About Circuit Cellar Staff

Circuit Cellar's editorial team comprises professional engineers, technical editors, and digital media specialists. You can reach the Editorial Department at editorial@circuitcellar.com, @circuitcellar, and facebook.com/circuitcellar

New MCUs Combine Hardware Cryptography with Advanced Energy Management

Silicon Labs recently introduced two new EFM32 Gecko microcontroller (MCU) families that feature advanced security and energy-management technologies. The Jade Gecko and Pearl Gecko MCUs combine a hardware cryptography engine, flexible low-energy modes, an on-chip DC-DC converter, and scalable memory options backed by Silicon Labs’s Simplicity Studio tools. The MCUs target an array of energy-sensitive and battery-powered devices, such as wearables and IoT node applications.Silicon Labs jade pearl

Jade and Pearl Gecko MCUs are meant to equip IoT-connected devices with the latest security technologies to thwart hackers. They feature a hardware cryptography engine providing fast, energy-efficient, autonomous encryption and decryption for Internet security protocols (e.g., TLS/SSL) with minimal CPU intervention. The on-chip crypto-accelerator supports advanced algorithms such as AES with 128- or 256-bit keys, elliptical curve cryptography (ECC), SHA-1, and SHA-224/256. Hardware cryptography enables developers to meet evolving IoT security requirements more efficiently than with conventional software-only techniques often required by competing MCUs.

Based respectively on ARM Cortex-M3 and M4 cores, Jade and Pearl Gecko MCUs provide ample performance for connected devices while enabling developers to optimize battery life or use smaller batteries for space-constrained designs. The new MCUs feature an enhanced peripheral reflex system (PRS) that lets low-power peripherals operate autonomously while the MCU core sleeps, allowing connected devices to sleep longer, thus extending battery life. Energy-saving low active-mode current (63 µA/MHz) enables computationally intensive tasks to execute faster. Low sleep-mode current (1.4 µA down to 30 nA) and ultra-fast wake-up/sleep transitions further minimize energy consumption.

Jade and Pearl Gecko MCUs also integrate a high-efficiency DC-DC buck converter. Offering a total current capacity of 200 mA, the on-chip converter can provide a power rail for other system components in addition to powering the MCU. This power management innovation reduces BOM cost and board area by eliminating the need for an external DC-DC converter.

Engineering samples of EFM32JG Jade Gecko and EFM32PG Pearl Gecko MCUs are available now in 5 mm × 5 mm QFN32 and 7 mm × 7 mm QFN48 packages. Production quantities are planned for Q2 2016. Jade Gecko pricing begins at $1.24 in 10,000-unit quantities. The Pearl Gecko pricing begins at $1.65 in 10,000-unit quantities. The SLSTK3401A EFM32PG Pearl Gecko Starter Kit costs $29.99.

Source: Silicon Labs

All-in-One Comprehensive Power Delivery Compliance Tester

Saelig Company recently announced the MQP Packet-Master USB-PDT all-in-one comprehensive Power Delivery Compliance Tester. Intended for testing protocol, measuring transmitter signal quality, receiver quality and interference rejection, and power load testing, the USB-PDT s a complete compliance tester and development tool for USB power delivery, incorporating analyzer, exerciser, compliance tester, PD VBUS generator, PD VBUS load, VBUS voltage, and current monitor functions. The unit performs comprehensive PHY, protocol and power compliance tests on PD devices, and PHY and protocol tests on PD cable marker chips.Saelig usb pdt

The base unit, which incorporates a plug-in module design, comes with GraphicUSB, an easy-use graphical Windows application for driving and reporting on the compliance tests and capturing and displaying every detail of power delivery interactions. “Power Delivery” is a specification allowing USB ports to provide power in a more flexible and adaptable way. The industry standard BMC version uses two-way signaling on the CC wire of a USB C-cable. The Packet-Master USB-PDT behaves as one end of a power delivery link. It can emulate the behavior of an initial Downstream Facing Port (DFP) or Upstream Facing Port (UFP) in controlled ways, and can confirm the responses of the connected Unit Under Test (UUT). It is also designed to perform all the required protocol and PHY Compliance Tests on Electronic Cable Markers.

The Packet-Master USB-PDT’s plug-in module design concept has the following advantages for connecting test devices:

  • USB-PD connectors can be damaged by handling. If a connector becomes damaged, you can simply replace the plug-in module.
  • The Type-C receptacle on the plug-in is itself a user-replaceable item.
  • Different connector styles are available for USB-PD use. Swapping plug-in modules provides the flexibility required.

Designed USB experts MQP Electronics, the USB-PDT will be available from Saelig in Q1 2016.

Source: Saelig Company

µHVIC Family with New Single-Channel Low-Side Drivers

Infineon Technologies expanded its µHVIC family of integrated circuits for high and low voltage. The new IR44252L, IR44272L, and IR44273L single channel low-side drivers enable highly effective design solutions. Using Infineon’s high-voltage junction isolation (HVJI) technology, the small driver ICs are complementary with other µHVIC parts and serve as a viable solution for flexible PCB layouts across a variety platforms.Infineon - IOR_SOT23-5L

In addition to the tiny SOT23 packages, the drivers feature a wide VCC range of 5  to 20 V, an enable input (IR44272L), and dual output pins (IR44252L and IR44273L). The typical source current and sink current of the IR44252L is specified with 300 and 550 mA, 1.7 A/1.5 A for the IR44272L and IR44273L,respectively. The new low-side drivers offer VCC Under Voltage Lock Out (UVLO) protection and fast switching. Typical turn-on and turn-off propagation delay is 50 ns and typical turn-on rise time and turn-off fall time down to 10 ns (IR44273L and IR44272L). In addition, the new devices are 3.3-V logic compatible and provide CMOS Schmitt-triggered inputs.

The seven-device driver IC family offers easy-to-implement building blocks for frequently used circuit elements. Apart from the new low-side drivers, the family includes the IRS25752L, IRS20752L, and IRS10752L (600 V, 200 V and 100 V) single channel high-side drivers and the IRS25751L high-voltage start-up IC (480 V). µHVIC family production samples are now available.

Source: Infineon Technologies

The Internet of Things: Cell Modem Certification

In the multipart article series, “The Internet of Things,” Bob Japenga details how to connect simple devices wirelessly to the Internet.  This month, he covers at the requirements for, the cost of, and some of the problems with cell modem certification for embedded systems.

Japenga writes:

Almost every month, I get a call from some budding new entrepreneur with a great idea for an Internet of Things (IoT) product. Before we get too far along in the conversation, I ask the question: “What is your budget for cell modem certification?” More often than not, the answer is: “What is that and how much does it cost?” This month I would like to address these two questions as well as address the major issues we have had in cell certification. As always, this is a big topic that we cover in thin slices.

What are the requirements?

All cell modems are required to be certified by cell carriers prior to sale to customers like you and me. However, just because the cell modem is certified for a particular carrier, you are still required to certify the device that incorporates this modem. This makes sense for a lot of the certification requirements. For example, just because the cell modem has an acceptable receiver sensitivity and good robust transmit power, it doesn’t mean that your design has met these requirements. This necessitates that you separately test your device to the carrier’s requirements. The only exception to this is when the cell modem is self-contained and not an integral part of your design. For purposes of brevity, I will only cover the requirements for North America. Nor will I go over definitions defined in previous articles in this series.

AT&T

If your IoT device is going to use AT&T (3G or 4G), you will be required to pass PTCRB and AT&T certification testing. PTCRB (an obsolete acronym that used to stand for PCS Type Certification Review Board) is an independent certification agency used by some North American cell carriers, including AT&T. Testing to the PTCRB standard is done by a third-party independent test lab. You, the designer, are responsible to contract with one of these independent test labs. Cetecom (www.cetecom.com) and 7Layers (http://7layers.com) are two such labs that we have worked with.

After you have passed the PTCRB tests, you need to obtain AT&T approval. Once scheduled, PTCRB testing will take three to four weeks. AT&T approval takes another one to two weeks. The lab costs depend on the particular test lab, but it will cost between $20,000 to $40,000 for GSM modems and $60,000 to $70,000 for LTE modems.

Verizon

The process of certification for Verizon 3G (CDMA) and 4G (LTE) is done directly through Verizon. This testing can be done through an independent lab or through Verizon. Verizon recommends that you pre-certify your product through its Innovation Center. There you can work with Verizon test engineers and technicians to make sure your design is ready for prime time before you go to certification. Verizon provides this service to qualified companies.

Once you have pre-certified, then you can contract with an outside independent certification lab (e.g., Cetecom, 7Layers, and Intertek). The cost for a CDMA certification will be $15,000 to $20,000 while the LTE certification can cost as much as $70,000. Once scheduled, the pre-certification timeframe is about two to three weeks with another three to four weeks for certification once it is scheduled.

Aeris

If you are deploying a GSM modem on the Aeris network in North America, you will require PTCRB certification as well as Aeris certification. The cost and schedule are the same as I described earlier.  If you are deploying a CDMA solution, you only require Aeris certification (which has the least stringent requirements of all the carriers, is free and takes a week or two). Aeris also allows you to self-certify for small volumes of installations.

Technical Requirements

Let’s summarize the technical requirements for certification and our experience with these.

Total Isotropic Sensitivity (TIS): All carriers for all radio access technologies require a minimum receiver sensitivity. Basically, this test determines how weak a signal from the cell tower your device can respond to. This is one of the situations where certification is your friend—not your enemy. You don’t want to deploy your great new idea and have a lot of “Can you hear me now?” problems.

There are three primary ways that we have improved our TIS. First you must make your device whisper quiet in terms of radiated emissions in and around the receiver frequencies. If you thought meeting FCC Class B EMC requirements were tough, your requirements for making your device whisper quiet to meet the TIS requirements are much more stringent. I’ll talk more about this when I discuss EMC requirements.

Next is your choice of antenna. We have been unsuccessful meeting TIS requirements without using antennas significantly larger than used in our cell phones. We have often wondered how all of our cell phones met the TIS requirements with their very small antennas. I will leave it to your research and your imagination as to how cell phones are passing the cell carriers TIS requirements with such small antennas. In the words of Deep Throat, “Follow the money!”

Finally, your antenna should be placed as far away from any metal as possible and should have a nonmetallic path to the outside world. One product we had was mounted in a large metal base mounted to an outside wall that shadowed the entire hemisphere behind the product. PTCRB testing of this product required it to meet the TIS requirements completely and evenly around the sphere. We could not get the test lab to relax this 360° requirement. Instead we removed the product from its real world enclosure and performed the testing in a nonrealistic environment. This seemed ludicrous to us since we wanted to test it in the real world enclosure. This resulted in uncertainty on our part once the product passed certification. We were not certain how it would work in the real world when it had this metal box shadowing the back hemisphere. Thankfully, we have deployed more than 50,000 of these with no TIS problems.

Total Radiated Power (TRP): As with TIS, certification testing is your friend concerning TRP. The carriers have similar stringent requirements for TRP. Here your design must carefully place and tune your antenna to obtain the maximum TRP. A little bit of movement of the antenna can make a significant improvement or degradation of your radiated performance.

Another critical requirement for your design is that your power supplies must be capable of instantaneously delivering 1 to 2 A of power when a transmission takes place. Cell modems have one of the more demanding power supply requirements that we have worked with.

One design flaw we saw in one design was having the ground plane under the u.fl connector going to the external antenna. This ground plane was absorbing a significant amount of both outgoing (TRP) and incoming radiation (TIS).  Your antenna connector must not be near either the ground or power plane.

Electromagnetic Compatibility/Electromagnetic Interference (EMC/EMI): We did a preliminary EMC scan on our first IoT cell modem design and were very happy that we met FCC Class B requirements for radiated spurious emissions (EMI) with flying colors. What we didn’t know was that PTCRB had its own idle mode radiated spurious emissions requirements which were far more stringent than FCC Class B. Initially, we were not even close to meeting these PTCRB requirements. We hired an RF expert to help us. His first suggestion was for us to rip apart an old cell phone and tell him what we saw. When we did this, we saw that the entire circuit board was covered with EMI shield cans (see Photo 1). “That’s what you need to do with your design.” So, after designing the circuit with all of the EMI suppression techniques and good layout practices that we knew, we still needed to populate the board with five shield cans.Japenga CC305

Data Retry: If you were a carrier, you would not want to have devices tie up band width with incessant retries. So each carrier has its own unique retry requirements. Some of this retry logic is handled by your cell modem (retries connecting to the cell tower). But in addition, your application software must meet the retry requirements of each carrier. Generally, we are designing systems that use less than 1 MB of data every month so we don’t want too many retries at the application level either.

Data Throughput: Remembering that carriers are trying to get as much data through as quickly as possible, each carrier has data throughput requirements for some radio access technologies. This requirement is strictly a function of your cell modem chip. Since your chip is already certified for the particular carrier, it has already passed these tests. Unfortunately, some carriers require you to retest many of these requirements that have absolutely no bearing on your design unless you have modified the cell modem chip (which you can do). It is understandable that the carriers need to protect their network from rogue devices but I feel very strongly that they need to simplify this area of certification. So chip makers, carriers, and PTCRB board, if you are listening, isn’t there a better way to detect if we have modified the chip’s operation? For example, if there was a flag in the chip that indicated that the radio parameters have been altered in such a way that the carrier/PTCRB certification has been compromised, certification could be made much simpler.

A lot of these tests are very complicated and are being performed to moving standards. We were certifying one product that was failing tests that had nothing to do with our design—only with the cell modem chip. What it boiled down to was this: The chip was tested and passed Version A certification requirements. More stringent requirements were created later (Version B) which our modem failed. Since we were only required to pass Version A requirements, we should have been able to re-run the tests to Version A. The problem was that the certification lab did not have test equipment that ran Version A tests! Hopefully you see the problem. I strongly think this must change as it wastes a lot of time and money in the certification process. We have wasted several months trying to get this device ready for sale.

Harmonics

In 2010, I was at a football game with my grandsons and 103,000 other people. One of my grandsons was not able to make the game, so I wanted to send him a text at kickoff. Even though I had maximum signal strength, I could not make the call. When I looked around the stadium, it was clear that many wanted to text or call at the same time. Cell phones must work in close proximity to other cell phones. Most M2M devices do not have that requirement. PTCRB certification requires that your device not be transmitting on any frequencies other than the frequency you are licensed to transmit on so as to avoid interfering with nearby cell phones. The first device we took through PTCRB testing failed these tests at a couple of points. What we discovered was that every diode in your design acts as a re-radiator of the radio signal you are transmitting. And it radiates at one of the harmonics of the transmit frequency. This must be squelched or you will fail your Harmonic Radiated Spurious Emissions (RSE) tests.

Waivers

Even after doing another spin of the board with small capacitors around every diode, we were still failing Harmonic RSE at a couple of frequencies by a few decibels. The product was already several months late. Should we do another spin of the board after we find the diode we missed? At this point, I pushed through a waiver. This was a formal request to the PTCRB board for an exception to the requirements. Our unit was stationary. Our unit did not operate in the presence of other cell phones. Come on, we are talking about only 2 db! Thankfully and quickly, the waiver got approved. We had our first cell modem-based IoT device ready to ship. So the moral of the story is: Work with the certifying agency. Some requirements that apply to cell phones do not apply to M2M products. Sometimes the certification process is our friend but a lot of time it is just a pain in the neck.

Certify first

You have a good IoT idea that will make this world a better place. But before you bring it to fruition, you will need to pass the necessary certification tests imposed on you by the cell network carriers. This article gives you a thin slice as to what’s involved and what it will cost.

This article appears in Circuit Cellar 305, 2015.

New Industrial-Grade Ethernet Physical-Layer transceiver

Microchip Technology recently announced the KSZ8061 single-chip 10BASE-T/100BASE-TX automotive- and industrial-grade Ethernet physical-layer transciever. Intended for data communication over low-cost Unshielded Twisted Pair (UTP) cables,  it is the first of a new family based on the programmable Quiet-WIRE enhanced EMC technology, providing reduced line emissions and superior receiver immunity performance. LinkMD+ advanced cable diagnostics improves system reliability. Microchip KSZ8061

For energy-efficient applications, Microchip’s integrated EtherGREEN technology includes a unique Ultra Deep Sleep mode with signal-detect wakeup, which lowers standby power consumption to the sub-microampere range. With fast boot and linkup in less than 20 ms, the KSZ8061 is well suited for applications where startup time is critical. The KSZ8061 family is available with an extended temperature range of °40 to 105°Celsius for harsh-environment applications (e.g.,  industrial sensor networks and robotics). This Ethernet PHY transceiver family provides support for both the MII and RMII processor interfaces, for easy integration with numerous processors, MCUs and SoCs.

Microchip also has a new evaluation board, to enable functional and performance testing of the KSZ8061.  The $115 KSZ8061MNX evaluation board is now available for pre-ordering.

The KSZ8061 costs $1.16 each in 10,000-unit quantities for industrial grade. Volume-production availability is expected in early 2016.

Source: Microchip Technology

Bluetooth Smart SoCs Links Wearables to Apps for WeChat

Dialog Semiconductor recently announced its support for WeChat’s communications protocol with the launch of its WeChat SDK. With the kit, you can quickly add Bluetooth connectivity between WeChat apps and wearables and other IoT devices. Dialog DA14580 Dialog’s development kit is available now and includes a protocol stack for the WeChat communication layer. The SDK—which is based on the DA1458x family of SmartBond SoCs—enables you to reduce the overall development time for connecting their products wirelessly to WeChat apps. Your users can control wearable devices via the app and share information via the platform.

DA1458x SoCs combine a Bluetooth low-energy radio with an ARM Cortex-M0 application processor. With intelligent power management circuitry and accessible processor resources via 32 GPIOs,you can build fully hosted applications.

The SmartBond WeChat SDK enables efficient coding and comes with SmartSnippets software development environment, which is based on Keil µVision tools.

Source: Dialog Semiconductor

Infineon Expands Its 200-V Driver IC Portfolio

Infineon Technologies AG has expanded its 200-V driver IC portfolio with the IRS2005(S, M) for high-voltage, high-speed IGBTs and power MOSFETs. The IC features comprehensive protection for motor drive space-constrained applications (e.g., golf carts and power tools).Infineon IOR_PDIO-8

The IRS200x family comprises high-side and low-side and H-bridge drivers utilizing Infineon’s high-voltage junction isolation (HVJI) technology to realize small packages while remaining tolerant to negative transient voltages. Built for  low-voltage (24 V, 36 V, and 48 V) and mid-voltage (60 V, 80 V, and 100 V) applications, the 200-V devices enable high system level efficiency and power density while providing the necessary robustness.

The IRS200x family consists of six devices with a typical sink current of 600 mA and source current of 290 mA. The 200-V devices are compatible with 3.3-, 5-, and 15-V logic components. Across the family, the driver ICs feature V CC Under Voltage Lock Out (UVLO) while the IRS2005 also includes V BS UVLO, further improving system reliability. The 200V driver ICs are intended for use with bootstrap power supplies, which eliminates the need for large auxiliary power supplies. In addition, the devices include integrated deadtime and shoot-through protection. They feature low quiescent currents. The IRS2004 also features a shutdown input pin.

The 200-V IRS200x driver ICs are offered in eight-pin SOIC, eight-pin DIP or 14-pin 4 × 4 mm MLPQ packages with various logic input options and standard pinout configurations. Production samples of the IRS200x devices are now available.

Source: Infineon Technologies

Portable Electronics Lab Mini

Featuring they powerful and portable core of the Portable Electronics Lab, the 1-MHz PEEL Mini is a great addition to (or replacement for) the lab or the hand-held field equipment you already have.PEEL Mini

The $499 PEEL Mini includes:

  • Power Supplies
    • +20 V @ 4 A
    • 1x +15 V @ 2 A
    • 1x +5 V @ 2 A
    • 1x 0 V to +15 V (variable) @ 2 A
    • –15 V @ 100 mA
  • Function Generator
    • 1x 1 Hz to 1 MHz sine, +/– square
    • Speaker with built-in driver
  • 25-key programmable keypad, 4 × 20 character programmable display, and Connection Port.
  • PaperChip electronics worksheets for two sample projects.
  • One standard solder-less breadboard, and a starter component and wire assortment.
  • Durable carrying case with a smart, world-class custom design, that fits into your backpack.

Pre-orders will begin shipping in 2016. Order now

Gift Idea for Engineers & Students

Want the perfect gift for a fellow electrical engineer, techie, EE/ECE student, or young innovator? Give the gift of Circuit Cellar magazine. (Check out these free sample issues.)

CC-2015-06-Issue-299It’s fast and simple. Easily gift a 1-year print subscription (12 issues + CC Newsletter) to the world’s best electrical engineering magazine!

gift-sub-btn

Whether it’s embedded systems design advice or programming tips, engineers rely on Circuit Cellar for solutions to all their electrical engineering challenges. Circuit Cellar features the latest embedded systems technologies and more. We cover:

  • MCU-Based design projects
  • Embedded development
  • Embedded programming
  • Programmable logic
  • Wireless communications
  • Test & measurement
  • Internet connectivity
  • Robotics
  • Machine vision, Artificial Intelligence, Virtual Reality
  • Internet of Things
  • Rapid Prototyping (e.g., Ardunio, Raspberry Pi)
  • Analog design

Give the gift today.

Innovative Product Design: An Interview with Rich Legrand

Rich Legrand founded Charmed Labs in 2002 to develop and sell innovative robotics-related designs, including the Xport Robot Kit, the Qwerk robot controller, the GigaPan robotic camera mount, and the Pixy vision sensor. He recently told us about his background, passion for robotics, and interest in open-source hardware.

Legrand-IMG_5660CIRCUIT CELLAR: Tell us a bit about your background. When did you first get started with electronics and engineering?

RICH: Back in 1982 when I was 12, one of my older brother’s friends was what they called a “whiz kid.” I would show up uninvited at his place because he was always creating something new, and he didn’t treat me like a snotty-nosed kid (which I was). On one particular afternoon he had disassembled a Big Trak toy (remember those?) and connected it to his Atari 800, so the Atari could control its movements. He wrote a simple BASIC program to read the joystick movements and translate them to Big Trak movements. You could then hit the return key and the Atari would play back the motions you just made. There were relays clicking and LEDs flashing, and the Big Trak did exactly what you told it to do. I had never seen a computer do this before, and I was absolutely amazed. I wanted to learn as much as I could about electronics after that. And I’m still learning, of course.

CIRCUIT CELLAR: You studied electrical engineering at both Rice University and North Carolina State University. Why electrical engineering?

RICH: I think it goes back to when I was 12 and trying to learn more about robotics. With a limited budget, it was largely a question of what I get my hands on. Back then you could go into Radio Shack and buy a handful of 7400 series parts and create something simple, but pretty amazing. Forrest Mims’s books (also available at Radio Shack) were full of inspiring circuit designs. And Steve Ciarcia’s “Circuit Cellar” column in Byte magazine focused on seat-of-the-pants electronics projects you could build yourself. The only tools you needed were a soldering iron, a voltmeter, and a logic probe. I think young people today see a similar landscape where it’s easier to get involved in electrical engineering than say mechanical engineering (although 3-D printing might change this). The Internet is full of source material and the hardware (computers, microcontrollers, power supplies, etc.) is lower-cost and easier to find. The Arduino is a good example of this. It has its own ecosystem from which you can launch practically any project or idea.

CIRCUIT CELLAR: Photography factors in a lot of your work and work history. Is photography a passion of yours?

RICH: I don’t think so, but I enjoy photography. Image processing, image understanding, machine vision—the idea that you can extract useful information from a digital image with a piece of software, an algorithm. It’s a cool idea to me because you can have multiple vision algorithms and effectively have several sensors in one package. Or in the case of Gigapan, being able to create a gigapixel imager from a fairly low-cost point-and-shoot camera, some motors, and customized photo stitching software. I’m a hardware guy at heart, but hardware tends to be expensive. Combining inexpensive hardware with software to create something that’s lower-cost—it sounds like a pretty niche idea, but these are the projects that I seem to fall for over and over again. Working on these projects is what I really enjoy.

CIRCUIT CELLAR: Prior to your current gig at Charmed Labs, you were with Gigapan Systems, which you co-founded. Tell us about how you came to launch Gigapan.

RICH: Gigapan is robotic camera mount that allows practically anyone with a digital camera to make high-resolution panoramas. The basic idea is that you take a camera with high resolution but narrow field-of-view (high-zoom) to capture a mosaic of pictures that can be later stitched together with software to form a much larger, highly-detailed panorama of the subject, whether it’s the Grand Canyon or the cockpit of the Space Shuttle. This technique is used by the Mars rovers, so it’s not surprising that a NASA engineer (Randy Sargent) first conceived Gigapan. Charmed Labs got a chance to bid on the hardware, and we designed and manufactured the first Gigapan units as part of a public beta program. (The beta was funded by Carnegie Mellon University through donations from NASA and Google.) The beta garnered enough attention to get investors and start a company to focus on Gigapan, which we did. We were on CNN, we were mentioned on Jay Leno. It was a fun and exciting time!

he first Xport was a simple circuit board with flash for program storage and an FPGA for programmable I/O.

The first Xport was a simple circuit board with flash for program storage and an FPGA for programmable I/O.

CIRCUIT CELLAR: In a 2004 article, “Closed-Loop Motion Control for Mobile Robotics“ (Circuit Cellar 169), you introduced us to your first product, the Xport. How did you come to design the Xport?

RICH: When the Gameboy Advance was announced back in 1999, I thought it was a perfect robot platform. It had a color LCD and a powerful 32-bit processor, it was optimized for battery power, and it was low-cost. The pitch went something like: “For $40 you can buy a cartridge for your Gameboy that allows you to play a game. For $99 you can buy a cartridge with motors and sensors that turns your Gameboy into a robot.” So the Gameboy becomes the “brains” of the robot if you will. I didn’t know what the robot would do exactly, other than be cool and robot-like, and I didn’t know how to land a consumer electronics product on the shelves of Toys “R” Us, so I tackled some of the bigger technical problems instead, like how to turn the Gameboy into an embedded system with the required I/O for robotics. I ordered a Gameboy from Japan through eBay prior to the US release and reverse-engineered the cartridge port. The first “Xport” prototype was working not long after the first Gameboys showed up in US stores, so that was pretty cool. It was a simple circuit board that plugged into the Gamboy’s cartridge port. It had flash for program storage and an FPGA for programmable I/O. The Xport seemed like an interesting product by itself, so I decided to sell it. I quit my job as a software engineer and started Charmed Labs.

CIRCUIT CELLAR: Tell us about the Xport Botball Controller (XBC).

RICH: The Xport turned the Gameboy into an embedded system with lots of I/O, but my real goal was to make a robot. So I added more electronics around the Xport for motor control, sensor inputs, a simple vision system, even Bluetooth. I sold it online for a while before the folks at Botball expressed interest in using it for their robot competition, which is geared for middle school and high school students. Building a robot out of a Gameboy was a compelling idea, especially for kids, and tens of thousands of students used the XBC to learn about engineering—that was really great. I never got the Gameboy robot on the shelves of Toys “R” Us, but it was a really happy ending to the project.

CIRCUIT CELLAR: Charmed Labs collaborated with the Carnegie Mellon CREATE Lab on the Qwerk robot controller. How did you end up collaborating with CMU?

RICH: I met Illah Nourbakhsh who runs the CREATE lab at a robot competition back when he was a grad student. His lab’s Telepresence Robotics Kit (TeRK) was created in part to address the falling rate of computer science graduates in the US. The idea was to create a curriculum that featured robotics to help attract more students to the field. Qwerk was an embedded Linux system that allowed you make a telepresence robot easily. You could literally plug in some motors, a webcam, and a battery, and fire up a web browser and become “telepresent” through the robot. We designed and manufactured Qwerk for a couple years before we licensed it.

The Qwerk

The Qwerk

CIRCUIT CELLAR: Pixy is a cool vision sensor for robotics that you can teach to track objects. What was the impetus for that design?

RICH: Pixy is actually the fifth version of the CMUcam. The first CMUcam was invented at  Carnegie Mellon by Anthony Rowe back in 2000 when he was a graduate student. I got involved on a bit of a lark. NXP Semiconductors had just announced a processor that looked like an good fit for a low-cost vision sensor, so I sent Anthony a heads-up, that’s all. He was looking for someone to help with the next version of CMUcam, so it was a happy coincidence.

The Pixy vision sensor

The Pixy vision sensor

CIRCUIT CELLAR: You launched Pixy in 2013 on Kickstarter. Would you recommend Kickstarter to Circuit Cellar readers who are thinking of launching a hardware product?

RICH: Before crowdfunding was a thing, you either had to self-fund or convince a few investors to contribute a decent amount of cash based on the premise that you had a good idea. And the investors typically didn’t have your background or perspective, so it was usually a difficult sell. With crowdfunding, a couple hundred people with similar backgrounds and perspectives contribute $50 (or so) in exchange for becoming the very first customers. It’s an easier path I think, and it’s a great fit for products like Pixy that have a limited but enthusiastic audience. I think of crowdfunding as a cost-effective marketing strategy. Sites like Kickstarter get huge amounts of traffic, and getting your idea in front of such a large audience is usually expensive—cost-prohibitive in my case. It also answers two important questions for hardware makers: Are enough people interested in this thing to make it worthwhile? And if it is worthwhile, how many should I make?

But I really didn’t think many people would be interested in a vision sensor for hobbyist robotics, so when faced with the task of creating a Kickstarter for Pixy, I thought of lots of excuses not to move forward with it. Case in point—if your Kickstarter campaign fails, it’s public Internet knowledge. (Yikes!) But I’m always telling my boys that you learn more from your mistakes than from your successes, so it seemed pretty lame that I was dragging my heals on the Kickstarter thing because I wanted to avoid potential embarrassment. I eventually got the campaign launched, and it was a success, and Pixy got a chance to see the light of day, so that was good. It was a lot of work, and it was psychologically exhausting, but it was really fun to see folks excited about your idea. I’d totally do it again though, and I’d like to crowdfund my next project.

CIRCUIT CELLAR: Can you tell us about one or two of the more interesting projects you’ve seen featuring Pixy?

RICH: Ben Heck used Pixy in a couple of his episodes of the Ben Heck Show (www.element14.com/community/community/experts/benheck). He used Pixy to create a camera that can automatically track what he’s filming. And Microsoft used Pixy for an Windows 10 demo that played air hockey IR-Lock (www.irlock.com) is a small company that launched a successful Kickstarter campaign that featured Pixy as a beacon detector for use in autonomous drones. All of these projects have a high fun-factor, which I really enjoy seeing.

CIRCUIT CELLAR: What’s next for Charmed Labs?

RICH: I’ll tell you about one of my crazier ideas. My wife gets on my case every holiday season to hang lights on the house. It wouldn’t be that bad, except our next-door neighbors go all-out. They hang lights on every available surface of their house—think Griswolds from the Christmas Vacation movie. So anything I do to our house looks pretty sad by comparison. I’m competitive. But I had the idea that if I created a computer-controlled light show that’s synchronized to music, it might be a good face-saving technology, a way to possibly one-up the neighbors, because that’s what it’s all about, right? (Ha!) So I’ve been working on an easy-to-set-up and low-cost way to make your own holiday light show. It’s way outside of my robotics wheelhouse. I’m learning about high-voltage electronics and UL requirements, and there’s a decent chance it won’t be cost-competitive, or even work, but my hope is to launch a crowdfunding campaign in the next year or so.

CIRCUIT CELLAR: What are your thoughts on the future of open-source hardware?

RICH: We can probably thank the Arduino folks because before they came along, very few were talking about open hardware. They showed that you can fully open-source a design (including the hardware) and still be successful. Pixy was my first open hardware project and I must admit that I was a little nervous moving forward with it, but open hardware principles have definitely helped us. More people are using Pixy because it’s fully open. If you’re interested in licensing your software or firmware, open hardware is an effective marketing strategy, so I don’t think it’s about “giving it all away” as some might assume. That is, you can still offer closed-source licenses to customers that want to use your software, but not open-source their customizations. I’ve always liked the idea of open vs. proprietary, and I’ve learned plenty from fellow engineers who choose to share instead of lock things down. It’s great for innovation.

On a different robot, a flapping winged ornithopter, we had this PC104 computer running matlab as the controller. It probably weighed about 2 pounds, which forced us to build a huge wingspan – almost 6 feet. We dreamed about adding some machine vision to the platform as well. Having just built a vision-based robot for MIT’s MASLAB competition using an FPGA paired with an Arduino – the PC104 solution started to look pretty stupid to me. That was what really got me interested embedded work. FPGAs and Microcontrollers gave you an insane amount of computing power at comparatively minuscule power and weight footprints. And so died the PC104 standard.

 

This interview appears in Circuit Cellar 305 (December 2015).

Low Power PIC MCUs Extend Battery Life, Eliminate External Memory via Flash

Microchip Technology recently expanded its Low Power PIC microcontroller portfolio. The new PIC24F GB6 family includes up to 1 MB of Flash memory with Error Correction Code (ECC) and 32 KB of RAM. The new 16-bit MCU in Microchip’s first to offer such a large memory size. Featuring dual-partition flash with Live Update capability, the devices can hold two independent software applications, permitting the simultaneous programming of one partition while executing application code from the other. This useful combination of features makes the PIC24F GB6 family ideal for a wide variety of applications (e.g., industrial, computer, medical/fitness, and portable applications).Microchip plugin mod

Microcontrollers in the PIC24F GB6 family have active current consumption as low as 190 µA/MHz and 3.2 µA in Sleep mode. With the ability to perform over-the-air firmware updates, designers can provide a cost-effective, reliable and secure method for updating their applications. The robust peripheral set for these devices includes a 200 ksps, 24 channel, 12-bit analog-to-digital converter (ADC).

The PIC24F GB6 family is supported by Microchip’s standard suite of development tools. The new PIC24FJ1024GB610 Plug-In Module (part # MA240023, $25) is available today for the Explorer 16 Development Board (part # DM240001, $129).

All eight members of the PIC24F GB6 microcontroller family are released for volume production, and are available within normal lead times. Pricing starts at $1.74 each, in high volumes. Product variants are available in 64-, 100-, and 121-pin packages, with flash memory ranging from 128 KB to 1 MB.

Source: Microchip Technology

Low-Power RS-485 Transceiver with Low-Voltage Interface

Exar Corp. recently announced the XR33202, which is a half-duplex, 20-Mbps RS-485 (TIA/EIA-485) transceiver optimized to operate over a wide 3-to-5.5-V supply voltage range. The transceiver includes an adjustable low voltage logic interface and features the industry’s lowest standby current of 3 µA (maximum), 0.05 µA (typical). The device’s wide operating voltage range, flexible logic interface, and low standby current make it ideal for battery-powered and multi-voltage systems.EX052_XR33202_Exar

The XR33202 exceeds the highest ESD rating of IEC 61000-4-2 Level 4. It also includes protection features such as hot swap glitch, overload and enhanced receiver fail-safe for open, shorted or terminated idle data lines.

Specified over an extended temperature range of –40°C to 125°C, the XR33202 is offered in RoHS compliant, green/halogen free, space-saving 3 mm × 3 mm DFN package. One thousand-piece pricing starts at $1.60 each.

Summary of features:

  • Wide 3-to-5.5-V supply operation
  • 1.65 to 5.5 V I/O logic interface VL pin
  • Less than 3 µA (max) standby current
  • 20 Mbps maximum data rate
  • Robust ESD protection for RS-485 bus pins
  • –40°C to 125°C ambient operating temperature range

Source: Exar Corp.

Bare Metal Security Extends On-Chip Analytics for SoCs

UltraSoC recently announced Bare Metal Security capabilities to extend its on-chip monitoring and analytics to deliver security functionality required in a broad range of embedded products (e.g., IoT appliances and enterprise systems). Bare Metal Security features are implemented as hardware running below the operating system, so they’re nonintrusive even if the system’s conventional security measures are compromised. This adds an entirely new level of protection for the system-on-chip (SoC).

Bare Metal Security functionality uses the UltraSoC monitors to watch for unexpected behaviors such as suspicious memory accesses or processor activity, at hardware speed and nonintrusively, with minimal silicon overhead. Because it is an orthogonal on-chip hardware infrastructure independent of the main system functionality and software, there is no negative impact on system performance and it is very difficult for an attacker to subvert or tamper with. Although it functions below and outside of the operating system, the technology also provides a means of communicating with software on the device as part of a holistic security system, if this is necessary. Bare-Metal Security features also provide visibility of the whole system, making it extremely difficult to camouflage or hide an attack.

By offering resource-efficient and highly effective protection against malicious attack and malfunction, the UltraSoC on-chip analytics and monitoring system provides both development support and functionality enhancement from the same on-chip blocks. Teams already using UltraSoC to accelerate the debug, silicon validation, and bring-up process can use the same infrastructure for security processing. Designers who need Bare Metal Security features get the development benefits of a vendor-independent on-chip debug infrastructure at zero additional cost.

Although originally developed for debug and silicon validation, UltraSoC’s IP also enables a broad range of value-added functionality in-service, of which security is just one example. Other applications include in-field monitoring, performance optimization, reducing power utilization and SLA enforcement.

Source: UltraSoC Technologies

Expanded Auto Test Capabilities for Scopes with Support for HDMI v2.0 and Embedded DisplayPort

Teledyne LeCroy recently announced the availability of the QPHY-HDMI2 and QPHY-eDP, which expanded its automated transmitter test solutions for display standards to include HDMI Version 2.0 and Embedded DisplayPort. The QPHY-HDMI2 software option for the WaveMaster/SDA/DDA 8 Zi series of oscilloscopes provides validation/verification and debug tools in accordance with version 2.0 of the HDMI electrical test specification. Teledyne QPHY-HDMI2

The QPHY-eDP software option for the WaveMaster/SDA/DDA 8 Zi series of oscilloscopes provides an automated test environment for running all of the real-time oscilloscope tests for sources in accordance with Version 1.4a of the Video Electronics Standards Association (VESA) Embedded DisplayPort PHY Compliance Test Guideline. QPHY-eDP supports testing at up to 5.4 Gbps for full coverage of all bit rates included in the eDP 1.4 compliance test guideline. As with QPHY-HDMI2, optional RF switching and de-embedding is also supported by QPHY-eDP.

The QPHY-HDMI2 and QPHY-eDP each cost $7,000. Both are available on WaveMaster 8Zi, LabMaster 9Zi, and LabMaster 10Zi oscilloscopes with bandwidths of 13 GHz or higher and running firmware version 7.9.x or later.

Source: Teledyne LeCroy

December Electrical Engineering Challenge Update (Sponsor: NetBurner)

Spot the schematic error? Take the December Electrical Engineering Challenge (sponsored by NetBurner) now!

This month, find the error in the schematic posted below (and on the Challenge webpage) for a chance to win a NetBurner MOD54415 LC Development Kit ($129 value) or a Circuit Cellar Digital Subscription (1 year).

TAKE THE CHALLENGE NOW

Find the error in this schematic and submit your answer by October 20, 2015. Submit via the Challenge webpage. Click image to access submission form.

Find the error in this schematic and submit your answer by December 20, 2015. Submit via the Challenge webpage. Click image to access submission form.

PRIZES

Out of each month’s group of entrants who correctly find the error in the code or schematic, one person will be randomly selected to win a NetBurner IoT Cloud Kit and another person will receive a free 1-year digital subscription to Circuit Cellar.

  • NetBurner MOD54415 LC Development Kit: You can add Ethernet connectivity to an existing product or use it as your product’s core processor! The NetBurner Ethernet Core Module is a device containing everything needed for design engineers to add network control and to monitor a company’s communications assets. The module solves the problem of network-enabling devices with 10/100 Ethernet, including those requiring digital, analog, and serial control.NetburnerMod54415module
  • Circuit Cellar Digital Subscription (1 year): Each month, Circuit Cellar magazine reaches a diverse international readership of professional electrical engineers, EE/ECE academics, students, and electronics enthusiasts who work with embedded technologies on a regular basis.Circuit Cellar magazine covers a variety of essential topics, including embedded development, wireless communications, robotics, embedded programming, sensors & measurement, analog tech, and programmable logic.

RULES

Read the Rules, Terms & Conditions

SPONSOR

NetBurner solves the problem of network enabling devices, including those requiring digital, analog and serial control. NetBurner provides complete hardware and software solutions that help you network enable your devices.

NetBurner, Inc.
5405 Morehouse Dr.
San Diego, CA 92121 USA