Electrical Engineering and Artistic Expression

I think we’re on the verge of the next artistic renaissance. This time, instead of magnificent architecture, beautifully painted portraits, and the rise of humanism, I think engineering (specifically electrical engineering) will begin to define exciting new forms of artistic expression.

Cornell University graduate and electrical engineer Jeremy Blum in 2011 blog post

Regular Circuit Cellar readers will recognize Jeremy Blum as our November issue interview subject. Blum’s post sums up a philosophy that seems to be shared by some other recent EE graduates or aspiring electrical engineers. They view their work as art, or at least they like to occasionally work in art.

For example, Circuit Cellar’s January issue will feature an interview with Andrew Godbehere, an Electrical Engineering PhD candidate at the University of California, Berkeley. He has intertwined engineering and art more than once.

This is the central control belt pack worn by a dancer for CUMotive, the wearable accelerometer project. An Atmel Mega644V and an AT86RF230 were used inside to interface to synthesizer. The plastic enclosure has holes for the belt to attach to a dancer. Wires connect to accelerometers, which are worn on the dancer’s limbs.

This is the central control belt pack worn by a dancer for CUMotive, the wearable accelerometer project. An Atmel Mega644V and an AT86RF230 were used inside to interface to synthesizer. The plastic enclosure has holes for the belt to attach to a dancer. Wires connect to accelerometers, which are worn on the dancer’s limbs.

When he was Cornell student, he collaborated with Nathan Ward on a final project to translate a dancer’s movement into music. They created a central control belt pack for the dancer, which connected to four wearable wireless accelerometers to measure the dancer’s movements. Inside the belt pack, an ATmega 644V connected to an Atmel AT86RF230 wireless transceiver interfaced with a musical instrument digital interface (MIDI) and synthesizer.

When Godbehere graduated from Cornell and headed to UC Berkeley, his focus shifted to theoretical topics and robotic systems. But he jumped at a professor’s invitation to become involved in the “Are We There Yet?” art installation in 2011 at the Contemporary Jewish Museum in San Francisco.

During the four-month exhibit, visitors entered a nearly empty gallery to encounter recorded questions emanating from numerous floor speakers. A camera followed each visitor’s moves and robotic algorithms enabled it to determine which floor speaker to activate. The questions heard could range from “What Is My Purpose?” to “What’s Up Doc?”

How a visitor moved through the interactive installation triggered the combination of questions he or she heard.

Video documentary of “Are We There Yet?” 

Godbehere was the computer vision system engineer working with artists Gil Gershoni and Ken Goldberg, who is also a robotics and new media professor at UC Berkeley.

“We installed a color camera in a beautiful gallery in the Contemporary Jewish Museum… and a set of speakers with a high-end controller system from Meyer Sound that enabled us to ‘position’ sound in the space and to sweep audio tracks around at (the computer’s programmed) will,” Godbehere says. “The Meyer Sound System is the D-Mitri control system, controlled by the computer with Open Sound Control (OSC).

“The hard work was then to program the computer to discern humans from floors, furniture, shadows, sunbeams, and reflections of clouds. The gallery had many skylights, making the lighting very dynamic. Then, I programmed the computer to keep track of people as they moved and found that this dynamic information was itself useful in determining if detected color-perturbance was human or not.”

Behind the technology of “Are We There Yet?”

Can such art also have “practical” consumer applications? Godbehere says there are elements that can be used as an embedded system.

“I’ve been told that the software I wrote works on iOS devices by the startup company Romo, which was evaluating my vision-tracking code for use in its cute iPhone rover. Further, I’d say that if someone were interested, they could create a similar pedestrian, auto, pet, or cloud tracking system using a Raspberry Pi and a reasonable webcam.”

If you’re interested in learning more about Godbehere’s engineering and artistic work, be sure to check out the January issue of Circuit Cellar.

And if you have an opinion on electrical engineering and art, please post your comments below.

One thought on “Electrical Engineering and Artistic Expression