About Circuit Cellar Staff

Circuit Cellar's editorial team comprises professional engineers, technical editors, and digital media specialists. You can reach the Editorial Department at editorial@circuitcellar.com, @circuitcellar, and facebook.com/circuitcellar

New 40-nm Microcontrollers for Motor Control

Renesas Electronics Corp. recently announced the RH850/C1x series of 32-bit microcontrollers (MCUs), which it said are designed for motor control in hybrid electric vehicles (HEVs) and electric vehicles (EVs). Based on Renesas’s 40-nm process, the RH850/C1x series features the RH850/C1H and RH850/C1M MCUs, which enable embedded designers to enhance efficiency, reduce system costs, and achieve higher safety levels for HEV/EV motor control systems.

Source: Renesas Electronics Corp.

Source: Renesas Electronics Corp.

The new RH850/C1x devices can be used with the RAA270000KFT RH850 family power supply management IC (PMIC), which is currently available in sample quantities. The power management IC integrates into one device all the power supply systems required for MCU operation, two external sensor power supply tracks, and a full complement of monitoring and diagnostic functions, significantly reducing the user burden associated with power supply system design.

The RH850/C1H and RH850/C1M MCUs incorporate large memory capacities achieved through 40 nm MONOS process technology. The RH850/C1x series is based on Renesas’s metal oxide nitride oxide silicon (MONOS) embedded flash, which has an extensive track record in mass production. The MONOS characteristics include fast readout, low power consumption, and large storage capacity. The RH850/C1M and RH850/C1H devices offer memory capacities of 2 MB and 4 MB, respectively. In addition, 32-KB data flash memory, with essentially the same functionality as EEPROM, is included for data storage.

The microcontrollers also feature an extensive set of peripheral functions for HEV/EV motor control. The RH850/C1x MCUs can implement three types of motor control in hardware: sine wave PWM, over modulation, and square wave.

Samples of the RH850/C1H and RH850/C1M MCUs are scheduled to be available from the beginning of 2015 and will cost $45 and $50 per unit, respectively. Mass production is scheduled for May 2016 and is expected to reach a scale of 100,000 units per month.

Source: Renesas Electronics Corp.

MIPS Development Board Giveaway

Imagination recently launched the MIPS Creator CI20 development board, which is targeted at hobbyists, makers and schools working on open source projects. The system supports Linux (currently running Debian 7, but other images are also supported) and by the end of September Android 4.4 KitKat.

MIPS Creator C120 (Source: Imagination)

MIPS Creator C120 (Source: Imagination)

Its main hardware features include:

  • Ingenic JZ4780, dual 1.2-GHz MIPS32 processor, SGX540 GPU, 32k I&D L1 cache, 512-KB L2 cache
  • IEEE754 Floating Point Unit
  • 8-GB Flash, 1-GB DDR3 memory
  • Video playback up to 1080p
  • AC97 audio, via 4-pin input/output jack and HDMI connector
  • Camera interface –ITU645 controller
  • Connectivity – 10/100 Ethernet, 802.11 b/g/n, Bluetooth 4.0
  • HDMI output up to 2K resolution
  • 2 x USB – host and OTG
  • 14-pin ETAG connector
  • 2 x UART, GPIO, SPI, I2C, ADC, expansion headers
  • Power supply

For a chance of receiving a free board, you just need to register and describe the project you want to build. If you are lucky and the company likes the sound of your proposal, you will be one of 1000 entrants to receive a free Creator CI20 development board. For more information go to the Imagination web site and fill out a request form.

Quartus II Software Arria 10 Edition v14.0

Altera Corp. has released Quartus II software Arria 10 edition v14.0, which is an advanced 20-nm FPGA and SoC design environment. Quartus II software delivers fast compile times and enables high performance for 20-nm FPGA and SoC designs. You can further accelerate Arria 10 FPGA and SoC design cycles by using the range of 20-nm-optimized IP cores included in the latest software release.

Altera’s 20-nm design tools feature advanced algorithms. The Quartus II software Arria 10 edition v14.0 provides on average notably fast compile times. This productivity advantage enables you to shorten design iterations and rapidly close timing on 20-nm design.

Included in the latest software release is a full complement of 20-nm-optimized IP cores to enable faster design cycles. The IP portfolio includes standard protocol and memory interfaces, DSP and SoC IP cores. Altera also optimized its popular IP cores for Arria 10 FPGAs and SoCs, which include 100G Ethernet, 300G Interlaken, Interlaken Look-Aside, and PCI Express Gen3 IP. When implemented in Altera’s Arria 10 FPGAs and SoCs, these IP cores deliver the high performance.

The Quartus II software Arria 10 edition v14.0 is available now for download. The software is available as a subscription edition and includes a free 30-day trial. The annual software subscription is $2,995 for a node-locked PC license. Engineering samples of Arria 10 FPGAs are shipping today.

Source: Altera Corp.

Use Watchdog Timers (EE Tip #143)

Watchdog timers are essential to many complete electronic system designs.  As Bob Japenga explains, following a few guidelines will help make your designs more effective.

No longer used in just the realm of fault-tolerant systems, independent watchdog timers are put on systems because we know something can go wrong and prevent it from being fully functional. Sometimes the dogs reset the processor and sometimes they just safe the device and notify a user. However they work, they are an essential part of any system design. Here are the main guidelines we use:

  • Make it independent of the processor. The last thing you want is for the processor to lock up and the watchdog to lock up too.
  • Do not tickle the watchdog during an interrupt. (The interrupt can keep going while a critical thread is locked up.)
  • Do not tickle the watchdog until you are sure that all of your threads are running and stable.
  • Provide a way for your debugger to have break points without tripping the watchdog.
  • If the watchdog can be disabled, provide a mechanism for this to be detected.

I provide many more guidelines for watchdog design in a white paper that’s posted on our website.—Bob Japenga, CC25, 2013

Workspace for Precision Design

Brad Boegler is a do-it-yourselfer’s DIYer. His West Bloomfield, MI-based workspace is something to admire. It features a sturdy 8’ × 5’ workbench, a well-built machining bench, and dozens of handy tools that enable him to work on projects ranging from constructing a temperature-monitoring network to milling custom heatsinks. Simply put, it’s an appealing space for any innovator interested in DIY electronics and machining projects.

Photo 1: One of Boegler’s Altera CPLD breakout boards is on the bench. He said he was “experimenting with some video generators in VHDL” when he took this picture. (Source: B. Boegler)

As I reviewed Boegler’s space, the same word kept popping into my mind: precision. Why? Let’s see.

Building a bench (or benches) for a workspace like Boegler’s takes a lot of precision measuring, cutting, fitting, and constructing. Check out the workbench in Photo 1. That’s no “Ikea hack.” The 8’ × 5’ bench fits a dual monitor setup, plenty of test/measurement equipment, a solder station, and more.

Boegler—who works as Linux sysadmin—described some of the equipment on this bench via email:

The left side of the bench is mostly RF equipment: there are two HP RF frequency generators, a VNA, and spectrum analyzer. The analog scope is a Tek 2246 and is one of my favorite scopes. Next to that is an HP 16500B logic analysis system and then a HP 54112D digital scope … The bench was custom made. I was not able to find any benches to my liking so I ended up building my own. It is 8′ wide by 5′ deep and constructed out of mostly 4×4s. It weighs a ton, but it has to be sturdy as a lot of this equipment is very heavy. I like very deep benches as I can push the equipment back far enough on it and still provide enough working space.

And don’t forget the power!

Those are various adjustable voltage current limiting power supplies, when working on projects needing various voltages you can never have too many supplies.

I’m sure everyone agrees that access to power supplies is key.

Photo 2: Boegler’s workspace for machining (Source: B. Boegler)

On a separate bench (Photo 2) are Boegler’s milling machine and drill press, which are two tools intended for precision designing and machining. Boegler wrote:

The drill press is used almost daily, one of the best tools ever. I use the milling machine for custom shielded aluminum cases for RF boards, making special sized heatsinks, and it comes in handy for any special brackets I can make to hold boards or components.

I’m sure you’d agree that machining board cases and heatsinks requires a bit of exactitude.

Much like the bench in Photo 1, building the actual machine bench required precise measurements and cuts. Just look at its clean edges and sturdy frame. And don’t you like the shelf underneath? It’s a simple yet effective place for stowing frequently used tools.

On the topic of storage, check out Boegler’s wheeled shelf system. I like it and will consider something similar for my garage. (We all take wheels for granted until we’re in a pinch and need to move a heavy object. For instance, try moving a wheel-less six-shelf system full of parts in order to track down a screw that fell on the floor. Actually, don’t try that. It’s an accident waiting to happen.)

A wheeled shelf system for microcontrollers, op-amps, and parts of all sorts (Source: B. Boegler)

Lastly, check out the neatly labeled parts boxes. I see labels such as “Microcontrollers/DSP,” “Op-Amps,” “Serial Cables,” and more. Nice!

Share your space! Circuit Cellar is interested in finding as many workspaces as possible and sharing them with the world. Click here to submit photos and information about your workspace. Write “workspace” in the subject line of the email, and include info such as where you’re located (city, country), the projects you build in your space, your tech interests, your occupation, and more. If you have an interesting space, we might feature it on CircuitCellar.com!