About Circuit Cellar Staff

Circuit Cellar's editorial team comprises professional engineers, technical editors, and digital media specialists. You can reach the Editorial Department at editorial@circuitcellar.com, @circuitcellar, and facebook.com/circuitcellar

A Tribute to Technology Pioneer Bob Lally

Bob Lally, founder of PCB Piezotronics, and a co-founder of the original Kistler Instrument Company, passed away recently at the age of 93. In addition to Bob’s legendary technical contributions, he will be remembered for his brave military service during World War II and post-retirement work in STEM.

Throughout his career, Bob’s R&D work was awarded multiple U.S. patents, including for the modally-tuned piezoelectric impact hammer, pendulum hammer calibrator, and gravimetric calibrator. He was most renowned, however, for his successful commercialization of a two-wire accelerometer with built-in electronics, known as integrated circuit piezoelectric, or ICP, which made the sensors lower cost, easier to use and more compatible with industrial environments.

For more on Bob Lally’s story read “Celebrating the Life of a True Industry Pioneer” on Sensors Online.

April Circuit Cellar: Sneak Preview

The April issue of Circuit Cellar magazine is coming soon. And we’ve got a healthy serving of embedded electronics articles for you. Here’s a sneak peak.

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

 

Here’s a sneak preview of April 2018 Circuit Cellar:

NAVIGATING THE INTERNET-OF-THINGS

IoT: From Gateway to Cloud
In this follow on to our March “IoT: Device to Gateway” feature, this time we look at technologies and solutions for the gateway to cloud side of IoT.  Circuit Cellar Chief Editor Jeff Child examines the tools and services available to get a cloud-connected IoT implementation up and running.

Texting and IoT Embedded Devices (Part 2)
In Part 1, Jeff Bachiochi laid the groundwork for describing a project involving texting. He puts that into action this, showing how to create messages on his Espressif System’s ESP8266EX-based device to be sent to an email account and end up with those messages going as texts to a cell phone.

Internet of Things Security (Part 2)
In this next part of his article series on IoT security, Bob Japenga takes a look at side-channel attacks. What are they? How much of a threat are they? And how can we prevent them?

Product Focus: 32-Bit Microcontrollers
As the workhorse of today’s embedded systems, 32-bit microcontrollers serve a wide variety of embedded applications—including the IoT. This Product Focus section updates readers on these trends and provides a product album of representative 32-bit MCU products.

GRAPHICS, VISION AND DISPLAYS

Graphics, Video and Displays
Thanks to advances in displays and innovations in graphics ICs, embedded systems can now routinely feature sophisticated graphical user interfaces. Circuit Cellar Chief Editor Jeff Child dives into the latest technology trends and product developments in graphics, video and displays.

Color Recognition and Segmentation in Real-time
Vision systems used to require big, multi-board systems—but not anymore. Learn how two Cornell undergraduates designed a hardware/software system that accelerates vision-based object recognition and tracking using an FPGA SoC. They made a min manufacturing line to demonstrate how their system can accurately track and categorize manufactured candies carried along a conveyor belt.

SPECIFICATIONS, QUALIFICATIONS AND MORE

Component tolerance
We perhaps take for granted sometimes that the tolerances of our electronic components fit the needs of our designs. In this article, Robert Lacoste takes a deep look into the subject of tolerances, using the simple resistor as an example. He goes through the math to help you better understand accuracy and drift along with other factors.

Understanding the Temperature Coefficient of Resistance
Temperature coefficient of resistance (TCR) is the calculation of a relative change of resistance per degree of temperature change. Even though it’s an important spec, different resistor manufacturers use different methods for defining TCR. In this article, Molly Bakewell Chamberlin examines TCR and its “best practice” interpretations using Vishay Precision Group’s vast experience in high-precision resistors.

Designing of Complex Systems
While some commercial software gets away without much qualification during development, the situation is very different when safety in involved. For aircraft, vehicles or any complex system where failure unacceptable, this means adhering to established standards throughout the development life cycle. In this article, George Novacek tackles these issues and examines some of these standards namely ARP4754.

AND MORE IN-DEPTH PROJECT ARTICLES

Build a Marginal Oscillator Proximity Switch
A damped or marginal oscillator will switch off when energy is siphoned from its resonant LC tank circuit. In his article, Dev Gualtieri presents a simple marginal oscillator that detects proximity to a small steel screw or steel plate. It lights an LED, and the LED can be part of an optically-isolated solid-state relay.

Obsolescence-Proof Your UI (Part 1)
After years of frustration dealing with graphical interface technologies that go obsolete, Steve Hendrix decided there must be a better way. Knowing that web browser technology is likely to be with us for a long while, he chose to build a web server that could perform common operations that he needed on the IEEE-488 bus. He then built it as a product available for sale to others—and it is basically obsolescence-proof.

 

 

Texting and IoT Embedded Devices (Part 1)

Fun with the ESP8266 SoC

Can texting be leveraged for use in IoT Wi-Fi devices? Jeff has been using Wi-Fi widgets for a lot of IoT projects lately. This month Jeff lays the groundwork for describing a project that will involve texting. He starts off with a look at Espressif System’s ESP8266EX SoC.

By Jeff Bachiochi

Believe it or not, texting while driving as of this writing is still legal in a few states. About 10% of all motor vehicles deaths in the US can be traced back to distracted drivers. Granted that includes any distraction—however cell phone distraction has quickly become a serious issue. While hazards exist for any technology, common sense should tell you this is a dangerous act.

When the technology is used correctly, texting can deliver essential information quickly—without requiring both (or many) parties to be active at the same time. This allows you to make better use of your time. I still use email for much of my correspondence, however it’s great to be able to send your spouse a text to add milk to the grocery list—after they’ve already left for the store! And even though I chuckle when I see two people sitting next to each other texting, it is a sad commentary on emerging lifestyles.

I’ve been using Wi-Fi widgets for a lot of IoT projects lately. The cost to enter the fray is low, and with free tools it’s easy to get started. This month’s article is a about a project that will involve text, even though that may not be apparent at first. Let’s start off slowly, laying the groundwork for those who have been thinking about building this kind of project. We’ll then quickly build from this foundation into crafting a useful gadget.

A Look at the ESP8266EX

The innovative team of chip-design specialists, software/firmware developers and marketers at Espressif System developed and manufactures the ESP8266EX system-on-chip (SoC). This 32-bit processor runs at 80 MHz and embeds 2.4 GHz Wi-Fi functionality—802.11 b/g/n, supporting WPA/WPA2—as well as the normal gamut of general-purpose I/O and peripherals. It has a 64 KB boot ROM, 64 KB instruction RAM and 96 KB data RAM. Their WROOM module integrates the ESP8266 with a serial EEPROM and an RF front end with a PCB antenna for a complete IoT interface.

Anyone who has ever used a dial-up modem is most likely familiar with the term AT command set. The Hayes command set is a specific command language originally developed in 1981 by Dennis Hayes for the Hayes 300 baud Smartmodem. Each command in the set begins with the letters AT+ followed by a command word used for high-level control of internal functions. For the modem these enabled tasks like dialing the phone or sending data. As an application for the WROOM, an AT command set seemed like a perfect match. This allows an embedded designer to use the device to achieve a goal without ever having to “get their hands dirty.”

This photo shows the ESP-01 and ESP-07 modules along with the FTDI 232 USB-to-serial converter used for programming either module.

I first learned of the ESP8266 years ago and purchased the ESP-01 on eBay. It was around $5 at the time (Photo 1). I used it along with the MEGA 2560—my favorite Arduino module because of its high number of I/Os and multiple hardware UARTs. With the ESP-01 connected to a serial port on an Arduino, an application could directly talk with the ESP-01 and get the Arduino connected to your LAN. From this point, the world is under your control thanks to the AT Wi-Fi and TCP commands.

The ESP8266 literature states the Wi-Fi stack only requires about 20% of the processing power. Meanwhile, 80% is still available for user application programming and development.
So why not eliminate the Arduino’s Atmel processor altogether and put your Arduino code right in the 8266? Espressif Systems has an SDK and while it provides a development and programming environment, the Arduino IDE is comfortable for many. And it offers the installation of third-party platform packages using the Boards Manager. That means you can add support for the ESP8266EX and use much of the code you’ve already written.

Using the ESP-01

Since the ESP-01 has only 8 pins, adding the necessary hardware is pretty simple. This low power device runs on 2.5 V to 3.6 V, so you must make appropriate level corrections if you wish to use it with 5 V devices like Arduino boards. …

Read the full article in the March 332 issue of Circuit Cellar

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!
Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

DC-DC Converter Family Targets Modern Railway Systems

Vicor has released its next generation of DCMs with a family of wide input range (43 V to 154 V input) 3623 (36 mm x 23mm) ChiPs with power levels up to 240 W and 93% efficiency, targeted at new rail transportation and infrastructure applications. Modern rail infrastructure requires a wide range of DC-DC converters to power a variety of new services for both freight and commuter markets.

Commuter rail systems require mobile office communication capabilities with the infotainment capabilities of home. Freight rail systems require monitoring and control capabilities to assure the safe and timely delivery of all goods onboard. While both commuter and freight systems demand reliable and high-performance power systems for the necessary safety and security measures (onboard and at station.)
The DCM is an isolated, regulated DC-DC converter module that can operate from an unregulated, wide range input to generate an isolated DC output. These new ChiP DCMs simplify power system designs by supporting multiple input voltage ranges in a single ChiP. With efficiencies up to 93% in a ChiP package less than 1.5 in2, these DCMs offer engineers leading density and efficiency.

Vicor | www.vicorpower.com

MCUs Offer Capacitive Touch and Proximity Sensing

Bringing capacitive-sensing capabilities to cost-sensitive applications, Texas Instruments (TI) has announced an expansion of its MSP430 microcontroller (MCU) family with capacitive touch technology. Developers can use the new MSP430FR2512 and MSP430FR2522 MCUs with integrated capacitive touch to add as many as 16 buttons as well as proximity sensing capability to industrial systems, home automation systems, appliances, power tools, home entertainment, personal audio applications and more.

New MSP430 microcontrollers with capacitive touch technology provide a solution to applications exposed to electromagnetic disturbances, oil, water and grease. The MSP430FR2512 and MSP430FR2522 MCUs deliver International Electrotechnical Commission (IEC) 61000-4-6-certified capacitive sensing MCU-based solutions for applications exposed to electromagnetic disturbances, oil, water and grease. According to TI, the new MCUs offer five times lower power consumption than the competition, supporting proximity sensing and touch through glass, plastic and metal overlays.

TI’s CapTIvate technology adds the benefits of capacitive touch and proximity sensing to applications such as access control panels, cooktops, wireless speakers and power tools. Developers can quickly evaluate capacitive sensing for their applications with the new BOOSTXL-CAPKEYPAD BoosterPack plug-in module that is compatible with the CapTIvate programmer board (CAPTIVATE-PGMR) or TI LaunchPad development kits. The BoosterPack module joins a portfolio of MCUs, easy-to-use tools, software, reference designs and documentation in the CapTIvate Design Center and online CapTIvate technology guide. In addition, developers can find answers and support in the TI E2E Community to speed development with CapTIvate technology.

Production quantities of the MSP430FR2512 and MSP430FR2522 MCUs are available in a 20-pin very thin quad flat no lead (VQFN) package and a 16-pin thin shrink small outline package (TSSOP) starting at $0.69 in 1,000-unit quantities. The CapTIvate BoosterPack plug-in module (BOOSTXL-CAPKEYPAD) is available for $29.99.

Texas Instruments| www.ti.com

650 V SiC FETs Cut Power System Loses

UnitedSiC has announced the UJ3C series of 650 V SiC FETs as drop-in replacements for silicon Superjunction MOSFETs. Available in standard TO-220, TO-247 and D2PAK-3L packages, they operate with standard Si-MOSFET gate drive, eliminating the need to re-design drive circuits, while offering low RDS(ON) and low gate charge to reduce system losses. Used for power factor correction and DC-DC conversion in both hard-switched and ZVS-switched systems, applications include electric vehicle (EV) chargers, power supplies, motor drives and renewable energy inverters.

The maximum drain current (ID) ratings for these SiC transistors ranges from 31 A to 85 A. Low RDS(ON), specified at 27 mohms, is best in class for TO-220 devices. Furthermore, a built-in low Qrr body diode eliminates the need for an anti-parallel diode. With their combination of low RDS(ON), high current rating and excellent thermal performance, the UJ3C series can be used in hard-switched converters and zero-voltage switching applications such as LLC and phase-shifted full bridge converters. The devices also enable switching frequencies of up to 500 kHz, allowing designers to reduce the size and cost of other system components, including bulky inductors, capacitors and thermal management parts.

UnitedSiC’s “Simple Silicon Substitution” technology comprises a patent-pending metal gate SiC JFET co-packaged with a custom designed, ESD protected, low voltage silicon MOSFET.  Advanced proprietary die-attach and packaging techniques minimize losses and ensure effective thermal management. As a result, designers using silicon transistors in legacy designs can easily upgrade their existing system’s power performance using UnitedSiC’s plug-and-play devices.

UJ3C065080T3S series SiC FETs are available now with prices starting at $7.69 each in 1000+ quantities.

UnitedSiC | www.unitedsic.com

Tuesday’s Newsletter: Microcontroller Watch

Coming to your inbox tomorrow: Circuit Cellar’s Microcontroller Watch newsletter. Tomorrow’s newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your Microcontroller Watch newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

IoT Technology Focus. (3/20) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Embedded Boards.(3/27) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.

Analog & Power. (4/3) This newsletter content zeros in on the latest developments in analog and power technologies including DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

4 mA Integrated Sensor Transmitter Boasts Small Footprint

Maxim Integrated Products has announced the MAX12900, an ultra-low power, highly integrated 4 mA to  20 mA sensor transmitter. Embedded system developers can use it to create small, low power and highly accurate designs for industrial automation system. Ideal applications include industrial automation and process control, loop-powered 4 mA to 20 mA current transmitters, remote instrumentation and smart sensors.

Today’s system designers must develop enhanced 4 mA to 20 mA sensor transmitters with several considerations in mind. These include improved measurement accuracy over a wide temperature range and reduced size to fit in a small enclosure. In addition, they are required to meet a tight current budget of their overall sensor transmitter system as low as 4 mA.

The MAX12900 increases system accuracy with 10 ppm / degrees C voltage reference for up to 3.5x lower drift compared to traditional solutions. The small footprint (5 mm x 5 mm package size) of the MAX12900 integrates 10 optimized building blocks that results in a significant space savings of 20%-50% vs. traditional 4 mA to 20 mA sensor transmitter implementations.

The addition of an integrated high voltage LDO and power sequencing capability simplifies the power up of the 4 mA to 20 mA sensor transmitter. Its reduced current consumption for low power requires just 250 µA of current maximum, enabling up to 50% power savings compared to traditional solutions. The new MAX12900 solution reduces implementation complexity, generating system cost savings by converting pulse width modulation data from a microcontroller into current over a 4 mA to 20 mA loop with two, three, or four wire configurations. The MAX12900 is available in a 32-pin TQFN package and operates over a wide industrial temperature range of -40℃ to +125℃.

The MAX12900 is available at Maxim’s website and select authorized distributors for $2.89 (1000+.) The MAX12900EVKIT# evaluation kit is available for $55

Maxim Integrated | www.maximintegrated.com

Xeon D and NVIDIA GPUs Share COMe Board

Connect Tech has announced the release of its new COM Express Type 7 + GPU Embedded System. This system combines Intel Xeon D (Server Class) x86 processors with high-end NVIDIA Quadro and Tesla GPUs, all in a small form factor embedded system. This V7G system is not a replacement to Connect Tech’s VXG Type 6 systems, but rather a next-generation platform that incorporates the new COM Express Type 7 PICMG standard and employs 10 Gbit Ethernet connectivity and expanded PCI Express interfaces.
Embedded system developers can choose from highest-end, highest-performance models or from low-powered models all ideal for high-end encode/decode video applications or GPGPU CUDA processing, Deep Learning and Artificial Intelligence applications. This embedded computer exposes all of the latest generation interconnect including: 10 Gbit Ethernet and Gbit Ethernet, USB 3.0 and 2.0, HDMI, SATA III, GPIO, I2C, M.2, Mini PCIe. The system uses PC-style connectors for ease of cabling and packaging.

Connect Tech | www.connecttech.com

IoT: From Device to Gateway

Modules for the Edge

Connecting to the IoT edge requires highly integrated technology, blending wireless connectivity and intelligence. Feeding those needs, a variety of IoT modules have emerged that offer pre-certified solutions that are ready to use.

By Jeff Child, Editor-in-Chief

he Internet of Things (IoT) is one of the most dynamic areas of embedded systems design today. Opportunities are huge as organizations large and small work to develop IoT implementations. IoT implementations are generally comprised of three main parts: the devices in the field, the cloud and the network (gateways) linking them together. This article focuses on the “things” side—in other words, the smart, connected edge devices of the IoT. For more on IoT gateways, see “IoT Gateway Advances Take Diverse Paths“ (Circuit Cellar 328, November 2017).

Because this sub-segment of technology is growing and changing so fast, it’s impossible to get a handle on everything that’s happening. The scope that comprises IoT edge devices includes a combination of embedded processors and microcontrollers that provide intelligence. It also includes various wireless, cellular and other connectivity solutions to connect to the network. And it includes sensors to collect data and battery technologies to keep the devices running.

Connecting the various nodes of an IoT implementation can involve a number of wired and wireless network technologies. But it’s rare that an IoT system can be completely hardwired end to end. Most IoT systems of any large scale depend on a variety of wireless technologies including Wi-Fi, Bluetooth, Zigbee and even cellular networking.

What’s most interesting among all that, are not those individual pieces themselves, but rather an emerging crop of modular IoT products that combine intelligence and connectivity, while also taking on the vital certifications needed to get IoT implementations up and running. With all that in mind, the last 12 months have seen an interesting mix of module-based products aimed directly at IoT.

Certified IoT Modules

Exemplifying those trends, in September 2017, STMicroelectronics (ST)introduced the SPBTLE-1S, a ready-to-use Bluetooth Low Energy (BLE) module that integrates all the components needed to complete the radio subsystem (Photo 1). The BLE module integrates ST’s proven BlueNRG-1 application-processor SoC and balun, high-frequency oscillators and a chip antenna.

Photo 1
The SPBTLE-1S is a BLE module that integrates all the components needed to complete the radio subsystem. It’s BQE-approved, and FCC, IC and CE-RED certified to simplify end-product approval for North America and EU markets.

Developers can use this module to bypass hardware design and RF-circuit layout challenges. The SPBTLE-1S is BQE-approved, and FCC, IC and CE-RED (Radio Equipment Directive) certified to simplify end-product approval for North America and EU markets. ST’s Bluetooth 4.2 certified BLE protocol stack is included, and the supporting Software-Development Kit (SDK) contains a wide range of Bluetooth profiles and sample application code.

The device is packaged in a space-efficient 11.5 mm x 13.5 mm outline and has a wide supply-voltage range of 1.7 V to 3.6 V. The SPBTLE-1S module is well suited for small, battery-operated objects powered by various types of sources such as a primary button cell or rechargeable Li-ion battery. High RF output power of +5 dBm and good receiver sensitivity help to maximize communication range and reliability.

The BlueNRG-1 SoC at the heart of the SPBTLE-1S implements the complete BLE physical layer (PHY), link layer and network/application-processing engine comprising a low-power ARM Cortex-M0 core with 160 KB flash, 24 KB RAM with data retention and a security co-processor. The SoC also implements smart power management, with a DC/DC converter capable of powering the SPBTLE-1S module to ensure optimum energy efficiency. Users can leverage an extensive set of interfaces, including a UART, two I²C ports, SPI port, single-wire debug and 14 GPIOs, as well as peripherals including two multifunction timers, a 10-bit ADC, watchdog timer and real-time clock and a DMA controller. There is also a PDM stream processor interface, which is ideal for developing voice-controlled applications.

IoT Module for Development

Riding the IoT wave, all the major microcontroller vendors have beefed up their module-based IoT solutions in order to make it easier for developers to design in their MCUs. One example along those lines is the LPC54018 IoT module, developed by NXP in partnership with Embedded Artists. …

Read the full article in the March 332 issue of Circuit Cellar

Don’t miss out on upcoming issues of Circuit Cellar. Subscribe today!
Note: We’ve made the October 2017 issue of Circuit Cellar available as a free sample issue. In it, you’ll find a rich variety of the kinds of articles and information that exemplify a typical issue of the current magazine.

Power Switching Regulator Has Boost and 3x Buck Capabilities

Analog Devices has announced the Power by Linear LT8603, a 42 V input capable, high efficiency quad output monolithic switching regulator. Its flexible design combines a boost controller with two high voltage 2.5 A and 1.5 A synchronous step-down channels and a lower voltage 1.8 A synchronous step-down channel to provide four independent outputs. The LT8603 can be configured with the boost controller to supply the input of the buck converters, enabling it to deliver three precisely regulated outputs. Alternatively, the boost controller can be driven from one of the step-down outputs, providing four precisely regulated outputs with a very compact solution footprint.

The LT8603’s triple buck synchronous rectification topology delivers up to 93% efficiency while Burst Mode operation keeps quiescent current under 28 µA (high voltage channels active) in no-load standby conditions, ideal for always-on systems. For noise-sensitive applications, the LT8603’s low EMI design meets the CISPR 25, Class 5 EMI requirements even when switching at 2 MHz. The LT8603’s switching frequency can be programmed from 250 kHz to 2.2 MHz and is synchronizable throughout this range.

The LT8603’s 85 ns (max) minimum on-time and cascading topology enables 16VIN to 0.8VOUT step-down conversions while switching at 2 MHz, enabling designers to avoid critical noise-sensitive frequency bands such as AM radio, while using a very compact solution footprint. Its 3 V to 42 V input voltage range is ideal for automotive applications that must regulate through cold crank and stop-start scenarios with minimum input voltages as low as 3V and load dump transients in excess of 40 V. Programmable power-on reset and power good indicators for each channel ensure overall system reliability. The LT8603’s 40-lead thermally enhanced 6 mm x 6 mm QFN package and high switching frequency keep external inductors and capacitors small, providing a compact, thermally efficient footprint.

The LT8603 is available in a thermally enhanced 40-lead 6 mm x  6 mm QFN package. Two temperature grades are available, with operation from -40°C to 125°C (junction) for the extended E- and industrial I-grades.

Analog Devices | www.analog.com

COM Express Type 6 Card Sports AMD Ryzen V1000

Congatec has introduced the conga-TR4 COM Express Type 6 module based on the new AMD Ryzen Embedded V1000 processors. AMD Ryzen Embedded V1000 processors deliver up to 3X more GPU performance than competitive solutions, and up to 2X increase in performance over previous generations . With a TDP that is scalable from 12 W to 54 W, Congatec products based on these new processors can benefit from multiple performance leaps across the TDP range and enormous optimization potential with regards to size, weight, power and costs (SWaP-C) at high graphics performance.

The new Congatec COM Express basic modules are designed for the development of embedded computing systems with impressive graphics performance for applications such as medical imaging; professional broadcasting, infotainment and gambling; digital signage; control rooms and video surveillance; optical quality control and 3D simulators. Other applications include smart robotics and autonomous vehicles that use deep learning to optimize their situational awareness.

The new conga-TR4 high-performance modules with COM Express Type 6 pinout are based on the latest AMD Ryzen Embedded V1000 multi-core processors. These modules offer up to 52% more processor performance, reaching up to 3.75 GHz. Thanks to symmetrical multiprocessing, they also provide particularly high parallel processing performance. They support up to 32 GB energy-efficient and fast dual-channel DDR4 memory with up to 3200 MT/s and optional ECC for maximum data security.

The new integrated AMD Radeon Vega graphics with up to 11 compute units marks the cutting edge of embedded graphics. It supports up to four independent displays with up to 4k UHD resolution and 10-bit HDR, as well as DirectX 12 and OpenGL 4.4 for 3D graphics. The integrated video engine enables hardware-accelerated streaming of HEVC (H.265) video  in both directions. Thanks to HSA and OpenCL 2.0 support, deep learning workloads can be assigned to the GPU. In safety-critical applications, the integrated AMD Secure Processor helps with hardware-accelerated encryption and decryption of RSA, SHA and AES.

The new conga-TR4 is also the first Congatec COM Express Type 6 module to allow a complete USB-C implementation on the carrier board including USB 3.1 Gen 2 with 10 Gbit/s, Power Delivery and DisplayPort 1.4, for example to connect external touchscreens with a single cable. Further performance-oriented interfaces offered, includes 1x PEG 3.0 x8, 4x PCIe Gen 3 and 4x PCIe Gen 2, 3x USB 3.1 Gen 2, 1x USB 3.1 Gen 1, 8x USB 2.0, 2x SATA Gen 3, 1x Gbit Ethernet. I/Os for SD, SPI, LPC, I²C as well as 2x legacy UART from the CPU and High Definition Audio round off the range of interfaces.

The supported operating systems include Linux, Yocto 2.0 and Microsoft Windows 10, or optionally Windows 7. Congatec provides an extensive range of passive and active cooling solutions for workstation designs up to 54W performance, application-ready carrier boards as well as best practice carrier board layouts and circuit diagrams, such as for USB-C implementations, to help simplify the design-in of the modules. Congatec also offers the development of custom carrier boards and module variants.

Congatec | www.congatec.com

Forecasts Predict Deluge of Powerful IoT Sensors

Tech the Future: The Future of IoT Sensors
By Zach Wendt, Engineer, Arrow  Electronics

Nearly all predictions estimating how many IoT devices we’ll have in the near future number in the tens of billions. This includes devices monitoring everything from weather conditions to whether or not you need a new bottle of laundry detergent. Underneath all of these gadgets is an array of sensors that relay input back to the cloud, enabling humans—or other IoT devices—to make decisions based on real-world input. Here are a few of the sensors that, while you may not see them, will be working behind the scenes to make our increasingly connected world run smoothly:

Passive Infrared (PIR): This type of sensor will be familiar to many as part of automatic lighting and alarm systems that detect movement. They’re normally made as small components with two sensing elements inside. When they sense a change in radiation in the surrounding area, this information is passed to a security system or other device. While the sensing element is something of a commodity, what sets different devices apart are the lenses used to focus the surrounding area into different segments, allowing for a wide range of monitoring capabilities.

Inertial Measurement Unit (IMU): If you want to track how something is moving, IMUs fill this role quite well. In the case of the popular MPU-6050, it packages both a gyroscope and accelerometer in one unit, allowing devices to respond to movement. Some devices integrate magnetometer (compass) into the unit as well, providing absolute orientation with respect to the earth’s surface.

Temperature Sensor: Temperature is inextricably linked for human comfort and even storage of some foods and other goods. So, measuring this is an important IoT function. This can work via a thermocouple method where a voltage is generated by two dissimilar metals or via a thermistor. A thermistor is a resistor that changes properties based on temperature.

Magnetic Field Sensor: While instances where you need to sense a magnetic field simply for its own sake are rare, embedding a magnet in equipment to facilitate sensory input is quite common. Home uses include attaching magnets to windows and doors to sense when one has been opened, while they are used in industry to verify that manufacturing equipment has completed a task. Sensors can take the form of a reed switch where a magnetic force opens or closes a pair of contacts inside a specially designed component, or a hall effect sensor that measures a magnet’s effect on a semiconducting material. One advantage of a hall sensor is that it can output a digital on/off signal, or can be set up to output a voltage proportional to the magnetic flux density experienced.

Load Cell: These sensors can detect force applied on an area, and are especially useful in industrial applications, where force applied to a part can mean the difference between a good product and one that doesn’t work. The most common device in use is called a strain gauge, where specially designed equipment measures the resistance of a material under load. Another method is known as piezoelectric load cell, where a material generates a voltage when deformed. One challenge with piezoelectric cells is that they only generate voltage when deformed, meaning this effect can’t be measured after the initial deformation.

Microswitch: Though we might not think of a microswitch—or any switch—as a sensor, these small mechanical devices (also known as snap-action switches) have been around since the 1930s and operate in such diverse modern technologies as arcade game buttons to automatic stops on CNC equipment. These switches use spring force to snap back to an original position when not depressed, and allow current to flow from a common connector to one of two outputs depending on the actuator position. While newer sensors have their advantages, this tried-and-true sensing method will be employed well into the future.

Sound Sensor: Sound has been used to transmit information throughout human history, and with the invention of the electronic microphone in the late 1800s—converting sound energy to mechanical motion and finally to electrical signals—this information could be recorded and transmitted. Now using increasingly powerful computers, microphones can be used to accomplish everything from coordinating lights with sound volume, to answering queries via smart devices like Amazon’s Alexa or Google Home. As speech recognition technology continues to advance, we could see this sensing method become more and more common.

Machine Vision: When we observe the world around us, no sense gives us more immediate information than sight. While our eyes do an amazing job at focusing on objects and absorbing light, the real trick lies in our brain’s ability to translate these blobs of light into something meaningful in our lives. When Cognex, a leader in machine vision, first started in the early 1980s, they celebrated when their prototype system could read the number “6” in 90 seconds. Now the company claims equipment capable of millisecond character reads—an increase in capacity of nearly 100,000 times. While this technology has leaped forward in the last 35 years, recognizing shapes, faces, and doing dimensional measurement, being able to understand what a picture truly means is still in its infancy, and will be the subject of research and advancement well into the future.

It will be exciting to see where IoT sensing technology takes us in the near future. Using microfabrication techniques, systems like an IMU that would have taken up significant space in years past can now be fit onto a single chip, allowing them to be embedded in more and more devices. Processing power to interpret input from the chips has increased exponentially, and the wireless technologies like Wi-Fi, Bluetooth and cellular data transmission have also advanced, allowing them to relay information to “the cloud” from nearly anywhere. Clearly our world will become more and more connected, hopefully leading to a bright future…or at least one where your sensor network prompts you to bring your umbrella when needed!

Zach Wendt is an engineer who enjoys writing about new technology and its impact on applications. Zach has a background in consumer product development and writes about sensors and other electronic components for Arrow Electronics.

This appears in the March (332) issue of Circuit Cellar magazine

Not a Circuit Cellar subscriber?  Don’t be left out! Sign up today:

CC Magazine – Sign Up Now!

 

Rugged IoT Gateway Facilitates Quick Deployment

Axiomtek has introduced its latest RISC-based, DIN-rail industrial IoT gateway, the IFB125. It is powered by the Freescale i.MX6UL processor with the ARM Cortex-A7 microarchitecture. This compact IoT gateway is designed for versatility of use and quick deployment. The IFB125 is suitable for a variety of applications including applications that require remote control and monitoring management functions such as unmanned control, industrial automation, automatic parking lot control, traffic light control and more.

The IFB125 comes with multiple I/O connections including one RS-232/422/485 port, two 10/100 Mbps LAN ports, one USB 2.0 port, one 2-IN/1-OUT DIO, one I2C and one SPI. This embedded IoT gateway platform is equipped with one PCI Express Mini Card slot and one SIM card slot for wireless connectivity. It has a 256 MB onboard memory that features a fast data transfer rate of DDR3-1600. The robust IFB125 has an extended operating temperature range from -40°C to 70°C and can withstand vibration up to 5G. Its wide voltage range of 9V  to 48 V DC power input with a lockable terminal block-type connector makes it suitable for use in harsh environments. The IFB125 comes with an embedded Linux operating system (Yocto) to provide an open standard OS for software program development.

Features:

  • Fanless and compact gateway with a RISC-based (i.MX6UltraLite) processor at 528 MHz
  • 256 MB DDR3 SDRAM and 8 GB eMMC Flash onboard
  • SPI and I2C function with 3.3 V power
  • Multiple I/O options include one wireless socket for Wi-Fi or 3G/4G, two digital inputs, one digital output and two LAN ports
  • Wide operating temperature range of -40°C to +70°C
  • Power input range of 9V to 48V DC with terminal block
  • Ready-to-run embedded Linux operating system (Yocto)

Axiomtek | www.us.axiomtek.com

Tuesday’s Newsletter: Analog & Power

Coming to your inbox tomorrow: Circuit Cellar’s Analog & Power newsletter. Tomorrow’s newsletter content zeros in on the latest developments in analog and power technologies including ADCs, DACs, DC-DC converters, AD-DC converters, power supplies, op amps, batteries and more.

Bonus: We’ve added Drawings for Free Stuff to our weekly newsletters. Make sure you’ve subscribed to the newsletter so you can participate.

Already a Circuit Cellar Newsletter subscriber? Great!
You’ll get your Analog & Power newsletter issue tomorrow.

Not a Circuit Cellar Newsletter subscriber?
Don’t be left out! Sign up now:

Our weekly Circuit Cellar Newsletter will switch its theme each week, so look for these in upcoming weeks:

Microcontroller Watch. (3/13) This newsletter keeps you up-to-date on latest microcontroller news. In this section, we examine the microcontrollers along with their associated tools and support products.

IoT Technology Focus. (3/20) Covers what’s happening with Internet-of-Things (IoT) technology–-from devices to gateway networks to cloud architectures. This newsletter tackles news and trends about the products and technologies needed to build IoT implementations and devices.

Embedded Boards.(3/27) The focus here is on both standard and non-standard embedded computer boards that ease prototyping efforts and let you smoothly scale up to production volumes.