to point out by “custom-built” I mean built by myself with a jigsaw and some plywood, not an artesian finely crafted piece of furniture.

Due to a back injury, I work standing up, which you can’t see in the photo. It’s actually quite refreshing, and combined with a good quality antifatigue mat and stool to lean up against means I can work long hours without tiring. A cover comes down to hide everything in my desk, which was a feature partially required by my significant other, who didn’t want guests to see the typical mess of wires it contains. When closed, it also gives it some protection against any rogue water leaks. For my computer, I use a trackball instead of a mouse, and the keyboard and trackball are mounted on a plate tilted underneath the desk in a “negative” tilt angle, adjusted to most natural angle. And, because there is no way to see the keyboard while typing, it tends to keep anyone else from borrowing my computer to look something up!

I’ve wired a ground fault interrupter (GFI) into the desk, so all my power outlets are protected. If I ever did something dumb like dropping a scope ground on a live wire, the GFI socket would at least give me a hope of protecting the scope and myself. There are many outlets above and below the desk, and also a ground jack for the antistatic strap beside the thermal wire strippers. The outlets under the desk let me plug in things in a hidden manner—printers, USB hubs, and other permanent devices get wired in there. I’ve wired a number of USB hubs to the top of my desk, so I typically have around 12 free USB slots. You always seem to run out otherwise!

Most of my tools are off the desk and stored in the drawers to either side. I made the “drawers” just pieces of wood with minimal sides—the idea being most of the time you are placing PCBs or tools down, so the lack of high sides prevents you from piling too much into them! All the cables get stored on hooks to the left of my desk, and I’ve got a whiteboard that sticks up when I’m working on a problem.

SMD Organization

I store all my SMD parts in small envelopes stored in index card holders in the bottom left of my desk. While I’m not a static-phobic, I also didn’t want to use plastic film strips or plastic bags. So the paper envelopes at least I hope don’t generate much static, even if they don’t dissipate it. It’s very easy to label all your parts and also this system holds up to a high dynamic range of stock numbers. For example, capacitors get split into 10.1–99.9 nF, 100 nF, 100.1–999.9 nF, and so forth. Because you seem to end up with loads of 100-nF capacitors, they get their own envelope. It’s trivial to change this division around as you get more parts, or to group part sizes together.

In terms of interesting tools: my soldering station is probably my favorite tool, a Metcal MX500 I got used from eBay. The response time on these is unbelievable. I put a video up to show people just because I’ve been so impressed with it. There are other manufactures that now make stations with the same RF-heating technology I believe, and I always encourage everyone to try one. I’ve been using the DG8SAQ Vector Network Analyzer (VNWA) for a while too. It’s a very affordable way to get familiar with VNA and RF measurements. It’s especially fun to follow along with some of the “Darker Side” columns in Circuit Cellar. Rather than just hearing about the mysterious world of RF, you can do experiments like viewing the response of several different decoupling capacitors mounted in parallel. I’ve got an old TiePie TiePieSCOPE HS801 parallel-port oscilloscope mounted underneath my desk, and still use it today. A lot of my work is digital, so have an Intronix LogicPort digital analyzer, a Beagle USB 480 protocol analyzer, and oodles of microcontroller programming/debug tools from different manufacturers.