Nesit

NESIT wants to create, educate, and foster learning in the fields of various technological and other disciplines. They reap the benefits of productivity through volunteer collaboration.

Location 290 Pratt St., Meriden CT 06450
Members 30
Website nesit.org

Read about what Vice President Will Genovese has to say about NESIT.
Tell us about your meeting space!

NESIT meets in a 4000 square feet office that takes place in The Meriden Enterprise Center. A large office and manufacturing building that is home to over 60 businesses.

What tools do you have in your space? 

Soldering stations, oscilloscope, 3-D printer, woodshop, cnc, and a data center.

Are there any tools your group really wants or needs?

A lasercutter would be a nice addition to our arsenal.

What sort of embedded tech does your Hackerspace work with?

We work with PIC, Arduino, and Raspberry Pi, and many more.
In fact one of our recent projects was a DIY PIC Programmer.

Can you tell us about some of your group’s recent tech projects?

1012388_631853183518705_1732534179_n

One of the group’s first tech projects was the “MAME,” a full-size gaming arcade. The project was going well until there was a break in at the location and they lost some equipment; the MAME was put on the backburner.  After they moved to their new location and gained a new member, an art teacher named John, the project garnered interest again. He came up with the design for it. Afterwords it was painted, they got a coin mechanism, speakers were hooked up, and the software was installed and configured. IT was finally finished.

Click here if you want to check it out.

What’s the craziest project you’ve completed?

At the moment we have not yet completed projects I would categorize as “crazy.”

Read more about NESIT on their website. 

Show us your hackerspace! Tell us about your group! Where does your group design, hack, create, program, debug, and innovate? Do you work in a 20′ × 20′ space in an old warehouse? Do you share a small space in a university lab? Do you meet at a local coffee shop or bar? What sort of electronics projects do you work on? Submit your hackerspace and we might feature you on our website!

Engineering Consultant and Roboticist

Eric Forkosh starting building his first robot when he was a teenager and has been designing ever since. This NYC-based electrical engineer’s projects include everything from dancing robots to remote monitoring devices to cellular module boards to analog signals—Nan Price, Associate Editor


NAN: Tell us about your start-up company, Narobo.

forkosh

Eric Forkosh

ERIC: Narobo is essentially the company through which I do all my consulting work. I’ve built everything from dancing robots to cellular field equipment. Most recently I’ve been working with some farmers in the Midwest on remote monitoring. We monitor a lot of different things remotely, and I’ve helped develop an online portal and an app. The most interesting feature of our system is that we have a custom tablet rig that can interface directly to the electronics over just the USB connection. We use Google’s Android software development kit to pull that off.

ERIC: The DroneCell was my second official product released, the first being the Roboduino. The Roboduino was relatively simple; it was just a modified Arduino that made building robots easy. We used to sell it online at CuriousInventor.com for a little while, and there was always a trickle of sales, but it was never a huge success. I still get a kick out of seeing Roboduino in projects online, it’s always nice to see people appreciating my work.

dronecell3

The DroneCell is a cellular module board that communicates with devices with TTL UARTs.

The DroneCell is the other product of mine, and my personal favorite. It’s a cellular module board geared toward the hobbyist. A few years ago, if you wanted to add cellular functionality to your system you had to do a custom PCB for it. You had to deal with really low voltage levels, very high peak power draws, and hard-to-read pins. DroneCell solved the problem and made it very easy to interface to hobbyist systems such as the Arduino. Putting on proper power regulation was easy, but my biggest design challenge was how to handle the very low voltage levels. In the end, I put together a very clever voltage shifter that worked with 3V3 and 5 V, with some calculated diodes and resistors.

NAN: Tell us about your first project. Where were you at the time and what did you learn from the experience?

butlerrobot

Eric’s Butler robot was his first electronics project. He started building it when he was still in high school.

ERIC: The Butler robot was my first real electronics project. I started building it in ninth grade, and for a really stupid reason. I just wanted to build a personal robot, like on TV. My first version of the Butler robot was cobbled together using an old laptop, a USB-to-I/O converter called Phidgets, and old wheelchair motors I bought on eBay.

I didn’t use anything fancy for this robot, all the software was written in Visual Basic and ran on Windows XP. For motor controllers, I used some old DPDT automotive relays I had lying around. They did the job but obviously I wasn’t able to PWM them for speed control.

My second version came about two years later, and was built with the intention of winning the Instructables Robot contest. I didn’t win first place, but my tutorial “How to Build a Butler Robot” placed in the top 10 and was mentioned in The Instructables Book in print. This version was a cleaner version of everything I had done before. I built a sleek black robot body (at least it was sleek back then!) and fabricated an upside-down bowl-shaped head that housed the webcam. The electronics were basically the same. The main new features were a basic robot arm that poured you a drink (two servos and a large DC motor) and a built-in mini fridge. I also got voice command to work really well by hooking up my Visual Basic software with Dragon’s speech-to-text converter.

The Butler robot was a great project and I learned a lot about electronics and software from doing it. If I were to build a Butler robot right now, I’d do it completely differently. But I think it was an important to my engineering career and it taught me that anything is possible with some hacking and hard work.

At the same time as I was doing my Butler robot (probably around 2008), I lucked out and was hired by an entertainer in Hong Kong. He saw my Butler robot online and hired me to build him a dancing robot that was synced to music. We solved the issue of syncing to music by putting dual-tone multi-frequency (DTMF) tones on the left channel audio and music on the right channel. The right channel went to speakers and the left channel went to a decoder that translated DTMF tone sequences to robot movement. This was good because all the data and dance moves were part of the same audio file. All we had to do was prepare special audio files and the robot would work with any music player (e.g., iPod, laptop, CD, etc.). The robot is used in shows to this day, and my performer client even hired a professional cartoon voice actor to give the robot a personality.

NAN: You were an adjunct professor at the Cooper Union for the Advancement of Science and Art in New York City. What types of courses did you teach and what did you enjoy most about teaching?

ERIC: I will be entering my senior year at Cooper Union in the Fall 2014. Two years ago, I took a year off from school to pursue my work. This past year I completed my junior year. I taught a semester of “Microcontroller Projects” at Cooper Union during my year off from being a student. We built a lot of really great projects using Arduino. One final project that really impressed me was a small robot car that parallel parked itself. Another project was a family of spider robots that were remotely controlled and could shrink up into a ball.

Cooper Union is filled with really bright students and teaching exposed me to the different thought processes people have when trying to build a solution. I think teaching helped me grow as a person and helped me understand that in engineering—and possibly in life—there is no one right answer. There are different paths to the same destination. I really enjoyed teaching because it made me evaluate my understanding about electronics, software, and robotics. It forced me to make sure I really understood what was going on in intricate detail.

NAN: You have competed in robotics competitions including RoboCup in Austria. Tell us about these experiences—what types of robots did you build for the competitions?

robocup

Eric worked with his high school’s robotics team to design this robot for a RoboCup competition.

ERIC: In high school I was the robotics team captain and we built a line-following robot and a soccer robot to compete in RoboCup Junior in the US. We won first place in the RoboCup Junior Northeast Regional and were invited to compete in Austria for the International RoboCup Junior games. So we traveled as a team to Austria to compete and we got to see a lot of interesting projects and many other soccer teams compete. I remember the Iranian RoboCup Junior team had a crazy robot that competed against us; it was built out of steel and looked like a miniature tank.

My best memory from Austria was when our robot broke and I had to fix it. Our robot was omnidirectional with four omni wheels in each corner that let it drive at any angle or orientation it wanted. It could zigzag across the field without a problem. At our first match, I put the robot down on the little soccer field to compete… and it wouldn’t move. During transportation, one of the motors broke. Disappointed, we had to forfeit that match. But I didn’t give up. I removed one of the wheels and rewrote the code to operate with only three motors functional. Again we tried to compete, and again another motor appeared to be broken. I removed yet another wheel and stuck a bottle cap as a caster wheel on the back. I rewrote the code, which was running on a little Microchip Technology PIC microcontroller, and programmed the robot to operate with only two wheels working. The crippled robot put up a good fight, but unfortunately it wasn’t enough. I think we scored one goal total, and that was when the robot had just two wheels working.

After the competition, during an interview with the judges, we had a laugh comparing our disabled robot to the videos we took back home with the robot scoring goal after goal. I learned from that incident to always be prepared for the worst, do your best, and sometimes stuff just happens. I’m happy I tried and did my best to fix it, I have no regrets. I have a some of the gears from that robot at home on display as a reminder to always prepare for emergencies and to always try my best.

NAN: What was the last electronics-design related product you purchased and what type of project did you use it with?

ERIC: The last product would be an op-amp I bought, probably the 411 chip. For a current project, I had to generate a –5-to-5-V analog signal from a microcontroller. My temporary solution was to RC filter the PWM output from the op-amp and then use an amplifier with a
gain of 2 and a 2.5-V “virtual ground.” The result is that 2.5 V is the new “zero” voltage. You can achieve –5 V by giving the op-amp 0 V, a –2.5-V difference that is amplified by 2 to yield 5 V. Similarly, 5 V is a 2.5-V difference from the virtual ground, amplified by 2 it provides a 5-V output.

NAN: What do you consider to be the “next big thing” in the industry?

ERIC: I think the next big thing will be personalized health care via smartphones. There are already some insulin pumps and heart monitors that communicate with special smartphone apps via Bluetooth. I think that’s excellent. We have all this computing power in our pockets, we should put it to good use. It would be nice to see these apps educating smartphone users—the patients themselves— about their current health condition. It might inspire patients/users to live healthier lifestyles and take care of themselves. I don’t think the FDA is completely there yet, but I’m excited to see what the future will bring. Remember, the future is what you build it to be.

HackRVA: They provide the tools, you provide the enthusiasm

HackRVA Sign4HackRVA is a Richmond-based makerspace. They like to take things apart, put them back together, figure out how they work, and create new things. Their mission? To learn and make stuff sharing tools and knowledge in technology; including Arduino, Makerbot, Linux, and the Open Source movement.

Aaron Nipper will tell us a little more.

Location 1600 Roseneath Road, Suite E, Richmond, VA 23230
Members 65
Website www.hackrva.org

What’s your meeting space like? 

Our space is about 2,000 square feet. We have an AV and general meeting area, a tech lab, and a fab lab.

What’s in your “toolbox”?

  • Two 3D printers
  • Laser cutter
  • Lots of soldering stations
  • O-scopes
  • Hand and power tools
  • A computer lab

Are there any tools your group really wants or needs?

A CNC Router — like a shopbot. Can’t wait to build that first wiki-house!

Arduino, Raspberry Pi, embedded security… which embedded technologies does your group work with most frequently? 

We use all that stuff. Arduino, R-Pi, whatever we can get our hands on! We’ve designed, from scratch, PCB Badges for RichSec security conference the last three years. Click here to learn more about the PCB Badges project.

What have you been working on lately?

For the past three years, we’ve designed those PCB badges for the RichSec security conference. Here’s another recent build where a member took a Power Wheels and made it Xbox controller driven. Check out the video below or click here to read more about that project.

Do you have any events or initiatives you’d like to tell us about? Where can we learn more about them?

You can learn more about us at hackrva.org. We host the Richmond Maker Guild, have regular Saturday Hackathons, as well as a Noise Night. Members are always coming up with creative events!

Any words of advice for fellow hackers?

My personal motto is fail often, teach others, and post to the web. All those things help me learn and think about projects better.

Want to know more about what HackRVA does? Check out their Facebook page and website.

Show us your hackerspace! Tell us about your group! Where does your group design, hack, create, program, debug, and innovate? Do you work in a 20′ × 20′ space in an old warehouse? Do you share a small space in a university lab? Do you meet a local coffee shop or bar? What sort of electronics projects do you work on? Submit your hackerspace and we might feature you on our website!

Q&A: Raspberry Pi Innovation

Orlando, FL-based web app developer and blogger Shea Silverman recently received Kickstarter funding for the latest version of PiPlay, his Raspberry Pi-based OS. Shea and I discussed his ongoing projects, his Raspberry Pi book, and what’s next for PiPlay.—Nan Price, Associate Editor

 

silverman

Shea Silverman

NAN: What is your current occupation?

SHEA: Web applications developer with the Center for Distributed Learning at the University of Central Florida (UCF).

NAN: Why and when did you decide to start your blog?

SHEA: I’ve been blogging on and off for years, but I could never keep to a schedule or really commit myself to writing. After I started working on side projects, I realized I needed a place to store tips and tricks I had figured out. I installed WordPress, posted some PhoneGap tips, and within a day got a comment from someone who had the same issue, and my tips helped them out. I have been blogging ever since. I make sure to post every Friday night.

NAN: Tell us about PiPlay, the Raspberry Pi OS. Why did you start the OS? What new developments, if any, are you working on?

piplay-case

Shea’s PiPlay Raspberry Pi OS recently reached 400% funding on Kickstarter.

SHEA: PiPlay is a gaming and emulation distribution for the Raspberry Pi single-board computer. It is built on top of the Raspbian OS, and tries to make it as easy as possible to play games on your Raspberry Pi. My blog got really popular after I started posting binaries and tutorials on how to compile different emulators to the Raspberry Pi, but I kept getting asked the same questions and saw users struggling with the same consistent issues.

I decided I would release a disk image with everything preconfigured and ready to be loaded onto an SD card. I’ve been adding new emulators, games, and tools to it ever since.

I just recently completed a Kickstarter that is funding the next release, which includes a much nicer front end, a web GUI, and a better controller configuration system.

NAN: You wrote Instant Raspberry Pi Gaming. Do you consider this book introductory or is it written for the more experienced engineer?

SHEA: Instant Raspberry Pi Gaming is written like a cookbook with recipes for doing various tasks. Some of them are very simple, and they build up to some more advanced recipes. One of the easier tasks is creating your user account on the Pi Store, while the more advanced recipes have you working with Python and using an API to interact with Minecraft.

Readers will learn how to setup a Raspberry Pi, install and use various emulators and games, a bit about the Minecraft API, and common troubleshooting tips.

pitroller

The Pitroller is a joystick and buttons hooked up to the GPIO pins of a Raspberry Pi, which can act as a controller or keyboard for various emulators.

NAN: You are a member of FamiLAB, an Orlando, FL-based community lab/hackerspace. What types of projects have you worked on at the lab?

miniarcade

Disney director Rich Moore poses with Shea’s miniature arcade machine. The machine was based on Fix It Felix Jr. from Disney’s Wreck It Ralph.

SHEA: I spend a lot of time at the lab using the laser cutter. Creating a 2-D vector in Inkscape, and then watching it be cut out on a piece of wood or acrylic is really inspiring. My favorite project was making a little arcade machine featuring Fix It Felix Jr. from Wreck It Ralph. A marketing person from Disney was able to get it into the hands of the director Rich Moore. He sent me a bunch of pictures of himself holding my little arcade machine next to the full size version.

NAN: Give us a little background information. How did you become interested in technology?

SHEA: My mom always likes to remind me that I’ve been using computers since I was 2. My parents were very interested in technology and encouraged my curiosity when it came to computers. I always liked to take something apart and see how it worked, and then try to put it back together. As the years went on, I’ve devoted more and more time to making technology a major part of my life.

NAN: Tell us about the first embedded system you designed.

SHEA: I have a lot of designs, but I don’t think I’ve ever finished one. I’ll be halfway into a project, learn about something new, then cannibalize what I was working on and repurpose it for my new idea. One of the first embedded projects I worked on was a paintball board made out of a PICAXE microcontroller. I never got it small enough to fit inside the paintball marker, but it was really cool to see everything in action. The best part was when I finally had that “ah-ha!” moment, and everything I was learning finally clicked.

NAN: What was the last electronics-design related product you purchased and what type of project did you use it with?

SHEA: At UCF, one of our teams utilizes a ticket system for dealing with requests. Our department does a hack day each semester, so my coworker and I decided to rig up a system that changes the color of the lights in the office depending on the urgency of requests in the box. We coded up an API and had a Raspberry Pi ping the API every few minutes for updates. We then hooked up two Arduinos to the Raspberry Pi and color-changing LED strips to the Arduinos. We set it up and it’s been working for the past year and a half, alerting the team with different colors when there is work to do.

NAN: Are you currently working on or planning any projects?

SHEA: My Kickstarter for PiPlay just finished at 400% funding. So right now I’m busy working on fulfilling the rewards, and writing the latest version of PiPlay.

NAN: What do you consider to be the “next big thing” in the industry?

SHEA: Wearable computing. Google Glass, the Pebble smart watch, Galaxy Gear—I think these are all great indicators of where our technology is heading. We currently have very powerful computers in our pockets with all kinds of sensors and gadgets built in, but very limited ways to physically interact with them (via the screen, or a keypad). If we can make the input devices modular, be it your watch, a heads-up display, or something else, I think that is going to spark a new revolution in user experiences.

Execute Open-Source Arduino Code in a PIC Microcontroller Using the MPLAB IDE

The Arduino single-board computer is a de facto standard tool for developing microcomputer applications within the hobbyist and educational communities. It provides an open-source hardware (OSH) environment based on a simple microcontroller board, as well as an open-source (OS) development environment for writing software for the board.

Here’s an approach that enables Arduino code to be configured for execution with the Microchip Technology PIC32MX250F128B small-outline 32-bit microcontroller. It uses the Microchip Technology MPLAB X IDE and MPLAB XC32 C Compiler and the Microchip Technology Microstick II programmer/debugger.

Your own reasons for using this approach will depend on your personal needs and background. Perhaps as a long-term Arduino user, you want to explore a new processor performance option with your existing Arduino code base. Or, you want to take advantage of or gain experience with the Microchip advanced IDE development tools and debug with your existing Arduino code. All of these goals are easily achieved using the approach and the beta library covered in this article.

Several fundamental open-source Arduino code examples are described using the beta core library of Arduino functions I developed. The beta version is available, for evaluation purposes only, as a free download from the “Arduino Library Code for PIC32” link on my KibaCorp company website, kibacorp.com. From there, you can also download a short description of the Microstick II hardware configuration used for the library.

To illustrate the capabilities in their simplest form, here is a simple Blink LED example from my book Beginner’s Guide to Programming the PIC32. The example shows how this custom library makes it easy to convert Arduino code to a PIC32 binary file.

ARDUINO BLINK EXAMPLE 1
The Arduino code example is as follows: Wire an LED through a 1-K resistor to pin 13 (D7) of the Arduino. An output pin is configured to drive an LED using pinMode () function under setup (). Then under loop () this output is set high and then low using digitalWrite () and delay () functions to blink the LED. The community open-source Arduino code is:

Listing 1forwebPIC32 EXAMPLE 1 CODE MODIFICATIONS
The open-source example uses D13 or physical pin 13 on the Arduino. In relation to the PIC32MX, the D13 is physical pin 25. Pin 25 will be used in prototyping wiring.

Now, let’s review and understand the PIC32 project template and its associated “wrapping functions.”  The Arduino uses two principal functions: setup () to initialize the system and loop () to run a continuous execution loop. There is no Main function. Using the Microchip Technololgy XC32 C compiler, we are constrained to having a Main function. The Arduino setup () and loop () functions can be accommodated, but only as part of an overall template Main “wrapping” function. So within our PIC32 template, we accommodate this as follows:

Listing 2

This piece of code is a small but essential part of the template. Note that in this critical wrapping function, setup () is called once as in Arduino and loop () is configured to be called continuously (simulating the loop () function in Arduino) through the use of a while loop in Main.

The second critical wrapping function for our template is the use of C header files at the beginning of the code. The XC32 C compiler uses the C compiler directive #include reference files within the Main code. Arduino uses import, which is a similar construct that is used in higher-level languages such as Java and Python, which cannot be used by the MPLAB XC32 C.

The two include files necessary for our first example are as follows:

Listing 3

System.h references all the critical Microchip library functions supporting the PIC32MX250F128B. The Ardunio.h provides the Arduino specific library function set. Given these two key “wrapper” aspects, where does the Arduino code go? This is best illustrated with a side-by-side comparison between Arduino code and its Microchip equivalent. The Arduino code is essentially positioned between the wrapper codes as part of the Main function.

Blink side-by-side comparison

Blink side-by-side comparison

This approach enables Arduino code to execute on a Microchip PIC32 within an MPLAB X environment. Note that the Arduino code void setup () now appears as void setup (void), and void loop () appears as void loop (void). This is a minor inconvenience but again necessary for our C environment syntax for C prototype function definitions. Once the code is successfully compiled, the environment enables you to have access to the entire built-in tool suite of the MPLAB X and its debugger tool suite.

RUNNING EXAMPLE 1 CODE
Configure the Microstick II prototype as in the following schematic. Both the schematic and prototype are shown below:

Exercise 1 schematic

Exercise 1 schematic

Exercise 1 prototype

Exercise 1 prototype

BETA LIBRARY
Table 1 compares Arduino core functionality to what is contained in the Microchip PIC32 expanded beta library. In the beta version, I added additional C header files to accomplish the necessary library functionality. Table 2 compares variable types between Arduino and PIC32 variable types. Both Table 1 and Table 2 show the current beta version has a high degree of Arduino core library functionality. Current limitations are the use of only one serial port, interrupt with INT0 only, and no stream capability. In addition, with C the “!” operator is used for conditional test only and not as a complement function, as in Arduino. To use the complement function in C, the “~” operator is used. The library is easily adapted to other PIC32 devices or board types.

Table 1

Table 1: Arduino vs Microchip Technology PIC32 core library function comparison

Talble 2

Table 2: Arduino vs Microchip Technology PIC32 core library variable types

INTERRUPTS
If you use interrupts, you must identify to C the name of your interrupt service routine as used in your Arduino script. See below:

Interrupt support

Interrupt support

For more information on the beta release or to send comments and constructive criticism, or to report any detected problems, please contact me here.

LIBRARY TEST EXAMPLES
Four test case examples demonstrating additional core library functions are shown below as illustrations.

Serial communications

Serial communications

Serial find string test case

Serial find string test case

Serial parse INT

Serial parse INT

Interrupt

Interrupt

Editor’s Note: Portions of this post first appeared in Tom Kibalo’s book Beginner’s Guide to Programming the PIC32 (Electronics Products, 2013). They are reprinted with permission from Chuck Hellebuyck, Electronic Products. If you are interested in reading more articles by Kibalo, check out his two-part Circuit Cellar “robot boot camp” series posted in 2012 : “Autonomous Mobile Robot (Part 1): Overview & Hardware” and “Autonomous Mobile Robot (Part 2): Software & Operation.”

 

Tom Kibalo

Tom Kibalo

ABOUT THE AUTHOR
Tom Kibalo is principal engineer at a large defense firm and president of KibaCorp, a company dedicated to DIY hobbyist, student, and engineering education. Tom, who is also an Engineering Department adjunct faculty member at Anne Arundel Community College in Arnold, MD, is keenly interested in microcontroller applications and embedded designs. To find out more about Tom, read his 2013 Circuit Cellar member profile.