About Circuit Cellar Staff

Circuit Cellar's editorial team comprises professional engineers, technical editors, and digital media specialists. You can reach the Editorial Department at editorial@circuitcellar.com, @circuitcellar, and facebook.com/circuitcellar

WIZnet Distinctive Excellence IoT Projects

The Circuit Cellar team felt strongly that there were considerably more first-rate projects entered in WIZnet Connect the Magic 2014 Design Challenge than could be satisfied with the available prizes. Thus, it designated a special category called “Distinctive Excellence” for some of the more interesting projects. The Distinctive Excellence projects are now live on the challenge website.wiznetDEs

Sponsor: WIZnet

New Digitally Enhanced Power Analog Controllers

Microchip Technology recently announced its latest Digitally Enhanced Power Analog (DEPA) controllers—the MCP19118 and MCP19119—which offer analog PWM control for DC-DC synchronous buck converters up to 40 V with the configurability of a digital microcontroller. MicrochipMCP19118

Interestingly, the devices bring together 40-V operation and PMBus communication interfaces for power-conversion circuit development with an analog control loop that is programmable in the integrated 8-bit PIC core’s firmware.  According to Microchip in a product release, “this integration and flexibility is ideal for power-conversion applications, such as battery-charging, LED-driving, USB Power Delivery, point-of-load and automotive power supplies.”

As expected, Microchip’s MPLAB X, PICkit 3, PICkit serial analyzer, and MPLAB XC8s support the MCP19118/9 DEPA controllers. The MCP19118 and MCP19119 are now available with prices starting at $2.92 each in 5,000-unit quantities.

 

High-Bandwidth Oscilloscope Probe

Keysight Technologies recently announced a new high-bandwidth, low-noise oscilloscope probe, the N7020A, for making power integrity measurements to characterize DC power rails. The probe’s specs include:

  • low noise
  • large ± 24-V offset range
  • 50 kΩ DC input impedance
  • 2-GHz bandwidth for analyzing fast transients on their DC power-rails KeysightN7020A

According to Keysight’s product release, “The single-ended N7020A power-rail probe has a 1:1 attenuation ratio to maximize the signal-to-noise ratio of the power rail being observed by the oscilloscope. Comparable oscilloscope power integrity measurement solutions have up to 16× more noise than the Keysight solution. With its lower noise, the Keysight N7020A power-rail probe provides a more accurate view of the actual ripple and noise riding on DC power rails.”

 

The new N7020A power-rail probe starts at $2,650.

Source: Keysight Technologies 

New M2M Wi-Fi Module

Lantronix’s xPico Wi-Fi SMT embedded device server is a “certified, compact Wi-Fi surface-mount module which enables quick and easy serial-to-Wi-Fi connectivity.” The module is intended for engineers interested in creating innovative Internet of Things (IoT) applications and solutions, especially designs that need “direct access to device data via smartphone, tablets, and connected PCs,” Lantronix noted in a product release.Lantronix-xPico

xPico Wi-Fi SMT features:

  • Surface Mount
  • On-board Antenna
  • u.fl Antenna Option
  • 18.3 mm × 31.1 mm × 3 mm Form Factor

Source: Lantronix

Twin-T Oscillator Configuration

Since retiring in 2013, electrical engineer Larry Cicchinelli has provided technical support at an educational radio station. For audio circuit debugging and testing, he uses a DIY battery-powered oscillator/volume unit (VU) meter. Details follow.

Originally, I was only going to build the audio source. When I thought about how I would use the unit, it occurred to me that the device should have a display. I decided to design and build an easy-to-use unit that would combine a calibrated audio source with a level display. Then, I would have a single, battery-powered instrument to do some significant audio circuit testing and debugging.

The front panel of the oscillator/volume unit (VU) meter contains all the necessary controls. (Source: L. Cicchinelli)

The front panel of the oscillator/volume unit (VU) meter contains all the necessary controls. (Source: L. Cicchinelli)

Cicchinelli describes the Twin-T Oscillator:

The oscillator uses the well-known Twin-T configuration with a minor modification to ensure a constant level over a range of power supply voltages. The circuit I implemented maintains its output level over a range of at least 6 to 15 V. Below 6 V, the output begins to distort if you have full output voltage (0 dBu). The modification consists of two antiparallel diodes in the feedback loop. The idea came from a project on DiscoverCircuits.com. The project designer also indicates that the diodes reduce distortion.

Figure 1 shows the oscillator’s schematic. Header H1 and diode D1 enable you to have two power sources. I installed a 9-V battery and snap connector in the enclosure as well as a connector for external power. The diode enables the external source to power the unit if its voltage is greater than the battery. Otherwise the battery will power the unit. The oscillator draws about 4 mA so it does not create a large battery drain.

The standard professional line level is 4 dBu, which is 1.228 VRMS or 3.473 VPP into a 600-Ω load. The circuit values enable you to use R18 to calibrate it, so the maximum output can be set to the 4-dBu level. A 7.7 (3.473/0.45) gain is required to provide 4 dBu at the transformer. Using the resistors shown in Figure 1, R18 varies the gain of U1.2 from about 4.3 to 13.

The Twin-T oscillator’s circuitry

Figure 1: The Twin-T oscillator’s circuitry

You may need to use different resistor values for R18, R19, and R20 to achieve a different maximum level. If you prefer to use 0 dBm (0.775 VRMS into 600 Ω) instead of 4 dBu, you should change R20 to about 5 kΩ to give R18 a range more closely centered on a 4.87 (2.19/0.45) gain. The R20’s value shown in Figure 1 will probably work, but the required gain is too close to the minimum necessary for comfort. Most schematics for a Twin-T oscillator will show the combination of R3 and R4 as a single resistor of value Rx/2. They will also show the combination of C1 and C2 as a single capacitor of value Cx × 2. These values lead to the following formula:

CicchinelliEQ1

As you can see in the nearby photo, the Twin-T Oscillator and VU meter contain separate circuit boards.

The Twin-T oscillator and dual VU meter have separate circuit boards

The Twin-T oscillator and dual VU meter have separate circuit boards

This article first appeared in audioXpress January 2014. audioXpress is one of Circuit Cellar‘s sister publications.