Online Course Covers IoT-Enabled Embedded Systems

STMicroelectronics has announced the availability to all–including students, makers, and budding engineers and computer scientists–of the online “Introduction to Embedded Systems with SensorTile” course. With a curriculum developed by Professor William Kaiser at the University of California, Los Angeles (UCLA), and used to teach his freshman engineering class, the online course resources provide a foundation to understand the fundamentals of a sensor-based Internet of Things (IoT)-enabled embedded system. Professors at other universities are also encouraged to adapt and contribute to the course.

The introductory course of 8 self-paced tutorials is designed around ST’s SensorTile, a unique real-time IoT-enabled embedded system on a postage-stamp-sized module. The tiny 13.5 mm x 13.5 mm module combines a high-performance, low-power STM32 Arm-Cortex-M-core microcontroller, 5 valuable MEMS (Micro-Electro-Mechanical Systems) sensors—an inertial sensor containing an accelerometer and gyroscope, an eCompass, a pressure sensor, and a microphone—and a Bluetooth network processor. A kit with the module, cables, cradle and a battery is available from major resellers for about $80.

The joint effort with ST makes the 8 tutorials freely available online, with a full complement of documentation, open-source algorithms and development solutions, and unfettered access to a growing user forum. Anyone interested in learning more about the tutorial or purchasing a SensorTile kit should visit the web site www.st.com/sensortile-edu). Additional information is available, as well, on the ST blog: blog.st.com/introduction-embedded-systems-sensortile-online-course/

STMicroelectronics | www.st.com

Non-Standard SBCs Put Function Over Form

Compact, Low-Power Solutions

A rich set of single board computer products fall into the non-standards-based category. These SBCs offer complete embedded computing solutions suited for applications were reducing size, weight and power are the priorities.

By Jeff Child,  Editor-in-Chief

While standard form factor embedded computers provide a lot of value, many applications demand that form take priority over function. The majority of non-standard boards tend to be extremely compact, and well suited for size-constrained system designs. Although there’s little doubt that standard open-architecture board form factors continue to thrive across numerous embedded system applications, non-standard form factors free designers from the size and cost overheads associated with including a standard bus or interconnect architecture.

In very small systems, often the size and volume of the board takes precedence over the need for standards. Instead the priority is on cramming as much functionality and compute density onto a single board solution. And because they tend to be literately “single board” solutions, there’s often no need to be compatible with multiple companion I/O boards. These non-standard boards seem to be targeting very different applications areas—areas where slot-card backplane or PC/104 stacks wouldn’t be practical.

Non-standard boards come in a variety of shapes and sizes. Some follow de facto industry standard sizes like 3.5 inches, while others take a twist on existing standards—such as ATX, ITX or PC/104—to produce a “one off” implementation that takes some of the benefits of a standard form factor. There are also some company-specific “standard” form factors that offer an innovative new approach. The focus in this article is on commercial SBCs for professional applications, not modules for hobbyist projects.

ARM-Based Boards

In terms of sheer numbers of SBC products, Intel processor-based solutions tend to dominate. But in recent years, non-standard SBCs based on ARM embedded processors are increasing mindshare in the industry. In a recent example of an ARM-based solution, Technologic Systems in December starting shipping its newest SBC, the TS-7553-V2 (Photo 1). The board is developed around the NXP i.MX6 UltraLite, a high-performance processor family featuring an advanced implementation of a single ARM Cortex-A7 core, which operates at speeds up to  696 MHz. While able to support a wide range of embedded applications, the TS-7553-V2 was specifically designed to target the industrial Internet of Things (IIoT) sector.

Photo 1
TS-7553-V2 is developed around the NXP i.MX6 UltraLite, an advanced implementation of a single ARM Cortex-A7 core, which operates at speeds up to 696 MHz. The board specifically targets the industrial Internet of Things (IIoT) sector.

The TS-7553-V2 was designed with connectivity in mind. An on-board Xbee interface, capable of supporting Xbee or NimbleLink, provides a simple path to adding a variety of wireless interfaces. An Xbee radio can be used to link in with a local
2.4 GHz or sub 1 GHz mesh networks, allowing for gateway or node deployments. Both Digi and NimbleLink offer cellular radios for this socket, providing cellular connectivity for applications such as remote equipment monitoring and control. There is also the option for a cellular modem via a daughter card. This allows transmission of serial data via TCP, UDP or SMS over the cellular network. The TS-7553-V2 also includes an on board WiFi b/g/n and Bluetooth 4.0 option, providing even more connectivity.

Design-To-Order SBCs

As a provider of design-to-order embedded boards, Gumstix comes at non-standard SBCs from a different perspective than traditional off-the-shelf SBC vendors. Gumstix’s latest ARM-related focus was its announcement in October about its adding the NXP Semiconductor SCM-i.MX 6Quad/6Dual Single Chip System Module (SCM) to the Geppetto D2O design library and the Gumstix Cobalt MC (Media Center) development board (Photo 2). The NXP SCM-i.MX 6D/Q [Dual, Quad] Core SCM combines the i.MX 6 quad- or dual-core applications processor, NXP MMPF0100 power management system, integrated flash memory, over 100 passives and up to 2 GB DDR2 Package-on-Package RAM into a single-chip solution.

Photo 2 — The Gumstix Cobalt MC single board computer shows off some of the best multimedia features of the NXP SCM with CSI2 camera, native HDMI, and audio, and connects over Gbit Ethernet, Wi-Fi and Bluetooth.

Using Gumstix’s services, embedded systems developers can, in minutes, design and order SCM-powered hardware combining their choices of network connection, communication bus, and hardware features. During the design process, users can compare alternatives for features and costs, create multiple projects and receive complete custom BSPs and free automated documentation. Designers can go straight from a design to an order in one session with no engineering required.

Read the full article in the February 331 issue of Circuit Cellar

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!
Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

Rugged IoT Gateway Facilitates Quick Deployment

Axiomtek has introduced its latest RISC-based, DIN-rail industrial IoT gateway, the IFB125. It is powered by the Freescale i.MX6UL processor with the ARM Cortex-A7 microarchitecture. This compact IoT gateway is designed for versatility of use and quick deployment. The IFB125 is suitable for a variety of applications including applications that require remote control and monitoring management functions such as unmanned control, industrial automation, automatic parking lot control, traffic light control and more.

The IFB125 comes with multiple I/O connections including one RS-232/422/485 port, two 10/100 Mbps LAN ports, one USB 2.0 port, one 2-IN/1-OUT DIO, one I2C and one SPI. This embedded IoT gateway platform is equipped with one PCI Express Mini Card slot and one SIM card slot for wireless connectivity. It has a 256 MB onboard memory that features a fast data transfer rate of DDR3-1600. The robust IFB125 has an extended operating temperature range from -40°C to 70°C and can withstand vibration up to 5G. Its wide voltage range of 9V  to 48 V DC power input with a lockable terminal block-type connector makes it suitable for use in harsh environments. The IFB125 comes with an embedded Linux operating system (Yocto) to provide an open standard OS for software program development.

Features:

  • Fanless and compact gateway with a RISC-based (i.MX6UltraLite) processor at 528 MHz
  • 256 MB DDR3 SDRAM and 8 GB eMMC Flash onboard
  • SPI and I2C function with 3.3 V power
  • Multiple I/O options include one wireless socket for Wi-Fi or 3G/4G, two digital inputs, one digital output and two LAN ports
  • Wide operating temperature range of -40°C to +70°C
  • Power input range of 9V to 48V DC with terminal block
  • Ready-to-run embedded Linux operating system (Yocto)

Axiomtek | www.us.axiomtek.com

MPU-Based SOM Meets Industrial IoT Linux Needs

Microchip Technology has unveiled a new System on Module (SOM) featuring the SAMA5D2 MPU. The ATSAMA5D27-SOM1 contains the recently released ATSAMA5D27C-D1G-CU System in Package (SiP). The SOM simplifies IoT design by integrating the power management, non-volatile boot memory, Ethernet PHY and high-speed DDR2 memory onto a small, single-sided Printed Circuit Board (PCB). There is a great deal of design effort and complexity associated with creating an industrial-grade microprocessor (MPU)-based system running a Linux operating system. Even developers with expertise in the area spend a lot of time on PCB layout to guarantee signal integrity for the high-speed interfaces to DDR memory and Ethernet Physical Layer (PHY) while complying with Electromagnetic Compatibility (EMC) standards.

The SAMA5D2 family of products provides an extremely flexible design experience no matter the level of expertise. For example, the SOM—which integrates multiple external components and eliminates key design challenges around EMI, ESD and signal integrity—can be used to expedite development time. Customers can solder the SOM to their board and take it to production, or it can be used as a reference design along with the free schematics, design and Gerber files and complete bill of materials which are available online. Customers can also transition from the SOM to the SiP or the MPU itself, depending on their design needs. All products are backed by Microchip’s customer-driven obsolescence policy which ensures availability to customers for as long as needed.

The Arm Cortex-A5-based SAMA5D2 SiP, mounted on the SOM PCB or available separately, integrates 1 Gbit of DDR2 memory, further simplifying the design by removing the high- speed memory interface constraints from the PCB. The impedance matching is done in the package, not manually during development, so the system will function properly at normal and low- speed operation. Three DDR2 memory sizes (128 Mb, 512 Mb and 1 Gb) are available for the SAMA5D2 SIP and optimized for bare metal, Real-time Operating System (RTOS) and Linux implementations.

Microchip customers developing Linux-based applications have access to the largest set of device drivers, middleware and application layers for the embedded market at no charge. All of Microchip’s Linux development code for the SiP and SOM are mainlined in the Linux communities. This results in solutions where customers can connect external devices, for which drivers are mainlined, to the SOM and SIP with minimal software development.

The SAMA5D2 family features the highest levels of security in the industry, including PCI compliance, providing an excellent platform for customers to create secured designs. With integrated Arm TrustZone and capabilities for tamper detection, secure data and program storage, hardware encryption engine, secure boot and more, customers can work with Microchip’s security experts to evaluate their security needs and implement the level of protection that’s right for their design. The SAMA5D2 SOM also contains Microchip’s QSPI NOR Flash memory, a Power Management Integrated Circuit (PMIC), an Ethernet PHY and serial EEPROM memory with a Media Access Control (MAC) address to expand design options.

The SOM1-EK1 development board provides a convenient evaluation platform for both the SOM and the SiP. A free Board Support Package (BSP) includes the Linux kernel and drivers for the MPU peripherals and integrated circuits on the SOM. Schematics and Gerber files for the SOM are also available.

The ATSAMA5D2 SiP is available in four variants starting with the ATSAMA5D225C-D1M- CU in a 196-lead BGA package for $8.62 each in 10,000 units. The ATSAMA5D27-SOM1 is available now for $39.00 each in 100 units The ATSAMA5D27-SOM1-EK1 development board is available for $245.00.

Microchip Technology | www.microchip.com

BLE ICs Boast -105 dBm Sensitivity

Toshiba Electronic Devices & Storage has added two new devices to its lineup of ICs that are compliant with the Bluetooth low energy standard. The new TC35680FSG (featuring built-in flash memory) and TC35681FSG are well-suited to applications requiring long-range communication, including beacon tags, IoT devices and industrial equipment. Sample shipments will begin later this month.

The new communication ICs support the full spectrum of data rates required for the high-speed features—2M PHY and Coded PHY (500 kbps and 125 kbps)—found in the Bluetooth 5.0 standard. The new devices also deliver an industry-leading receiver sensitivity level of -105 dBm (at125k bps ) and a built-in high efficiency power amplifier in the transmission block that provides up to +8 dBm transmission power.

Bluetooth technology continues to evolve to meet wireless connectivity needs, and recent enhancements to the standard have been designed to increase Bluetooth’s functionality with the IoT. By adding Bluetooth 5.0-compliant ICs to its extensive lineup, Toshiba helps companies integrate Bluetooth low energy products into IoT devices and addresses the growing demand for high-throughput, long-range communications.

Based on an ARM Cortex-M0 processor, the new ICs incorporate a 256 KB Mask ROM to support the Bluetooth baseband process, and 144 KB of RAM for processing Bluetooth baseband, stack and data. Toshiba’s TC35680FSG and TC35681FSG also feature 18-port GPIOs as interfaces, which can be set to 2 channels each for SPIs, I2C, and UART. This allows for the structuring of systems that connect to various peripheral devices. These GPIOs can be set for a wakeup function, 4-channel PWM, 5-channel AD converter interfaces, an external amplifier control interface for long-range communication and more.

The TC35680FSG includes 128 KB of flash memory for storing user programs and various data in stand-alone operations, making it well-suited to a wide range of applications and removing the need for external non-volatile memory. This also lowers the part count, which reduces both the cost and mounting area.

The TC35681FSG, which does not include a built-in flash memory, operates in conjunction with an external non-volatile memory or host processor. A wide operating range of -40° to +125°C makes it suitable for applications exposed to high temperatures.

Toshiba Electronic Devices & Storage | www.toshiba.semicon-storage.com

MCU Leverages New ARM Security Scheme

STMicroelectronics supports ARM’s new Platform Security Architecture (PSA) in ST’s STM32H7 high-performing microcontrollers. People and organizations are increasingly dependent on connected electronic devices to manage time, monitor health, handle social interactions, consume or deliver services, maximize productivity, and many other activities. Preventing unauthorized interactions with these devices is essential to protecting identity, personal information, physical assets, and intellectual property. As device manufacturers must always innovate to beat new and inventive hacking exploits, PSA helps them implement state-of-the-art security cost-effectively in small, resource-constrained devices.

en.STM32H7_Support_Arm_Security_T3989S_bigST’s STM32H7 MCU devices integrate hardware-based security features including a True Random-Number Generator (TRNG) and advanced cryptographic processor, which will simplify protecting embedded applications and global IoT systems against attacks like eavesdropping, spoofing, or man-in-the-middle interception. In addition, secure firmware loading facilities help OEMs ensure their products can be programmed safely and securely, even off-site at a contract manufacturer or programming house.

To enable secure loading, security keys and software services already on-board the MCU permit OEMs to provide manufacturing partners with already-encrypted firmware, making intercepting, copying, or tampering with the code impossible. This enables programming and authenticating the device to establish the root-of-trust mechanism needed for the device to be connected to the end-user’s network and remotely updated over the air (OTA) to apply security patches or feature upgrades throughout the lifetime of the device.

A member of the STM32H7 series supporting the PSA, the STM32H753 MCU with ARM’s highest-performing embedded core (Cortex-M7) delivers a record performance of 2020 CoreMark/856 DMIPS running at 400MHz, executing code from embedded Flash memory. Additional innovations and features implemented by ST further boost performance. These include the Chrom-ART Accelerator for fast and efficient graphical user-interfaces, a hardware JPEG codec that allows high-speed image manipulation, highly efficient Direct Memory Access (DMA) controllers, up to 2 MB of on-chip dual-bank Flash memory with read-while-write capability, and the L1 cache allowing full-speed interaction with off-chip memory.

Multiple power domains allow developers to minimize the energy consumed by their applications, while plentiful I/Os, communication interfaces, and audio and analog peripherals can address a wide range of entertainment, remote-monitoring and control applications. The STM32H753 is in production now, priced $8.90 for orders or 10,000 pieces.

STMicroelectronics | www.st.com

STMicro and Objenious Collaborate on IoT LoRa Network Deal

STMicroelectronics and Objenious are working together to accelerate the connection of IoT nodes to LoRa networks. ST’s development kits certified on the Objenious network are available now, greatly reducing R&D effort and time to market in the creation of new LoRa devices.

STM32 Nucleo LoRa kits are now certified and available to developers through ST sales channels.

STM32 Nucleo LoRa kits are now certified and available to developers through ST sales channels.

LoRAWAN is a Low Power Wide Area Network (LPWAN) based on LoRa technology that is opening up a world of possibilities to create networks of connected devices ideal to address a broad range of IoT applications. The benefits of LoRa especially suit applications where nodes have limited power capability, can be difficult to access, and data transfers don’t require high bandwidth. LoRa can target a wide spectrum of applications such as tracking, proactive maintenance, and many others. Industry analysts estimate there will be tens of billions of connected devices deployed in the world by 2020.

Objenious launched and operates the first LoRa network in France, with more than 4,200 antennas deployed around the country. Leveraging the network know-how inherited from Bouygues Telecom, Objenious now proposes its LoRa network, platform, and services for LPWAN IoT to partners and customers locally and internationally thanks to roaming agreements.

STMicro helps developers by providing tools and software libraries that aid the STM32 MCU-based embedded design as part of its freely available STM32 Open Development Environment (ODE). By integrating Objenious’ network access software on top of the STM32 ODE, developing connected devices is even easier. STM32 Nucleo LoRa kits are now certified and available to developers through ST sales channels.

STMicroelectronics | www.st.com

Sensor Node Gets LoRaWAN Certification

Advantech offers its standardized M2.COM IoT LoRaWAN certified sensor node WISE-1510 with integrated ARM Cortex-M4 processor and LoRa transceiver. The module the  is able to provide multi-interfaces for sensors and I/O control such as UART, I2C, SPI, GPIO, PWM and ADC. The WISE-1510 sensor node is well suited for for smart cities, WISE-1510_3D _S20170602171747agriculture, metering, street lighting and environment monitoring. With power consumption optimization and wide area reception, LoRa  sensors or applications with low data rate requirements can achieve years of battery life and kilometers of long distance connection.

WISE-1510 has has received LoRaWAN certification from the LoRa Alliance. Depending on deployment requirements, developers can select to use Public LoRaWAN network services or build a private LoRa system with WISE-3610 LoRa IoT gateway. Advantech’s WISE-3610  is a Qualcomm ARM Cortex A7 based hardware platform with private LoRa ecosystem solution that can connect up to 500 WISE-1510 sensor node devices. Powered by Advantech’s WISE-PaaS IoT Software Platform, WISE-3610 features automatic cloud connection through its WISE-PaaS/WISE Agent service, manages wireless nodes and data via WSN management APIs, and helps customers streamline their IoT data acquisition development through sensor service APIs, and WSN drivers.

Developers can leverage microprocessors on WISE-1510 to build their own applications. WISE-1510 offers unified software—ARM Mbed OS and SDK for easy development with APIs and related documents. Developers can also find extensive resources from Github such as code review, library integration and free core tools. WISE-1510 also offers worldwide certification which allow developers to leverage their IoT devices anywhere. Using Advantech’s WISE-3610 LoRa IoT Gateway, WISE-1510 can be connected to WISE-  PaaS/RMM or  ARM Mbed Cloud service with IoT communication protocols including LWM2M, CoAP, and MQTT. End-to-end integration assists system integrators to overcome complex challenges and helps them build IoT applications quickly and easily.

WISE-1510 features and specifications:

  • ARM Cortex-M4 core processor
  • Compatible support for public LoRaWAN or private LoRa networks
  • Great for low power/wide range applications
  • Multiple I/O interfaces for sensor and control
  • Supports wide temperatures  -40 °C to 85 °C

Advantech | www.advantech.com

ARM-based SoC Targets Net Acceleration

NXP Semiconductors has announced the highest performance member of its Layerscape family, the LX2160A SoC. The LX2160A is specifically designed to enable challenging high-performance network applications, network edge compute, and data center offloads. Trusted and secure execution of virtualized cloud workloads at the edge is driving new distributed computing paradigms.

LX2160AThe LX2160A features sixteen high-performance Arm Cortex-A72 cores running at over 2 GHz in a sub 30 W power envelope, supporting both the 100 Gbit/s Ethernet and PCIe Gen4 interconnect standards. In addition, it provides L2 switching at wire rate and includes acceleration for data compression and 50 Gbit/s IPSec cryptography.

NXP supports and drives the rich ARM ecosystem for virtualization, building on the foundations of open source projects for cloud and network function virtualization including Open Daylight, OpenStack, and OP-NFV. NXP Arm processors incorporate hardware for virtualization technologies such as KVM and Linux containers and hardware acceleration of network virtualization. NXP also supports industry-standard APIs for virtualization, including DPDK, OVS, and Virtio, and standard enterprise Linux distributions, such as Debian and Ubuntu. Silicon samples and a reference board will be available in Q1 2018.

NXP Semiconductors | www.nxp.com

Two Controller Families Add eSPI Bus

Microchip Technology has made available its MEC17XX and MEC14XX families of embedded controllers with enhanced Serial Peripheral Interface (eSPI). The eSPI bus is the host interface supported by the latest PC computing chip sets and is required for new, upcoming computing applications. The MEC17XX family is based on an ARM Cortex-M4F core and has advanced hardware-accelerated cryptography algorithms to efficiently support the secure boot of a computer. The family offers several additional features including two UARTS and an extended industrial operating temperature range that make the family ideal for industrial computing. In addition, Microchip’s popular MIPS-based MEC14XX family has been expanded to include functionality for supporting the new eSPI Slave Attached Flash (SAF) feature, which allows the Microchip embedded controller to be 37288858386_29fa55a67f_kdirectly connected to an SPI Flash memory using an on-board master controller.

These new embedded controllers are part of an expanded family of devices that have been an integral part in the computing industry’s transition from LPC to eSPI.  The MEC17XX adds security through cryptography functionality to advance secure boot, a security feature developed to ensure a system boots only from software that is trusted by the manufacturer. Furthermore, the addition of two UARTS and support for industrial temperature is necessary for industrial computing applications.

The latest members of the MEC14XX family add a new level of design functionality for computing engineers by adding SAF, which is an optimal solution for USB Type-C power delivery. The latest MEC1428 devices are pin and register compatible with the MEC140X and MEC141X families, which allows designers to easily add eSPI and additional features and have more flexibility in their designs. Both families retain eSPI Master Attached Flash (MAF) capability. All of Microchip’s computing embedded controllers are supported by a variety of development and debug tools and evaluation boards, plus datasheets and other documentation.

The eSPI interface has numerous benefits including allowing for multiple input/output signals to be configured to support either 3.3 V or 1.8 V, which reduces the system cost by eliminating the need for external voltage translators.  These features allow for seamless migration of intellectual property (IP) across multiple x86 computing platforms including those based on Intel’s Atom processors, Intel’s iCore processors and Ryzen processors from AMD.

The four-part MEC17XX family is available in a variety of WFBGA package options, starting at $2.59 each in 10,000 unit quantities. The family features industrial-qualified parts as well as the option of additional EEPROM memory. The MEC1428 is available today in a variety of package options, starting at $2.16 each in 10,000 unit quantities.

Microchip Technology | www.microchip.com

Tools for Cypress Semi’s PSoC BLE 6 MCU

Cypress Semiconductor has announced the public release of the PSoC 6 BLE Pioneer Kit and PSoC Creator Integrated Design Environment (IDE) software version 4.2 that enable designers to begin development with the PSoC 6 microcontroller (MCU) for IoT applications. PSoC BLE 6 is the industry’s lowest power, most flexible MCU with built-in Bluetooth Low Energy wireless connectivity and integrated hardware-based security in a single device.

Early adopters are already using the flexible dual-core architecture of PSoC 6, using the ARM Cortex-M4 core as a host processor and the Cortex-M0+ core to manage peripheral functions such as capacitive sensing, Bluetooth Low Energy connectivity and sensor aggregation. Early adopter applications include wearables, personal medical devices and wireless speakers. Designers are also utilizing the built-in security features in PSoC 6 to help guard against unwanted access to data.

CY8CKIT-062-BLEThe PSoC BLE Pioneer Kit features a PSoC 63 MCU with Bluetooth Low Energy (BLE) connectivity. The kit enables development of modern touch and gesture-based interfaces that are robust and reliable with a linear slider, touch buttons and proximity sensors based on the latest generation of Cypress’ industry-leading CapSense capacitive-sensing technology. Designers can also use the board to add USB Power Delivery (PD) with its Cypress EZ-PD CCG3 USB-C controller. The kit also includes a 2.7-inch E-ink Display Shield add-on board (CY8CKIT-028-EPD) with thermistor, digital mic, and 9-axes motion sensor.

Offering best-in-class flexibility and ease-of-use, the PSoC 6 MCU architecture can serve as the catalyst for differentiated, visionary IoT devices. Designers can use software-defined peripherals to create custom analog front-ends (AFEs) or digital interfaces for innovative system components such as E-ink displays. The architecture is supported by Cypress’ PSoC Creator IDE and the expansive Arm ecosystem. Designers can find more information about PSoC Creator at http://www.cypressw.com/creator.

The PSoC 6 BLE Pioneer Kit (CY8CKIT-062-BLE) is available for purchase for $75 at the Cypress Online Store and through select distribution partners. PSoC 6 devices are currently sampling. Production devices are expected by the end of 2017.

Cypress Semiconductor | www.cypress.com

Sensor-Based IoT Development Platform With Bluetooth

Fujitsu Components America’s BlueBrain development platform for high-performance IoT applications is now available with a development breakout board and interface board. It enables designers to easily create a wireless monitoring and data collection system via Bluetooth. The enhanced BlueBrain Sensor-Based IoT System Platform will be available in this summer as a standard product through distribution. Jointly Fujitsu Components America bluebrain-sbs highdeveloped with CRATUS Technology, the BlueBrain platform features a high-performance CORTEX-M4 microcontroller from STMicroelectronics and a Bluetooth Low Energy wireless module from Fujitsu Components. The embedded hardware, software, and industry-standard interfaces and peripherals reduce the time and expertise needed to develop and deploy wireless, sensor-based products running simple or complicated algorithms.

The Breakout Board provides switch inputs and LED outputs to test I/O ports and functions, as well as programming interfaces for proof of concept and application development. The Interface Board provides additional sensors and interfaces and may also be used in parallel to expand the development platform. The BlueBrain Edge Processing Module attaches to a standard, 32-Pin 1.6” X 0.7” EEPROM-style IC socket, or equivalent footprint, on a mezzanine board to address specific markets and applications including industrial, agriculture, automotive and telematics, retail, smart buildings and civil infrastructure. Pricing for the BlueBrain Sensor-Based IoT System Platform is $425.

Fujitsu Components America | us.fujitsu.com/components

Expansion Connector Sample Kits Target Makers

Samtec has announced the release of four unique Expansion Connector Sample Kits for Makers. These new kits allow continued growth and stacking of the most popular electronics platforms using standard 0.100″ (2.54mm) centerline IDC cables, sockets and headers. Rapid prototyping of innovative projects using open-source electronic platforms typically requires basic connectors and cable assemblies.

Samtec RasberryPi3Kit

Samtec has developed Expansion Connector Sample Kits for four of the most popular platforms:

  • Arduino Uno R3 Expansion Connector Sample Kit
  • BeagleBone Black Expansion Connector Sample Kit
  • ARM mbed Application Board Expansion Connector Sample Kit
  • Raspberry Pi 3 Expansion Connector Sample Kit

Samtec | www.samtec.com

MediaTek Launches 4×4 802.11n/Bluetooth 5.0 System-on-Chip with Dedicated Wi-Fi Accelerator

MediaTek announced the world’s first 4×4 802.11n and Bluetooth 5.0 system-on-chip featuring a dedicated Wi-Fi network accelerator. The MediaTek MT7622 was created for premium networking devices including routers and repeaters, whole home Wi-Fi, and home automation gateways that pre-integrates audio and storage features. MediaTek also announced its next generation Wi-Fi low power chipset portfolio for connected smart home devices.

MediaTek’s new MT7622 SoC is a single platform for 4X4 dual-band and tri-band premium networking devices and introduces several best-in-class features including Bluetooth 5.0 and Hardware NAT, Hardware QoS and a dedicated Wi-Fi engine - MediaTek’s Wi-Fi Warp Accelerator. This eliminates bottlenecks by connecting the Gigabit+ class 802.11ac networking with multi-Gigabit internal pathways. It also features the ability to offload the CPU from multiple-users throughput and QoS calculations, all with lower power consumption. The end result is the ability to sustain high-performance for multiple, simultaneous heavy users.

“Based on MediaTek’s Adaptive Network technology, the MT7622 features easy setup, network self-healing, roaming, band steering, smart quality of service, and advanced security for whole home Wi-Fi,” says Alan Hsu, General Manager of Home Smart Device Business Unit, MediaTek. “For manufacturers looking for flexibility in the design of innovative networking devices, this chipset couples high performance and extensively integrated functionality.”

The MT7622, with the power a 1.35GHz rated, 64-bit dual-core ARM Cortex-A53 processor, provides a host of advanced connectivity options like SGMII/RGMII, PCIe, SATA and USB, and 4×4 802.11n FEM integration. To meet the growing demand for applications using audio and voice controls, the MT7622 includes essential audio interfaces such as I2S, TDM and S/PDIF. MT7622 also delivers a rich array of slow I/O in addition to the integrated Wi-Fi, Bluetooth and Zigbee co-existence for home automation gateways.

New Generation Wi-Fi Portfolio
MediaTek also announced its next generation Wi-Fi chipset portfolio. The new MediaTek MT7686, MT7682, and MT5932 devices will deliver high levels of integration with low power consumption for all connected applications, including audio products. The product family consists of highly integrated single chip solutions featuring an application processor, a low-power 1T1R 802.11 b/g/n Wi-Fi subsystem and a Power Management Unit. The application processor subsystem contains ARM Cortex-M4 MCU with floating point unit (FPU). All three were designed with a focus on core principles essential to connected applications, including deep sleep, fast wake-up and reliable data connectivity.

“Our new generation of chipsets have been optimized  to deliver a 300 percent improvement in energy efficiency, as well as the ability for a device to re-establish a Wi-Fi connection within 0.1 seconds of waking from sleep mode,” says YuChuan Yang, Deputy General Manager of Internet of Things Business Unit, MediaTek.

The MT7682 features a low-power subsystem and fast connection and requires few external components to save porting cost. The MT7686 contains 4MB of embedded RAM and 4MB of embedded Flash memory that makes the chipset an ideal platform for rich data and storage applications. With Wafer Level Chip Scale Package (WL-CSP) technology, the MT5932 has a very compact 3.2 by 3.2mm footprint, saving BOM cost for space-constrained IoT applications.

The three chipsets offer a range of features to meet the needs of uses cases requiring varying levels of embedded memory. All include a number of peripherals, including: SDIO, UART, I2C, SPI, I2S, PWM and auxiliary ADC.
www.mediatek.com/products/homeNetworking/mt7622
www.mediatek.com/products/iot/smart-home

Ambiq Micro’s Apollo Platform Selected for Fossil Smartwatches

Ambiq Micro recently announced that its patented Apollo Platform with Subthreshold Power Optimized Technology (SPOT) was selected for Fossil Group’s hybrid smartwatches. According to Ambiq, the Apollo platform will manage smartwatch operations such as processing sensor inputs and controlling wireless communication.

The energy-efficient Apollo microcontroller is based on the 32-bit ARM Cortex M-4 with FPU. It provides a high level of performance per watt, which enables designers to extended a systems battery life, incorporate smaller or fewer batteries, and add new features. Furthermore, the Apollo Platform consumes  34 µA/MHz when executing instructions from flash memory, and it features Sleep mode currents as low as 140 nA.

Source: Ambiq Micro