About Nan Price

Nan Price is an Associate Editor at Circuit Cellar. You can reach her at nprice@circuitcellar.com and @assoceditor_cc.

Q&A: Networking Expert Dru Lavigne

Dru Lavigne wasn’t always interested in networking applications. I recently interviewed her about how she discovered UNIX and launched her career as an OS specialist and technical writer. She also described her “to-do” list, which includes more writing, and her hopes for the future of the BSD OS.—Nan Price, Associate Editor

 

Dru LavigneNAN: What is your current occupation?

DRU: I’m the lead tech writer for iXsystems, a hardware solutions provider and corporate sponsor of the FreeNAS and PC-BSD open-source projects. Since both of these projects publish a comprehensive user’s guide with each software release, most of my time is spent making sure each guide is kept up to date as changes are made to these OSes. I’m also involved in the FreeBSD Documentation Project and I am currently assisting in updating and preparing the FreeBSD Handbook for publication in a two-volume format.

NAN: What is the FreeBSD Foundation?

DRU: The FreeBSD Foundation is a 501.c3 nonprofit that provides financial support and a legal entity for the FreeBSD Project.

The FreeBSD Foundation provides grants so developers can attend conferences and developer summits, sponsors developers to work on specific software projects that would benefit the FreeBSD community, interacts with companies that use FreeBSD to determine their needs, and assists in introducing developers to the community. As a director, I assist in fundraising and advocacy, reviewing project proposals, and developing relationships.

NAN: What is BSD? What is the difference between BSD and Linux?

DRU: BSD is a UNIX-like OS that was originally developed at the University of California Berkeley in the 1970s. When the university stopped developing the OS, several open-source projects began to continue development.

Its lineage differs from Linux as Linux is derived from a different UNIX branch known as SysV. Traditionally, the most noticeable difference is that SysV systems use run levels whereas BSD systems do not. The release engineering process also differs between BSD and Linux. BSD projects release an entire OS with a set of base tools included in the OS’s userland. The entire OS has a release engineering team that is responsible for the release and a security team that is responsible for security advisories until a release reaches its end-of-life (EOL). In contrast, Linux itself is only the kernel. Each distro integrates that kernel into its installer, package management system, and userland to create a complete OS.

NAN: How long have you been using BSD? When and how did you become interested?

DRU: I started using FreeBSD in 1997. I went “cold turkey” by installing it on my only computer and learned how to do what I needed to do as I needed to do it. Once I was comfortable with FreeBSD, I ventured into learning how to use NetBSD and OpenBSD, and when PC-BSD came along, I switched to that as my main desktop system.

NAN: Describe your involvement with the BSD Certification Group.

DRU: I founded the BSD Certification Group to create a community-based and psychometrically valid certification exam for system administrators of BSD OSes. The group is composed of volunteers who have been involved in BSD for quite some time as educators, authors, and/or system administrators. We have worked hard to provide a globally affordable examination that provides real value to employers.

NAN: You’ve written several books, including BSD Hacks, The Best of FreeBSD Basics and The Definitive Guide to PC-BSD. What can readers expect to learn from the books?

DRU: How to be comfortable on a UNIX system and how to think using the logic of a UNIX system.

NAN: Do you consider your books introductory or are they written for more experienced engineers?

DRU: These books are written in the style: “Now that you have BSD, did you know that you can do these cool things?” I’m a hands-on person and I like to know what I can do and to understand what I’m seeing when something I do acts differently than I expected it to.

The great thing about UNIX is that you can learn how to do something useful now, even if you have never seen a UNIX command line before. And, even if you’ve been around forever, there is always something you haven’t come across before or a cool new way to do something that you haven’t thought of before. So, these books can appeal to both the introductory user (the main target audience) as well as the advanced user (who will still pick up a trick or two before passing the book along to an introductory user).

NAN: Are you currently working on or planning any books or projects?

DRU: I do have a to-do list, book-wise. It’s interesting that I currently write the equivalent of three 300ish page books per year, but these are available for free online at doc.freenas.org  and wiki.pcbsd.org.

In addition, my current big project is the two-volume set for the FreeBSD Handbook, which will be a good 900 pages when it is complete. Once that project is finished, next in line is modernizing The Best of FreeBSD Basics for FreeBSD 10.x. Then, I’d like to write a second BSD Hacks-type book.

NAN: What do you consider to be the “next big thing” in the industry?

DRU: Since my expertise is in BSD, I’ll frame my answer from that perspective.
The first is creating usable frameworks for securing/sandboxing existing non-secure applications. FreeBSD is leading the development and research in this area in its Capsicum framework (see the article “Capsicum: Practical Capabilities for UNIX” on the University of Cambridge website).

The second is modern file systems that aren’t limited by the hardware restrictions that were around when most file systems were created. Examples include the OpenZFS storage platform and DragonFly BSD’s HAMMER file system.

NAN: Give us some background information. Where are you located? Where and what did you study?

DRU: I’m a recent transplant to Northwest Arkansas, having lived in Canada for many years. I went back to school in my early 30s to get a technical diploma in Networking and Telecommunications. I also earned the following certifications: MCSE, CNE, CCNA, CCSA, Security+, and probably others, which I have since forgotten.

NAN: How did you become interested in OSes and IT?

DRU: I was working in a dead-end position for a municipal department (low pay, very low glass ceiling) and wanted to expand my horizons. Many of our clients were being referred to a technical college for a networking program at a time when networking was a “hot” topic.

I had no idea what networking was, but figured it couldn’t be any worse than what I was doing, so I negotiated half days with my employer so I could attend classes. I quickly found that the course interested me and I seemed to be good at it.

Toward the end of the program, when I was researching employment opportunities, I noticed that the interesting and well-paying positions wanted UNIX experience. Having no idea what that was, and having no money as a poor student, I did an Internet search for “free UNIX.” The first hit was freebsd.org. I went to the website and my gut told me “this is it.” The rest, as they say, is history.

Doing the Robot, 21st-Century Style

Growing up in the 1970s, the first robot I remember was Rosie from The Jetsons. In the 1980s, I discovered Transformers, which were touted as “robots in disguise,” I imitated Michael Jackson’s version of “the robot,” and (unbeknownst to me) the Arthrobot surgical robot was first developed. This was years before Honda debuted ASIMO, the first humanoid robot, in 2004.

“In the 1970s, microprocessors gave me hope that real robots would eventually become part of our future,” RobotBASIC codeveloper John Blankenship told me in a 2013 interview. It appears that the “future” may already be here.

Honda's ASIMO humanoid robot

Honda’s ASIMO humanoid robot

Welcome to the 21st century. Technology is becoming “smarter,“ as evidenced at the Consumer Electronics Show (CES) 2014, which took place in January. The show unveiled a variety of smartphone-controlled robots and drones as well as wireless tracking devices.

Circuit Cellar’s columnists and contributors have been busy with their own developments. Steve Lubbers wondered if robots could be programmed to influence each other’s behavior. He used Texas Instruments’s LaunchPad hardware and a low-cost radio link to build a group of robots to test his theory. The results are on p. 18.

RobotBASIC’s Blankenship wanted to program robots more quickly. His article explains how he uses robot simulation to decrease development time (p. 30).

The Internet of Things (IoT), which relies on embedded technology for communication, is also making advancements. According to information technology research and advisory company Gartner, by 2020, there will be close to 26 billion devices on the IoT.

With the IoT, nothing is out of the realm of a designer’s imagination. For instance, if you’re not at home, you can use IoT-based platforms (such as the one columnist Jeff Bachiochi writes about on p. 58) to preheat your oven or turn off your sprinklers when it starts to rain.

Meanwhile, I will program my crockpot and try to explain to my 8-year-old how I survived childhood without the Internet.

Dynamic Efficiency Microcontrollers

STMicroThe STM32F401 Dynamic Efficiency microcontrollers extend battery life and support innovative new features in mobile phones, tablets, and smart watches. They help manage MEMS sensors in smart-connected devices and are well suited for Internet-of-Things (IoT) applications and fieldbus-powered industrial equipment.

The STM32F401 microcontrollers include an ART accelerator, a prefetch queue, and a branch cache. This enables zero-wait-state execution from flash, which boosts performance to 105 DMIPS (285 CoreMark) at 84 MHz. The microcontrollers’ 90-nm process technology boosts performance and reduces dynamic power. Its dynamic voltage scaling optimizes the operating voltage to meet performance demands and minimize leakage.

The STM32F401 microcontrollers integrate up to 512 KB of flash and 96 KB SRAM in a 3.06-mm × 3.06-mm chip-scale package and feature a 9-µA at 1.8 V Stop mode current. The devices’ peripherals include three 1-Mbps I2C ports, three USARTs, four SPI ports, two full-duplex I2S audio interfaces, a USB 2.0 OTG full-speed interface, an SDIO interface, 12-bit 2.4-MSPS 16-channel ADC, and up to 10 timers.

Pricing for the STM32F401 microcontrollers starts at $2.88 in 10,000-unit quantities.

STMicroelectronics
www.st.com

Industrial Temperature SBCs

EMACThe iPAC-9X25 embedded SBC is based on Atmel’s AT91SAM9X25 microprocessor. It is well suited for industrial temperature embedded data acquisition and control applications.
This web-enabled microcontroller can run an embedded server and display the current monitored or logged data. The web connection is available via two 10/100 Base-T Ethernet ports or 802.11 Wi-Fi networking. The iPAC-9X25’s connectors are brought out as headers on a board.

The SBC has a –40°C to 85°C industrial temperature range and utilizes 4 GB of eMMC flash, 16 MB of serial data flash (for boot), and 128 MB of DDR RAM. Its 3.77“ × 3.54“ footprint is the same as a standard PC/104 module.

The iPAC 9X25 features one RS-232 serial port with full handshake (RTS/CTS/DTR/DSR/RI), two RS-232 serial ports (TX and RX only), one RS-232/-422/-485 serial port with RTS/CTS handshake, two USB 2.0 host ports, and one USB device port. The board has seven channels of 12-bit audio/digital (0 to 3.3 V) and an internal real-time clock/calendar with battery backup. It also includes 21 GPIO (3.3-V) lines on header, eight high-drive open-collector dedicated digital output lines with configurable voltage tolerance, 16 GPIO (3.3 V) on header, two PWM I/O lines, five synchronous serial I/O lines (I2S), five SPI lines (two SPI CS), I2C bus, CAN bus, a microSD socket, external Reset button capabilities, and power and status LEDs.
The iPac-9X25 costs $198.

EMAC, Inc.
www.emacinc.com

Ohio-Based “Design Dungeon”

“Steve Ciarcia had a ‘Circuit Cellar.’ I have a ‘Design Dungeon,’” Steve Lubbers says about his Dayton, OH-based workspace.

“An understanding wife and a spare room in the house allocated a nice place for a workshop. Too bad the engineer doesn’t keep it nice and tidy! I am amazed by the nice clean workspaces that have previously been published! So for those of you who need a visit from FEMA, don’t feel bad. Take a look at my mess.”

Steve Lubbers describes his workbench as a “work in progress.”

Steve Lubbers describes his workbench as a “work in progress.”

The workspace is a creative mess that has produced dozens of projects for Circuit Cellar contests. From the desk to the floor to the closet, the space is stocked with equipment and projects in various stages.

Lubbers writes:

The doorway is marked “The Dungeon.” The first iteration of The Dungeon was in my parents’ basement. When I bought a house, the workshop and the sign moved to my new home.

The door is a requirement when company comes to visit. Once you step inside, you will see why. The organizational plan seems to be a pile for everything, and everything in a pile. Each new project seems to reduce the amount of available floor space.

Lubbers_Floor

Lubbers’s organization plan is simple: “A pile for everything, and everything in a pile.”

“High-tech computing” is accomplished on a PDP-11/23. This boat anchor still runs to heat the room, but my iPod has more computing abilities! My nieces and nephews don’t really believe in 8” disks, but I have proof.

The desk (messy of course) holds a laptop computer and a ham radio transceiver. Several of my Circuit Cellar projects have been related to amateur radio. A short list of my ham projects includes a CW keyer, an antenna controller, and a PSK-31 (digital communications) interface.

Lubbers_Desk

Is there a desk under there?

My workbench has a bit of clear space for my latest project and fragments of previous projects are in attendance. The skull in the back right is wearing the prototype for my Honorable Mention in the Texas Instruments Design Stellaris 2010 contest. It’s a hands-free USB mouse. The red tube was the fourth-place winner in the microMedic 2013 National Contest.

Front and center is the prototype for my March 2014 Circuit Cellar article on robotics. Test equipment is a mix of old and new. Most of the newer equipment has been funded by past Circuit Cellar contests and articles.

Lubbers_Hero

“My wife allows my Hero Jr. robot to visit the living room. He is housebroken after all,” Lubbers says.

The closet is a “graveyard” for all of the contest kits I have received, models I would like to build, and other contraptions the wife doesn’t allow to invade the rest of the house. (She is pretty considerate because you will find my Hero Jr. robot in the living room.)

At one time, The Dungeon served as my home office. For about five years I had the ideal “down the hall” commute. A stocked lab helped justify my ability to work from home.

When management pulled the plug on working remotely, the lab got put to work developing about a dozen projects for Circuit Cellar contests. There has been a dry spell since my last contest entry, so these days I am helping develop the software for the ham radio Satellite FOX-1. My little “CubeSat” will operate as a ham radio transponder and a platform for university experiments when it launches in late 2014. Since I will probably never go to space myself, the next best thing is launching my code into orbit. It’s a good thing that FOX-1 is smaller than a basketball. If it was bigger, it might not fit on my workbench!

Lubbers’s article about building a swarm of robots will appear in Circuit Cellar’s March issue. To learn more about Lubbers, read our 2013 interview.

Serial Carrier Card with Flexible I/O and Serial Technology

New 3U CompactPCI Serial Carrier Card from MEN Micro IntegratesThe G204 is a 3U CompactPCI Serial carrier card with an M-Module slot that combines fast CompactPCI Serial technology with flexible I/O options. The card serves as the basis for powerful 19″-based system solutions for transportation and industrial applications (e.g., data acquisition, process control, automation and vehicle control, robotics or instrumentation).

M-Modules are modular I/O extensions for industrial computers (e.g., embedded systems and high-end workstations). The M-Module slot enables users to interchange more than 30 I/O functions within a system. The M-Module, which needs only one CompactPCI Serial slot, is screwed tightly onto the G204 and does not require a separately mounted transition panel.

The G204 modular mezzanine card operates in a –40°C to 85°C extended temperature range for harsh environments and costs $483.

MEN Micro Inc.
www.menmicro.com

32-Bit Arm Cortex-M3 C Development Kit

ImageCraftThe CorStarter-STM32 is a complete 32-bit ARM Cortex-M3 C development kit. It includes hardware and software to develop and debug C programs in a simple to use package.

The CorStarter-STM32 base board is powered by a 72-MHz STM32 device with 256-KB flash and 64-KB SRAM. With 8-bit Arduino Shield-compatible headers, hundreds of Arduino Shields may be used to expand the system’s capabilities. Remaining I/O pins are brought out to the header, enabling access to full-power 32-bit embedded computing. The CorStarter-STM32 base board includes open-source hardware design files.

Fast code download and hardware debugging support are provided by either the industrial standard Segger JLINK-Edu or ST-LINK/V2. These JTAG/SWD pods enable full access to Cortex-M devices and seamless debugging without source code modification.

To complement the hardware, the CorStarter-STM32 kit also includes an ImageCraft non-commercial C compiler (ICCV8 for Cortex) license. The C compiler includes a professional IDE with an integrated flash downloader and a source-level debugger. The compiler can also be used for other Cortex-M development projects. The kit also includes example projects and libraries for various Arduino Shields.

The CorStarter-STM32 kit costs $99. The CorStarter-STM32 base board alone costs $55. For educators teaching embedded system courses, the kit costs $1.

ImageCraft
http://imagecraft.com

Configurable Regulator

LinearThe LTM4644 quad output step-down µModule (micromodule) regulator is configurable as a single (16-A), dual (12-A, 4-A, or 8-A, 8-A), triple (8-A, 4-A, 4-A), or quad (4-A each) output regulator. This flexibility enables system designers to rely on one simple and compact µModule regulator for the various voltage and load current requirements of FPGAs, ASICs, and microprocessors as well as other board circuitry. The LTM4644 is ideal for communications, data storage, industrial, transportation, and medical system applications.

The LTM4644 regulator includes DC/DC controllers, power switches, inductors and compensation components. Only eight external ceramic capacitors (1206 or smaller case sizes) and four feedback resistors (0603 case size) are required to regulate four independently adjustable outputs from 0.6 to 5.5 V. Separate input pins enable the four channels to be powered from a common supply rail or different rails from 4 to 14 V.

At an ambient temperature of 55°C, the LTM4644 delivers up to 13 A at 1.5 V from a 12-V input or up to 14 A with 200-LFM airflow. The four channels operate at 90° out-of-phase to minimize input ripple whether at the 1-MHz default switching frequency or synchronized to an external clock between 700 kHz and 1.3 MHz. With the addition of an external bias supply above 4 V, the LTM4644 can regulate from an input supply voltage as low as 2.375 V. The regulator also includes output overvoltage and overcurrent fault protection.

The LTM4644 costs $22.85 each in 1,000-unit quantities.

Linear Technology Corp.
www.linear.com

Q&A: Hacker, Roboticist, and Website Host

Dean “Dino” Segovis is a self-taught hardware hacker and maker from Pinehurst, NC. In 2011, he developed the Hack A Week website, where he challenges himself to create and post weekly DIY projects. Dino and I recently talked about some of his favorite projects and products. —Nan Price, Associate Editor

 

NAN: You have been posting a weekly project on your website, Hack A Week, for almost three years. Why did you decide to create the website?

Dean "Dino" Segovis at his workbench

Dean “Dino” Segovis at his workbench

DINO: One day on the Hack A Day website I saw a post that caught my attention. It was seeking a person to fill a potential position as a weekly project builder and video blogger. It was offering a salary of $35,000 a year, which was pretty slim considering you had to live in Santa Monica, CA. I thought, “I could do that, but not for $35,000 a year.”

That day I decided I was going to challenge myself to come up with a project and video each week and see if I could do it for at least one year. I came up with a simple domain name, www.hackaweek.com, bought it, and put up a website within 24 h.

My first project was a 555 timer-based project that I posted on April 1, 2011, on my YouTube channel, “Hack A Week TV.” I made it through the first year and just kept going. I currently have more than 3.2 million video views and more than 19,000 subscribers from all over the world.

NAN: Hack A Week features quite a few robotics projects. How are the robots built? Do you have a favorite?

rumblebot head

Dino’s very first toy robot hack was the Rumble robot. The robot featured an Arduino that sent PWM to the on-board H-bridge in the toy to control the motors for tank steering. A single PING))) sensor helped with navigation.

Rumble robot

The Rumble robot

DINO: I usually use an Arduino as the robot’s controller and Roomba gear motors for locomotion. I have built a few others based on existing wheeled motorized toys and I’ve made a few with the Parallax Propeller chip.

My “go-to” sensor is usually the Parallax PING))) ultrasonic sensor. It’s easy to connect and work with and the code is straightforward. I also use bump sensors, which are just simple contact switches, because they mimic the way some insects navigate.

Nature is a great designer and much can be learned from observing it. I like to keep my engineering simple because it’s robust and easy to repair. The more you complicate a design, the more it can do. But it also becomes more likely that something will fail. Failure is not a bad thing if it leads to a better design that overcomes the failure. Good design is a balance of these things. This is why I leave my failures and mistakes in my videos to show how I arrive at the end result through some trial and error.

My favorite robot would be “Photon: The Video and Photo Robot” that I built for the 2013 North Carolina Maker Faire. It’s my masterpiece robot…so far.

NAN: Tell us a little more about Photon. Did you encounter any challenges while developing the robot?

Photon awaits with cameras rolling, ready to go forth and record images.

Photon awaits with cameras rolling, ready to go forth and record images.

DINO: The idea for Photon first came to me in February 2013. I had been playing with the Emic 2 text-to-speech module from Parallax and I thought it would be fun to use it to give a robot speech capability. From there the idea grew to include cameras that would record and stream to the Internet what the robot saw and then give the robot the ability to navigate through the crowd at Maker Faire.

I got a late start on the project and ended up burning the midnight oil to get it finished in time. One of the bigger challenges was in designing a motorized base that would reliably move Photon across a cement floor.

The problem was in dealing with elevation changes on the floor covering. What if Photon encountered a rug or an extension cord?

I wanted to drive it with two gear motors salvaged from a Roomba 4000 vacuum robot to enable tank-style steering. A large round base with a caster at the front and rear worked well, but it would only enable a small change in surface elevation. I ended up using that design and made sure that it stayed away from anything that might get it in trouble.

The next challenge was giving Photon some sensors so it could navigate and stay away from obstacles. I used one PING))) sensor mounted on its head and turned the entire torso into a four-zone bump sensor, as was a ring around the base. The ring pushed on a series of 42 momentary contact switches connected together in four zones. All these sensors were connected to an Arduino running some simple code that turned Photon away from obstacles it encountered. Power was supplied by a motorcycle battery mounted on the base inside the torso.

The head held two video cameras, two smartphones in camera mode, and one GoPro camera. One video camera and the GoPro were recording in HD; the other video camera was recording in time-lapse mode. The two smartphones streamed live video, one via 4G to a Ustream channel and the other via Wi-Fi. The Ustream worked great, but the Wi-Fi failed due to interference.

Photon’s voice came from the Emic 2 connected to another Arduino sending it lines of text to speak. The audio was amplified by a small 0.5-W LM386 amplifier driving a 4” speaker. An array of blue LEDs mounted on the head illuminated with the brightness modulated by the audio signal when Photon spoke. The speech was just a lot of lines of text running in a timed loop.

Photon’s brain includes two Arduinos and an LM386 0.5-W audio amplifier with a sound-to-voltage circuit added to drive the mouth LED array. Photon’s voice comes from a Parallax Emic 2 text-to-speech module.

Photon’s brain includes two Arduinos and an LM386 0.5-W audio amplifier with a sound-to-voltage circuit added to drive the mouth LED array. Photon’s voice comes from a Parallax Emic 2 text-to-speech module.

Connecting all of these things together was very challenging. Each component needed a regulated power supply, which I built using LM317T voltage regulators. The entire current draw with motors running was about 1.5 A. The battery lasted about 1.5 h before needing a recharge. I had an extra battery so I could just swap them out during the quick charge cycle and keep downtime to a minimum.

I finished the robot around 11:00 PM the night before the event. It was a hit! The videos Photon recorded are fascinating to watch. The look of wonder on people’s faces, the kids jumping up to see themselves in the monitors, the smiles, and the interaction are all very interesting.

NAN: Many of your Hack A Week projects include Parallax products. Why Parallax?

DINO: Parallax is a great electronics company that caters to the DIY hobbyist. It has a large knowledge base on its website as well as a great forum with lots of people willing to help and share their projects.

About a year ago Parallax approached me with an offer to supply me with a product in exchange for featuring it in my video projects on Hack A Week. Since I already used and liked the product, it was a perfect offer. I’ll be posting more Parallax-based projects throughout the year and showcasing a few of them on the ELEV-8 quadcopter as a test platform.

NAN: Let’s change topics. You built an Electronic Fuel Injector Tester, which is featured on HomemadeTools.net. Can you explain how the 555 timer chips are used in the tester?

DINO: 555 timers are great! They can be used in so many projects in so many ways. They’re easy to understand and use and require only a minimum of external components to operate and configure.

The 555 can run in two basic modes: monostable and astable.

Dino keeps this fuel injector tester in his tool box at work. He’s a European auto technician by day.

Dino keeps this fuel injector tester in his tool box at work. He’s a European auto technician by day.

An astable circuit produces a square wave. This is a digital waveform with sharp transitions between low (0 V) and high (+ V). The durations of the low and high states may be different. The circuit is called astable because it is not stable in any state: the output is continually changing between “low” and “high.”

A monostable circuit produces a single output pulse when triggered. It is called a monostable because it is stable in just one state: “output low.” The “output high” state is temporary.

The injector tester, which is a monostable circuit, is triggered by pressing the momentary contact switch. The single-output pulse turns on an astable circuit that outputs a square-wave pulse train that is routed to an N-channel MOSFET. The MOSFET turns on and off and outputs 12 V to the injector. A flyback diode protects the MOSFET from the electrical pulse that comes from the injector coil when the power is turned off and the field collapses. It’s a simple circuit that can drive any injector up to 5 A.

This is a homebrew PCB for Dino's fuel injector tester. Two 555s drive a MOSFET that switches the injector.

This is a homebrew PCB for Dino’s fuel injector tester. Two 555s drive a MOSFET that switches the injector.

NAN: You’ve been “DIYing” for quite some time. How and when did your interest begin?

DINO: It all started in 1973 when I was 13 years old. I used to watch a TV show on PBS called ZOOM, which was produced by WGBH in Boston. Each week they had a DIY project they called a “Zoom-Do,” and one week the project was a crystal radio. I ordered the Zoom-Do instruction card and set out to build one. I got everything put together but it didn’t work! I checked and rechecked everything, but it just wouldn’t work.

I later realized why. The instructions said to use a “cat’s whisker,” which I later found out was a thin piece of wire. I used a real cat’s whisker clipped from my cat! Anyway, that project sparked something inside me (pun intended). I was hooked! I started going house to house asking people if they had any broken or unwanted radios and or TVs I could have so I could learn about electronics and I got tons of free stuff to mess with.

My mom and dad were pretty cool about letting me experiment with it all. I was taking apart TV sets, radios, and tape recorders in my room and actually fixing a few of them. I was in love with electronics. I had an intuition for understanding it. I eventually found some ham radio guys who were great mentors and I learned a lot of good basic electronics from them.

NAN: Is there a particular electronics engineer, programmer, or designer who has inspired the work you do today?

DINO: Forrest Mims was a great inspiration in my early 20s. I got a big boost from his “Engineer’s Notebooks.” The simple way he explained things and his use of graph paper to draw circuit designs really made learning about electronics easy and fun. I still use graph paper to draw my schematics during the design phase and for planning when building a prototype on perf board. I’m not interested in any of the software schematic programs because most of my projects are simple and easy to draw. I like my pencil-and-paper approach.

NAN: What was the last electronics-design related product you purchased and what type of project did you use it with?

DINO: An Arduino Uno. I used two of these in the Photon robot.

NAN: What new technologies excite you and why?

DINO: Organic light-emitting diodes (OLEDs). They’ll totally change the way we manufacture and use digital displays.

I envision a day when you can go buy your big-screen TV that you’ll bring home in a cardboard tube, unroll it, and place it on the wall. The processor and power supply will reside on the floor, out of the way, and a single cable will go to the panel. The power consumption will be a fraction of today’s LCD or plasma displays and they’ll be featherweight by comparison. They’ll be used to display advertising on curved surfaces anywhere you like. Cell phone displays will be curved and flexible.

How about a panoramic set of virtual reality goggles or a curved display in a flight simulator? Once the technology gets out of the “early adopter” phase, prices will come down and you’ll own that huge TV for a fraction of what you pay now. One day we might even go to a movie and view it on a super-huge OLED panorama screen.

NAN: Final question. If you had a full year and a good budget to work on any design project you wanted, what would you build?

DINO: There’s a project I’ve wanted to build for some time now: A flight simulator based on the one used in Google Earth. I would use a PC to run the simulator and build a full-on seat-inside enclosure with all the controls you would have in a jet airplane. There are a lot of keyboard shortcuts for a Google flight simulator that could be triggered by switches connected to various controls (e.g., rudder pedals, flaps, landing gear, trim tabs, throttle, etc.). I would use the Arduino Leonardo as the controller for the peripheral switches because it can emulate a USB keyboard. Just program it, plug it into a USB port along with a joystick, build a multi-panel display (or use that OLED display I dream of), and go fly!

Google Earth’s flight simulator also lets you fly over the surface of Mars! Not only would this be fun to build and fly, it would also be a great educational tool. It’s definitely on the Hack A Week project list!

Editor’s Note: This article also appears in the Circuit Cellar’s upcoming March issue, which focuses on robotics. The March issue will soon be available for membership download or single-issue purchase.

 

An Organized Space for Programming, Writing, and Soldering

AndersonPhoto1

Photo 1—This is Anderson’s desk when he is not working on any project. “I store all my ‘gear’ in a big plastic bin with several smaller bins inside, which keeps the mess down. I have a few other smaller storage bins as well hidden here and there,” Anderson explained.

AndersonPhoto2

Photo 2—Here is Anderson’s area set up for soldering and running his oscilloscope. “I use a soldering mat to protect my desk surface,” he says. “The biggest issue I have is the power cords from different things getting in my way.”

Al Anderson’s den is the location for a variety of ongoing projects—from programming to writing to soldering. He uses several plastic bins to keep his equipment neatly organized.

Anderson is the IT Director for Salish Kootenai College, a small tribal college based in Pablo, MT. He described some of his workspace features via e-mail:

I work on many different projects. Lately I have been doing more programming. I am getting ready to write a book on the Xojo development system.

Another project I have in the works is using a Raspberry Pi to control my hot tub. The hot tub is about 20 years old, and I want to have better control over what it is doing. Plus I want it to have several features. One feature is a wireless interface that would be accessible from inside the house. The other is a web control of the hot tub so I can turn it on when we are still driving back from skiing to soak my tired old bones.

I am also working on a home yard sprinkler system. I laid some of the pipe last fall and have been working on and off with the controller. This spring I will put in the sprinkler heads and rest of the pipe. I tend to like working with small controllers (e.g., the Raspberry Pi, BeagleBoard’s BeagleBone, and Arduino) and I have a lot of those boards in various states.

Anderson’s article about a Raspberry Pi-based monitoring device will appear in Circuit Cellar’s April issue. You can follow him on Twitter at @skcalanderson.

Data Acquisition Card with Real-Time Data Calculation

HBMHBM’s GN610 and GN611 isolated 1-kV data cards now include real-time data calculation capabilities. The new cards feature an isolated data acquisition card, which enables the data recorders to perform real-time calculations on the fly while providing users with immediate results.

The new card also helps Genesis High Speed recorders calculate more precise results. The 1-kV card provides values per half cycle at sampling rates of up to 2 million samples per second at voltages up to 1,000 V. For example, users can see dynamic data (e.g., currents and voltages) produced when an electric motor is accelerated.

The system’s sampling rate can be automatically switched following a trigger event in the real-time calculation channels. Maximum sampling rates are only used for particularly critical measurement events. This results in smaller data files, which increases testing efficiency.

The Genesis 1-kV card ensures fast and secure processing of large data sets, improving how the software streams data to memory and displays it to the user.

Contact HBM for pricing.

HBM, Inc.
www.hbm.com

Innovation Space: A Workspace for Prototyping, Programming, and Writing

RobotBASIC co-developer John Blankenship accomplishes a lot in his “cluttered” Vero Beach, FL-based workspace.

JohnBlankenship

John Blankenship in his workspace, where he develops, designs, and writes.

He develops software, designs hardware, packages robot parts for sale, and write books and magazine articles. Thus, his workspace isn’t always neat and tidy, he explained.

“The walls are covered with shelves filled with numerous books, a wide variety of parts, miscellaneous tools, several pieces of test equipment, and many robot prototypes,” he noted.

“Most people would probably find my space cluttered and confining, but for me it comforting knowing everything I might need is close at hand.”

Blankenship co-developed RobotBASIC with Samuel Mishal, a friend and talented programmer. The introductory programming language is geared toward high school-level students.

This PCB makes it easy to build a RobotBASIC-compatible robot.

This PCB makes it easy to build a RobotBASIC-compatible robot.

You can read Blankenship’s article, “Using a Simulated Robot to Decrease Development Time,” in the March 2014 edition of Circuit Cellar. He details how implementing a robotic simulation can reduce development time. Here’s an excerpt:

If you have ever built a robot, you know the physical construction and electronic aspects are only the first step. The real work begins when you start programming your creation.

A typical starting point is to develop a library of subroutines that implement basic behaviors. Later, the routines can be combined to create more complex behaviors and eventually full-blown applications. For example, navigational skills (e.g., hugging a wall, following a line, or finding a beacon) can serve as basic building blocks for tasks such as mowing a yard, finding a charging station, or delivering drinks to guests at a party. Developing basic behaviors can be difficult though, especially if they must work for a variety of situations. For instance, a behavior that enables a robot to transverse a hallway to find a specified doorway and pass through it should work properly with different-width hallways and doorways. Furthermore, the robot should at least attempt to autonomously contend with problems arising from the imprecise movements associated with most hobby robots.

Such problems can generally be solved with a closed-loop control system that continually modifies the robot’s movements based on sensor readings. Unfortunately, sensor readings in a real-world environment are often just as flawed as the robot’s movements. For example, tray reflections from ultrasonic or infrared sensors can produce erroneous sensor readings. Even when the sensors are reading correctly, faulty data can be obtained due to unexpected environmental conditions. These types of problems are generally random and are therefore difficult to detect and identify because the offending situations cannot easily be duplicated. A robot simulator can be a valuable tool in such situations.

Do you want to share images of your workspace, hackspace, or “circuit cellar”? Send your images and space info to editor@circuitcellar.com.

Next-Generation Wi-Fi Modules

eConaisThe EC19D family is small, easily integrated, low-standby power single chip 802.11b/g/n Wi-Fi System In Package (SiP) modules for the Internet of Things (IoT).

The SiP modules help designers quickly and easily connect their devices to 802.11b/g/n Wi-Fi networks. At 8-mm × 8-mm, the EC19D modules can be embedded in almost any product or application. The EC19D will also include FCC, IC, and EC certifications to further simplify and speed up product design and production for use with Wi-Fi networks.

The EC19D incorporates the newest Wi-Fi 802.11b/g/n standards and features to provide designers with many options for embedding the module in their designs. The EC19D’s features include Wi-Fi Direct, ProbMeTM configuration, full TCP/IP stack, HTTPS/SSL, DHCP Client/Server, WPS, legacy Wi-Fi Client, and SoftAP modes with WPA/WPA2 support, serial to Wi-Fi, and Cloud service support.

Contact eConais for pricing.

eConais Inc.
www.econais.com

RS-422/-485 Serial Interface for PCI Express

SealevelThe 7802e is a PCI Express serial interface adapter that provides eight serial ports individually configurable for RS-422 or RS-485 communications. The adapter is well suited for applications including test and measurement, security systems, and broadcast.

The board’s high-performance 16C950 UART includes 128-byte FIFOs for error-free operation in high-speed serial applications. The 16C950 UART also supports 9-bit framing and is software compatible with legacy UART applications.

A PCI Express link supplies the 7802e’s 62.5-MHz clock. This ultra-high speed clock is divided by a flexible 8-bit clock prescalar. In RS-485 mode, the transmitter is automatically enabled in hardware, eliminating the need for application software control. This enables the 7802e to be used with standard serial applications without the risk of bus contention and data corruption.

All Sealevel PCI Express serial adapters include SeaCOM software for Windows and Linux OSes. The adapters also include WinSSD, a full-featured application for testing and diagnostics including bit error rate testing (BERT), throughput monitoring, loopback tests, and test pattern message transmissions.

The 7802e costs $469.

Sealevel Systems, Inc.
www.sealevel.com

Embedded SSDs For Long-Life Applications

GreenliantGreenliant Systems’s eMMC NANDrive GLS85VM embedded solid state drive (SSD) product family is available to select customers. The SSDs combine Greenliant’s internally developed NAND controller with NAND flash die, providing a fully integrated SSD in a multi-chip package. The SSDs are available with two bits per cell (MLC) or one bit per cell (SLC) NAND to meet varying customer requirements for lifespan, endurance, and performance.

The 14-mm × 180-mm eMMC NANDrives are offered in a 100 ball grid array (BGA) package with 1-mm ball pitch for increased long-term reliability. The SSDs offer data storage in a small BGA form factor capable of withstanding severe conditions. The NANDrive devices support the JEDEC eMMC 4.4 standard and are backward compatible with the eMMC 4.3 standard.

The eMMC NANDrives feature advanced wear-leveling, bad block management, and error correction code (ECC) capabilities. They also include power interrupt data protection and enhanced security features to safeguard sensitive data.

Contact Greenliant for pricing.

Greenliant Systems, Ltd.
www.greenliant.com