Workspace for Open-Source Engineering

Christopher Coballes is a Philippines-based freelance R&D engineer and Linux enthusiast with more than a decade of experience in an embedded hardware/software and a passion for an open source design.

The nearby photo shows his home workspace, which includes handy tools such as a spectrum analyzer, digital oscilloscope, and a PCB etcher.

Source: Christopher Coballes

Source: Christopher Coballes

Here are some links to Coballes’s interests and work:

  • Engineering blog
  • Hi-Techno Barrio: A group of Filipino electronics enthusiasts who “aim to uncover the complexity of a modern technology and in turn make it simple, beneficial ,low-cost and free-ware resources.”

View other electrical engineering workspaces.

The Future of 3-D Printed Electronics

Three-dimensional printing technology is one of our industry’s most exciting innovations. And the promising field of 3-D printed electronics is poised to revolutionize the way engineers design and manufacture electrical systems for years to come. In the following essay, Dr. Martin Hedges of Neotech AMT presents his thoughts on the future of 3-D printed electronics.

Three-dimensional (3-D) printing for prototyping has been around for nearly three decades since the introduction of the first SL systems. The last few years have seen this technology receiving considerable attention to the point of hype in the mainstream media. However, there is a new emerging 3-D printing market that is increasing in importance: 3-D printed electronics (3-D PE). Whilst traditional 3-D printing builds structural parts layer by layer, 3-D PE prints liquid inks that have electronic functionality on to existing 3-D components. 3-D PE is achieved by combining advanced printing technologies, such as Aerosol Jet, with specially designed five-axis systems and advanced software controls that allow complex print motion to be achieved. The integrated print systems allow the full range of electronic functionality to be applied: conductors, semiconductors, resistors, dielectrics, optical, and encapsulation materials.

These can be printed on to virtually any surface material of almost any shape. Once deposited the inks are post processed: sintered, dried, or cured to achieve their final properties. Multiple materials can be printed to build up functionality, or surface mount devices (SMD) can be added to make the final electro-mechanically integrated system (see Photo 1).

Photo 1: 3-D PE demonstrator—Tank-filling sensor produced in the FKIA project funded by the Bavarian Research Foundation (Courtesy of Neotech AMT GmbH)

Photo 1: 3-D PE demonstrator—Tank-filling sensor produced in the FKIA project funded by the Bavarian Research Foundation (Courtesy of Neotech AMT GmbH)

In this example, two capacitive sensor structures have been printed on the ends of an injection-molded PA6 tank. The sensors are connected by a printed circuit (conductive Ag) and SMD components are added to complete the device. When water is pumped into the tank, the sensors register the water level as it rises, lighting the LEDs to indicate the fill level. When the tank compartment is full, the circuit senses the water fill level and reverses the pump direction.

3-D PE has the potential to provide enormous technical and economic benefits in comparison to conventional electronics based on 2-D printed circuit boards. It allows the combination of electronic, optic, and mechanical functions on shaped circuit carriers. Therefore, it enables entirely new product functions and supports the miniaturization and weight-saving potential of electronic products. By eliminating mechanical components, process chains can be shortened and reliability is increased. As a digitally driven, additive manufacturing process materials are only applied where needed, improving the ecological balance of electronics production. With no fundamental limitation on substrate material, the user is able to select low-cost, easy-to-recycle and more environmentally friendly materials. The novel design and functional possibilities offered by 3-D PE and the potential for rationalization of production steps indicate a potential quantum leap in electronics production.

Advances in this field have been rapid since the first developments that focused on 3-D chip packaging. In this field, printing is conducted over small changes in z-height to connect SMDs. Photo 2 shows an example where wire bonds are replaced by printing interconnects, from the PCB, up the side of a chip, and over onto the top contact pads.

Photo 2: 3-D chip packaging (Courtesy of Fraunhofer IKTS)

Photo 2: 3-D chip packaging (Courtesy of Fraunhofer IKTS)

Such applications only require  relatively simple print motion. The current “state of the art” is to use five axes of coordinated  motion  to  print high complex shapes. This capability enables the production of truly 3-D PE systems, such as a 3-D antenna for mobile devices (see Photo 3).

Photo 3: 3-D printed antenna (Courtesy of Lite-On Mobile)

Photo 3: 3-D printed antenna (Courtesy of Lite-On Mobile)

This application is well advanced and moving towards high-volume mass production driven by the benefits of a flexible manufacturing, novel design capabilities, and cost reduction compared to the current methods based on wet chemical plating processes. 3-D PE is also being scaled to print on large components beyond the size range possible with current manufacturing methods. For example, in the automotive field, 3-D prints of heater patterns are being developed for molded PC windscreens of up to 2 m × 1 m in size.

Currently, 3-D PE applications are mainly limited to circuits, antennas, strain gauges, or sensors using conductive metal as the print media with additional electronic functionality being added as SMDs. However, the technology also has the potential to leverage new material and process developments from the printed and organic electronics world. In this field, many different material systems are currently being applied on planar surfaces to create multi-material and multi-layer devices. Functionality such as resistors, capacitors, sensors, and even transistors are being incorporated into fully printed 2-D electronic systems. As these print materials and processes mature, they can be adapted to 3-D applications. It is expected that the coming years will see a rapid increase in the range of fully printed 3-D electronic devices of novel functionality.

ABOUT THE AUTHORDr.Hedges

Dr. Martin Hedges (mhedges@neotech-amt.com) is the Managing Director of Neotech AMT GmbH based in Nuremberg, Germany. His research includes aspects of additive manufacturing, materials and processes. His company projects focus on the development of integrated manufacturing systems for 3-D printed electronics.

Circuit Cellar 290 (September 2014) is now available.

 

A Visit to the World Maker Faire in New York

If you missed the World Maker Faire in New York City, you can pick up Circuit Cellar’s February issue for highlights of the innovative projects and hackers represented there.Veteran electronics DIYer and magazine columnist Jeff Bachiochi is the perfect guide.

“The World Maker Faire is part science fair and part country fair,” Bachiochi says. “Makers are DIYers. The maker movement empowers everyone to build, repair, remake, hack, and adapt all things. The Maker Faire shares the experiences of makers who have been involved in this important process… Social media keeps us in constant contact and can educate, but it can’t replace the feeling you can get from hands-on live interaction with people and the things they have created.

Photo 1: This pole-climbing robot is easy to deploy at a moment’s notice. There is no need for a ladder to get emergency communication antennas up high where they can be most effective.

Photo 1: This pole-climbing robot is easy to deploy at a moment’s notice. There is no need for a ladder to get emergency communication antennas up high where they can be most effective.

“It should be noted that not all Maker Faire exhibitors are directly involved with technology. Some non-technological projects on display included the ‘Art Car’ from Pittsburgh, which is an annual revival of an old clunker turned into a drivable art show on wheels. There was also the life-size ‘Mouse Trap’ game, which was quite the contraption and just plain fun, especially if you grew up playing the original game.”

Bachiochi’s article introduces you to a wide variety of innovators, hackers, and hackerspaces.

“The 721st Mechanized Contest Battalion (MCB) is an amateur radio club from Warren County, NJ, that combines amateur (ham) radio with electronics, engineering, mechanics, building, and making,” Bachiochi says. “The club came to the Maker Faire to demonstrate its Emergency Antenna Platform System (E-APS) robot. The robot, which is designed for First Responder Organizations, will turn any parking lot lamppost into an instant antenna tower (see Photo 1).”

The keen and growing interest in 3-D printing as a design tool was evident at the Maker Faire.

“Working by day as an analog/mixed-signal IC design engineer for Cortina Systems in Canada, Andrew Plumb needed a distraction. In the evenings, Plumb uses a MakerBot 3-D printer to create 3-D designs of plastic, like thousands of others experimenting with 3-D printing,” Bachiochi says. “Plumb was not satisfied with simply printing plastic widgets. In fact, he showed me a few of his projects, which include printing plastic onto paper and cloth (see Photo 2).”

Photo 2: Andrew Plumb showed me some unique ideas he was experimenting with using one of his 3-D printers. By printing the structural frame directly on tissue paper, ultra-light parts are practically ready to fly.

Photo 2: Andrew Plumb showed me some unique ideas he was experimenting with using one of his 3-D printers. By printing the structural frame directly on tissue paper, ultra-light parts are practically ready to fly.

Also in the 3-D arena, Bachiochi encountered some innovative new products.

“It was just a matter of time until someone introduced a personal scanner to create digital files of 3-D objects. The MakerBot Digitizer Desktop 3-D Scanner is the first I’ve seen (see Photo 3),” Bachiochi says. “It uses a laser, a turntable, and a CMOS camera to pick off 3-D points and output a STL file. The scanner will create a 3-D image from an object up to 8″ in height and width. There is no third axis scanning, so you must plan your model’s orientation to achieve the best results. Priced less than most 3-D printers, this will be a hot item for 3-D printing enthusiasts.”

Bachiochi’s article includes a lengthy section about “other interesting stuff” and people at the Maker Faire, including the Public Laboratory for Open Technology and Science (Public Lab), a community that uses inexpensive DIY techniques to investigate environmental concerns.

Photo 3: The MakerBot Digitizer Desktop 3-D Scanner is the first production scanner I’ve seen that will directly provide files compatible with the 3-D printing process. This is a long-awaited addition to MakerBot’s line of 3-D printers. (Photo credit: Spencer Higgins)

Photo 3: The MakerBot Digitizer Desktop 3-D Scanner is the first production scanner I’ve seen that will directly provide files compatible with the 3-D printing process.  (Photo credit: Spencer Higgins)

“For instance, the New York chapter featured two spectrometers, a you-fold-it cardboard version and a near-infrared USB camera-based kit,” Bachiochi says. “This community of educators, technologists, scientists, and community organizers believes they can promote action, intervention, and awareness through a participatory research model in which you can play a part.”

At this family-friendly event, Bachiochi met a family that “creates” together.

“Asheville, NC-based Beatty Robotics is not your average robotics company,” Bachiochi says. “The Beatty team is a family that likes to share fun robotic projects with friends, family, and other roboticists around the world. The team consists of Dad (Robert) and daughters Camille ‘Lunamoth’ and Genevieve ‘Julajay.’ The girls have been mentored in electronics, software programming, and workshop machining. They do some unbelievable work (see Photo 4). Everyone has a hand in designing, building, and programming their fleet of robots. The Hall of Science is home to one of their robots, the Mars Rover.”

There is much more in Bachiochi’s five-page look at the Maker Faire, including resources for finding and participating in a hackerspace community. The February issue including Bachiochi’s articles is available for membership download or single-issue purchase.

Photo 4: Beatty Robotics is a family of makers that produces some incredible models. Young Camille Beatty handles the soldering, but is also well-versed in machining and other areas of expertise.

Photo 4: Beatty Robotics is a family of makers that produces some incredible models. Young Camille Beatty handles the soldering, but is also well-versed in machining and other areas of expertise.

High-Tech Halloween

Still contemplating Halloween ideas? Do you have a costume yet? Is your house trick-or-treat ready? Perhaps some of these high-tech costumes and decorations will help get you in the spirit.

Recent Circuit Cellar interviewee Jeremy Blum designed a creative and high-tech costume that includes 12 individually addressable LEDs, an Adafruit microcontroller, and 3-D printing.

Skull_Side_Full_IMG_0067

Custom animatronic skull

RavenSide2Armature_IMG_0015

Animatronic talking raven

Looking for Halloween decoration inspiration? Peter Montgomery designed some programmable servo animation controllers built around a Freescale Semiconductor 68HC11 microcontroller and a Parallax SX28 configurable controller.

Peter’s Windows-based plastic skull is animated with RC servos controlled via a custom system. It moves at 24 or 30 frames per second over a custom RS-485 network.
This animatronic talking raven features a machined aluminum armature and moves via RC servos. The servos are controlled by a custom system using Windows and embedded controllers.

Peter’s Halloween projects were originally featured in “Servo Animation Controller” (Circuit Cellar 188, 2006). He displays the Halloween projects every year.

Feeling inspired? Share your tech-based Halloween projects with us.

3-D Printed Robotics Innovation: A Low-Cost Solution for Prosthetic Hands

Gibbardholding DextrusUK-based inventor and robotist Joel Gibbard used a 3-D printer to design and build a prosthetic robotic hand. He founded the Open Hand Project with the goal of making the prosthetic hands available for amputees.

 

 NAN: Give us some background. Where do you live? Where did you go to school? What did you study?

 JOEL: I was born in Bristol, UK, and grew up in that area. Bristol is a fantastic place for robotics in the UK, so I couldn’t have had a better place to start from. There’s a lot to engage children here, like the highly popular @Bristol science museum. I studied for a degree in Robotics at the University of Plymouth, which encourages a very practical approach to engineering. Right from the first year we were working with electronics, robotics, and writing code.

 NAN: When did you first start working with robotics?

 JOEL: The first robots I ever made were using the Lego MINDSTORMS NXT robotics kits. I was very lucky because these were just starting to come out when I was about 6 or 7 years old. I think from ages three to 15 every single birthday or Christmas present was a new Lego set. To this day, I still think Lego is the best tool for rapid prototyping in the early stages of an idea.

 NAN: Tell us about your first design/some of your early projects. Do you have any photos or diagrams?

 JOEL: The earliest project I remember working on with my father was a full-scale model of the space shuttle complete with robotic arm and fully motorized launch pad. When on the launch pad it was almost my height. I think my father took having kids as an opportunity to get back into making things. We also made a Saturn 5 rocket, Sydney Harbour Bridge and Concorde. One of my first robots was a Lego Technic creation. It had tracks, a double-barreled gun on one arm, a pincer on the other, and a submarine on the back, just in case. I think I was about eight years old when I made it.

 NAN: You originally developed the Dextrus robotic hand while you were at the University of Plymouth. Why did you design the system? How has its development progressed since the original concept?

Gibbarddesignprocess

Joel keeps an ongoing design sketchbook.

JOEL: I have a sketchbook of around 10 to 20 inventions that are options for the next thing I want to make. This grows faster than it shrinks. One day I was thinking about what to make next and the thought occurred to me that if I were to lose my hand, I wouldn’t be able to make anything. So it made the most sense to design a hand to have just in case. Once I have that, heaven forbid I need to; I could use it to then make a better hand, and so forth, until I have a robot hand that is as good as a human hand. It sounds ridiculous, but that was enough motivation for me to make the first one.

GibbardEarlyDextrus

This is an early version of the Dextrus hand.

After posting the project on YouTube, I received comments from people asking to have the designs to make their own, which wasn’t really possible, since it was such a one-off prototype. But I thought it was a good idea. Why not make an open-source hand? After that, I looked more into prostheses and discovered that this is really necessary and people want it.

 NAN: The Dextrus incorporates 3-D printed parts. How does the 3-D printing factor in your design? Does it make each hand customizable?

 JOEL: 3-D printing is essential to the design. Many of the parts have cavities inside them, which wouldn’t be possible to make using injection molding. One would have to make the parts in two halves then glue them together, which creates weak points. With 3-D printing, each part is one solid piece with cavities for the tendons to slide through.

Customization is a great area to explore in the future. It’s quite easy to modify things like the length and shape of the fingers while maintaining the functionality of the hand. In the not-too-distant future, I could envisage an amputee 3-D scanning their remaining hand and sending the scan to me. I could then reverse it and match their Dextrus hand (approximately) to the dimensions of their other hand.

Gibbard3DprintedDextrushand

The 3-D printed Dextrus hand.

 NAN: There are three types of Dextrus robotic hands: The Dextrus, the Dextrus EMG, and the Dextrus Research. Can you describe the differences?

 JOEL: They have the same basic design and components. The Dextrus and Dextrus EMG are exactly the same, but the EMG comes with all of the extras that enable someone to use it as a myoelectric prosthesis. The Dextrus Research has a number of differences that result in a more robust (but more expensive and heavier) hand. It has steel ball bearings instead of nylon bushes and is printed with denser plastic. It also comes with everything you need to use it straight out of the box (e.g., a power supply).

 NAN: You founded the Open Hand Project as a result of your work on the Dextrus robotic hand. Describe the project and its purpose.

 JOEL: The aim of the Open Hand Project is to make advanced prosthetic hands more accessible to amputees. It has the potential to revolutionize the prosthetics industry by trivializing the cost of prosthetics (to insurance companies). I also hope that it will help to advance prosthetic hands. If the hardware is much less expensive, we can start to focus on the human robot interface. At the moment, it uses electromyographical signals, which sound advanced but are actually 50-year-old technology and don’t give complex functionality like individual finger movement. If the hardware is inexpensive, then money can instead be spent on operations to tap into the nervous system and then the hand can literally be a direct replacement for the human hand. You’ll think about moving your hand and the robotic hand will do exactly what you’re thinking. If done correctly, you’ll also be able to feel with it. We’re talking Luke Skywalker Star Wars tech. It exists now, but is not yet fully tested and proven.

 NAN: Prior to venturing out on your own, you were an Applications Engineer at National Instruments (NI). Although you are no longer working for the company, it is backing the Open Hand Project by providing test and measurement equipment. How did NI become involved in the project?

 JOEL: National Instruments has been great since I’ve left the company. I explained what I wanted to do, and it was fully supportive. To get the equipment, all I had to do was ask! It really does live up to its reputation of being one of the best places to work. I hope that I’ll be able to repay them with business in the future. If I’m successful, then I’ll be able to buy equipment for future projects.

 NAN: Why did you decide to use crowdfunding for this project?

 JOEL: I wanted to keep everything open source for this project. Investors don’t want to fund an open-source project. You have no leverage to make money and your ideas will be taken and used by other people (which is encouraged). For this reason, only people who are genuinely interested in the vision of the project will want to invest, and that’s just not something that will make a company money. Crowdfunding is perfect, because people appreciate how this can help people and they’re willing to contribute to that.

I believe that everyone should have access to public health care and that your level of care should not be dependent on the size of your wallet. Making prosthetics open source will be a step in the right direction, but this model does not have to be limited to prosthetics. Take the drugs industry for example. Drugs companies work off patents, they have to patent their drugs in order to make back the millions of dollars they spend developing them and end up charging $1,000 for a pill that costs them $0.01 to make in order to cover all of their costs. If the research was publicly funded and open source, the innovations in this industry would be dramatically accelerated and once drugs were developed, they could be sold more cheaply, if sale of the drugs was government regulated, the price could be controlled and the money could go back into funding more developments.

 NAN: What’s next for the Dextrus?

 JOEL: There are a few directions I’d like this project to go in. First and foremost is the development of low-cost robotic prostheses for adults. After this, I’d like to look into partial amputations and finger prostheses. I’d also like to try and miniaturize the hand so that children can use it as well. Before any of this can happen I’ll need to reach my crowdfunding goal on indiegogo!

 

Video: 3-D Printing with Liquid Metals and Flexible Electronics

In the October issue of Circuit Cellar, Collin Ladd and Dr. Michael Dickey will be writing an essay about a North Carolina State University group’s fascinating research into 3-D printing with liquid metals.

“Most 3-D printers currently pattern plastics, but printing metal objects is of particular interest because of metal’s physical strength and electrical conductivity,”  Ladd and Dickey say in their essay.

The process involves a needle that dispenses an alloy of gallium and indium, which in turn enables the 3-D printing of metals at room temperature. These flexible, bendable  structures hold their shape and hold promise for uses including wires, antennas,  flexible displays, wearable sensors, and skin substitutes on prosthetics. They can even “heal” themselves, the researchers say.

“Using our approach, we can direct print freestanding wire bonds or circuit traces to directly connect components—without etching or solder—at room temperature. Encasing these structures in polymer enables these interconnects to be stretched tenfold without losing electrical conductivity. Liquid metal wires also have been shown to be self-healing, even after being completely severed. Our group has demonstrated several applications of the liquid metal in soft, stretchable components including deformable antennas, soft-memory devices, ultra-stretchable wires, and soft optical components,” according to the essay.

But like many advances in technology, there was a certain amount of simple good luck in the pace of their research. That luck involved the introduction of Dr. Dickey to undergraduate student Ladd, whom Dickey credits for playing a key role:

“Collin worked in my lab as an undergraduate for almost three years and recently graduated. During that time, he was an undergraduate with unusual talent. He built the 3-D printer in our lab from spare parts. He got the machine to work and did a lot of the measurements that led to the (published research) paper. He also created the incredible video that is posted on YouTube.

“I first met Collin when he was a student in my class. He was one of those rare students who was a genuinely curious learner, but with no real concerns about grades. I found that refreshing. He came to my office one day and I found out that he was doing experiments in his apartment!  I told him he should really be working in the lab, and the rest is history.”

So even though you won’t be seeing the research team’s full essay until Circuit Cellar‘s October issue is available online and in print, we thought we would share Ladd’s “incredible video” of the team’s work.

We’d also like to add that no insect was harmed in the making of this video (the bug receiving a pair of liquid metal antennae in the final footage had previously met its demise at the “hands” of a spider).